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Abstract: This paper presents a digitally controlled oscillator (DCO) with a low-complexity circuit
structure that combines multiple delay circuits to achieve a high timing resolution and wide output
frequency range simultaneously while also significantly reducing the overall power consumption.
A 0.18 µm complementary metal–oxide–semiconductor standard process was used for the design,
and measurements showed that the chip had a minimum controllable timing resolution of 4.81 ps
and power consumption of 142 µW with an output signal of 364 MHz. When compared with other
designs using advanced processes, the proposed DCO demonstrated the best power-to-frequency
ratio. Therefore, it can output a signal at the required frequency more efficiently in terms of power
consumption. Additionally, because the proposed DCO uses digital logic gates only, a cell-based
design flow can be implemented. Hence, the proposed DCO is not only easy to implement in different
processes but also easy to integrate with other digital circuits.

Keywords: digitally controlled oscillator (DCO); clock generator; all digital; low power;
low complexity

1. Introduction

In digital chips, all circuits rely on clock signals for signal synchronization and coordi-
nation to ensure correct timing and functional operation. Therefore, generating high-quality
clock signals in the chip to meet the requirements of digital systems is a very important
topic. After much research and development, the phase-locked loop (PLL) is currently the
most common and important clock generator. PLLs are often used to generate clock signals
required by digital systems (e.g., clock multipliers) or in communication systems and data
transmission (e.g., frequency synthesizer, clock and data recovery, and clock de-skew).
Hence, PLLs are an indispensable and important module in today’s chips [1,2].

The general PLL design implements the charge pump structure [3,4]. Figure 1a
illustrates a functional block diagram of a charge pump PLL, which comprises a phase
frequency detector (PFD), charge pump, loop filter, voltage-controlled oscillator (VCO),
and feedback divider. The PFD compares the phases of the input reference clock and
feedback clock in the feedback divider and determines the period for the charge pump to
charge or discharge the capacitor according to the phase difference. Therefore, the charge
pump and loop filter determine the control voltage (Vctrl) of the VCO, and thus, its output
frequency. Although the charge pump PLL has good performance, it has encountered
several design challenges with the evolution of the semiconductor manufacturing process
and reduction of the system operating voltage. For instance, reducing the system operating
voltage requires more design efforts to balance the frequency-to-voltage gain and output
frequency range in the VCO [5]. Additionally, the capacitors that store the control voltage
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are implemented with a metal–oxide–semiconductor (MOS) in consideration of the chip
cost and area. Furthermore, advanced processes can cause a serious leakage current in
the MOS, which can cause the control voltage to generate a ripple phenomenon that in
turn generates a jitter in the output clock signal. Thus, several studies have proposed
implementing an all-digital PLL (ADPLL) to overcome the challenges faced by traditional
PLLs [5–7].
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Figure 1. (a) Functional block diagram of a general phase-locked loop (PLL); (b) Functional block diagram of a general
all-digital PLL (ADPLL).

The ADPLL is a purely digital circuit that is constructed to realize the PLL. Because
all circuits of the ADPLL are controlled by digital signals, the problem of a control voltage
ripple caused by a leakage current can be avoided. Additionally, because the ADPLL does
not use any passive components, it is very easy to integrate with other digital systems.
Such an all-digital circuit can be designed as a soft silicon intellectual property (soft IP),
so the design can be easily converted for implementation in different processes, which
will significantly reduce the chip development time. Figure 1b illustrates a functional
block diagram of a general ADPLL, which comprises a PFD, digital controller, digitally
controlled oscillator (DCO), and feedback divider. The ADPLL operates as follows: the PFD
compares the phases and frequencies of the input reference clock signal and the feedback
clock signal from the feedback divider. It then generates UP and DN signals and sends
them to the digital controller. The digital controller adjusts the digital control code for the
DCO according to the UP/DN signals and thus controls the DCO output signal frequency.
The ADPLL and PLL operate very similar except that the ADPLL circuit is controlled by
digital signals instead of a voltage or current. The circuit is implemented with digital logic
circuits, and digital control codes are used to determine the frequency of the generated
clock signal.

Among the ADPLL modules, the DCO has the greatest effect on the overall perfor-
mance and thus is the most important circuit [7–11]. Generally, the important performance
indices of the ADPLL are the jitter, output frequency range, and power consumption. The
jitter represents the frequency stability of the generated clock signal. Because the output
clock frequency of the DCO is controlled by the digital control code discretely, changing
the digital control code during ADPLL operation changes the output signal frequency
slightly. Hence, the jitter of the ADPLL is not only related to the operating environment
and locking algorithm of the chip but is also affected by the timing resolution of the DCO.
The timing resolution is the relationship between the delay value and the digital control
code. When the timing resolution is high, changing the DCO digital control code changes
has less of an effect on the output signal frequency, which reduces the jitter. The output
clock frequency range of the ADPLL is determined directly from the DCO output frequency
range. To expand the applicable range of an ADPLL, a wider output clock frequency range
is required, which in turn necessitates a DCO with a wide output clock frequency range.
Given that the DCO takes up more than 50% of the overall power consumption of the
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ADPLL, reducing the power consumption of the DCO is an important design consideration
for ADPLLs used in portable or Internet of Things (IoT) devices [2].

Because the essential component of a DCO is the digitally controlled delay element
(DCDE), we focus on the design of DCDE in the review of DCO architecture. The main
design concept of DCDE is to control the driving current or circuit loading by digital control
code to obtain different delay times and generate different output periods. There are four
types of DCDE structures that will be reviewed in the next section in detail.

This study focused on developing a DCO with a high timing resolution and wide
output clock frequency range realized by standard cells. A low-complexity architecture is
proposed to reduce the power consumption and area of the DCO. The rest of this paper is
organized as follows. In Section 2, the proposed DCO architecture is briefly explained and
compared with recent designs in the literature. In Section 3, the proposed DCO architecture
and circuit are described in detail. In Section 4, the chip implementation and measurement
results are presented, and the performances of different designs are compared. The paper
is concluded in Section 5.

2. Review of Digitally Controlled Delay Elements

The essential component of a DCO is the digitally controlled delay element (DCDE).
Several studies have proposed different designs for the DCDE. Figure 2 shows four types
of DCDE structures: the delay-path-type DCDE (DP-DCDE) [5], shunt-type DCDE (S-
DCDE) [11], hysteresis-delay DCDE (HD-DCDE) [8], and current-controlled DCDE (CC-
DCDE) [12]. The first three types can be implemented with digital logic gates and completed
through a cell-based design flow. The last DCDE is implemented through a full-custom
design flow.
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The DP-DCDE has a very straightforward design concept: the delay is changed by
adjusting the path length of the signal transmission [5]. Delay elements with fixed delays
are connected in series to form a delay line, and the output of each delay element is
connected to a tri-state gate. Then, the outputs of all tri-state gates are connected together,
as shown in Figure 2a. A single tri-state gate is turned on by a specific digital control code
at a time, which results in a specific delay path and thus generates a specific delay. The
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delay range may be widened by increasing the number of cascaded DCDEs, but the delay
resolution is a logical gate delay, which is not suitable for general applications.

To increase the delay resolution, the S-DCDE [11] connects several tri-state gates in
parallel. The tri-state gates are controlled by digital control codes to obtain different driving
capabilities and thus different delay times. Figure 2b shows the circuit structure. The
S-DCDE offers a high delay resolution, but increasing the number of turned on tri-state
gates reduces the change in driving capability. The S-DCDE eventually becomes saturated,
which results in poor linearity between the digital control code and delay.

The HD-DCDE uses digital control codes to control delay hysteresis and generate
different delays. Its structure is shown in Figure 2c [5,8]. Although it can realize a delay
resolution of less than 100 ps, which is better than that of the DP-DCDE, it is still insufficient
for ADPLL applications.

Contrary to the other three designs, the CC-DCDE controls the current analogously
to change the delay of the circuit [12]. There are some header and footer switches in the
CC-DCDE, and the number of turned-on header and footer switches is controlled by a
digital control code, as shown in Figure 2d. As the number of turned-on header and footer
switches increase, the supply current of the center inverter increases, leading to reduce the
delay of DCDE. Because the header and footer switches are implemented by the transistors
directly, the DCDE of [12] has to be implemented in the transistor-level design, and it can
not be implemented by the cell-based (logical) flow. Compared with the other three designs,
the CC-DCDE has a higher timing resolution, but it also has a higher power dissipation
and is difficult to integrate into digital chip designs.

Table 1 briefly compares the performances of the four DCDE designs. None of the
designs offer good performance in all aspects. Therefore, the proposed DCO architec-
ture uses different DCDE designs to effectively reduce the circuit complexity and power
consumption at the same time.

Table 1. Comparisons of different digitally controlled delay element (DCDE) structures.

DP-DCDE [5] S-DCDE [11] HD-DCDE [8] CC-DCDE [12]

Design style Cell-based Cell-based Cell-based Full-custom
Timing resolution Low Medium Medium High
Delay Linearity Good Poor Good Poor
Operation range Wide Narrow Medium Narrow

Power consumption Medium Medium Medium High
Portability Yes Yes Yes No

3. Digitally Controlled Oscillator Design

For DCO design, the timing resolution is one of the most important indices for eval-
uating the performance. However, a high timing resolution is often accompanied by a
narrow controllable timing range. Therefore, achieving both a high timing resolution and a
wide controllable timing range was the first design challenge in this study. Since using a
single DCDE type to achieve both a high timing resolution and a wide controllable timing
range at the same time is difficult, the proposed DCO architecture has multiple stages
containing different DCDE types. Figure 3 illustrates the proposed DCO architecture,
which comprises three different controllable delay stages (CDSs). The delays of the first,
second, and third CDSs are controlled by the first, second, and third digital control codes
(C1 [7:0], C2 [4:0], and C3 [2:0]), respectively [7]. The first CDS has the highest timing
resolution, followed by the second and then third CDSs. Conversely, the third CDS has
the widest controllable timing range, followed by the second and then first CDSs. The
proposed DCO can obtain both a high timing resolution and a wide controllable timing
range through appropriate control because the three CDSs have different timing resolutions
and controllable timing ranges. The overall timing resolution of the DCO is that of the
third CDS, and the controllable timing range of the DCO can easily be extended from that
of the first CDS.
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The main design concept of the multistage DCO is that the total controllable timing
range of each stage should be greater than or equal to the timing resolution of the previous
stage, as shown in Figure 4a. Thus, the three stages can be effectively combined in a series
connection to achieve the design goal. For example, the controllable timing range of the
third CDS should be greater than or equal to the timing resolution of the second CDS.
Ideally, the same change in the digital control code should produce the same change in
the output clock period. However, if the total controllable timing range of a single CDS is
less than the timing resolution of the previous CDS, changing some specific digital control
codes will cause a greater change in the output clock cycle than other code changes. In
such situations, the output clock period controlled by the digital control code will have a
serious discontinuity problem, which will increase the output jitter. Figure 4b illustrates a
situation where the total controllable timing range of a single CDS is less than the timing
resolution of the previous CDS. As shown in Figure 4c, a large period difference occurs
when the control code sweeps across different CDSs.
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(c) A large period difference occurs when the control code sweeps across different CDSs.

Figure 5a shows the detailed circuit of the proposed multistage DCO. The first CDS
comprises a NAND gate and eight ladder delay elements (LDEs), each of which contains
an inverting multiplexer and NAND gate. There are eight different propagation paths from
the input (DCO_OUT) to the output (N12) in the first CDS. The first digital control code
(C1 [7:0]) can select one of eight different propagation paths to generate the required delay.
Since the first CDS has a ladder-like structure, the overall controllable timing range can be
increased by increasing the number of connected LDEs. Compared with the conventional
DP-DCDE, the LDE has two advantages. First, the output capacitance increases with the
number of delay elements because every delay element output connects together in the
conventional DP-DCDE. Hence, if the number of delay elements is increased to extend the
controllable timing range, then the instinct delay increases, which decreases the maximum
output frequency. By contrast, the instinct delay of the LDE does not increase as the number
of delay elements increases, so the maximum output frequency does not decrease when
the controllable timing range is extended. Second, the first digital control code not only
determines the signal propagation path but also blocks useless signal transmission to
reduce unnecessary power consumption.
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Figure 5. (a) The detailed circuit of the proposed multistage digitally controlled oscillator (DCO); (b) The equivalent circuits
of the second and third CDSs.

The design concept of the second and third CDSs is to control the gate capacitance of
the logic gate to generate different delays. The gate capacitance is changed very slightly by
the digital control code, so the second and third CDSs can have very high timing resolutions.
In the second CDS, one input of the two-input NAND gate connects to the delay line, and
the other input connects with the digital control code. As the logic level of the digital
control code changes, the gate capacitance of the two-input NAND gate changes. This
changes the capacitance loading of the delay line in the second CDS. The circuit structure
of the third CDS is similar to that of the second CDS; it comprises several tri-state gates
where the gate capacitance changes with the logic level of the input. Figure 5b illustrates
the equivalent circuits of the second and third CDSs, and the different control signal states
obtain different gate capacitances, which generate different delay times. The second and
third CDSs have 32 and eight different delays, respectively, that are controlled by the
second digital control code (C2 [4:0]) and third digital control code (C3 [2:0]), respectively.
Because the third CDS has a very high timing resolution, using only the first and third
CDSs would cause the third CDS to require a large number of tri-state gates to ensure
that its controllable timing range is greater than the timing resolution of the first CDS.
Therefore, to greatly reduce the number of tri-state gates in the third CDS, the second CDS
is added with a timing resolution lower than that in the third CDS. Thus, the proposed
multistage DCO has not only a high timing resolution but also low circuit complexity and
power consumption.

Table 2 lists the HSPICE simulation results for the timing resolution and range of each
CDS. The proposed DCO was simulated with a 0.18 µm complementary MOS (CMOS)
model under three different process–voltage–temperature (PVT) conditions: best-case (FF,
1.98 V, −40 ◦C), typical-case (TT, 1.8 V, 25 ◦C), and worst-case (SS, 1.62 V, 125 ◦C). According
to the simulation results, each stage had a greater total controllable timing range than the
timing resolution of the previous stage under all PVT conditions. Thus, the three stages
can be effectively connected in series to achieve the design goal.

Table 2. The timing resolution and controllable range of each CDS.

First CDS Second CDS Third CDS

Range (ps) 2647.9 435.5 35.2
Resolution (ps) 382.1 14.5 4.4

4. Measurement Results and Discussion

The proposed DCO was designed through the cell-based design flow and imple-
mented according to the TSMC 0.18 µm 1P6M CMOS standard process. Figure 6 shows a
microphotograph and layout of the chip, which had an area of 17 µm × 103 µm. The DCO
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chip was measured with an R&S ROT1044 oscilloscope at a supply voltage of 1.8 V and tem-
perature of 25 ◦C. We use an oscilloscope to measure the different signal frequencies output
when inputting different digital control codes, and then obtain the average resolution of the
DCO chip. Figure 7 mainly shows two DCO chip measurement results, one is the output
frequency range of the proposed DCO, and the other is the jitter at the highest and lowest
output frequency, respectively. The measured output frequency range and period resolu-
tions were 170–364 MHz and 4.81 ps, respectively. Figure 7 shows that the root-mean-square
jitter was 12.2 and 21.3 ps at 364 and 170 MHz, respectively. The power of the DCO chip
can be obtained from the measured current magnitude by an ammeter. According to the
maximum power consumption and output frequency of the DCO chip, the overall power
index of the proposed DCO can be calculated (0.142 mW/364 MHz = 0.39 µW/MHz).
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Table 3 compares the performances of the proposed DCO design and state-of-the-
art DCOs. Because of the low circuit complexity of the proposed DCO, although the
process was not as advanced as that used in the other designs, it had the smallest chip
area. Additionally, the power index results clearly demonstrate that the proposed DCO
had the best power-to-frequency ratio, which implies that it reduces power consumption
more effectively for a given output frequency. Because all circuits of the proposed DCO can
be implemented using logic gates, it can be designed with a cell-based design flow. This
not also can reduce the chip design time significantly but also allows the circuit to be easily
migrated to a different process.

Table 3. Performance Comparisons.

Performance Indices Proposed RSI’20 [11] TCAS2’11 [6] TVLSI’17 [10] 1 TCAS2’07 [5] JSSC’05 [12]

Process 0.18 µm
CMOS

0.18 µm
CMOS 65 nm CMOS 65 nm CMOS 90 nm CMOS 0.18 µm

CMOS

Supply Voltage (V) 1.8 1.8 1 1.2 1 1.8

Design Methodology All-Digital
(Cell-Based)

All-Digital
(Cell-Based)

All-Digital
(Cell-Based) Semi-Digital All-Digital

(Cell-Based) Full-Custom

Operation Range
(MHz) 170~364 169~522 47.8~538.7 600~3100 191~952 413~485

Resolution 4.81 ps 2.2 ps 17.4 ps 4.45~5.06
(MHz/LSB) 1.47 ps 2 ps

Power Consumption
(mW)

0.142
@364 MHz

1.8
@519 MHz

0.205 @481.6
MHz

2.4
@1.87 GHz

0.14
@200 MHz 0.17~0.34 2

Power Index
(µW/MHz) 0.39 3.47 0.43 1.28 0.7 NA

Area (µm × µm) 103 × 17 55 × 55 0.01 mm2 NA NA 100 × 50

Portability Yes Yes Yes No Yes No
1 Simulation only, 2 Static power only.
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5. Conclusions

This paper presents a DCO with high timing resolution and low complexity for clock
generation. The proposed multistage DCO comprises three CDSs to achieve a high timing
resolution with low power consumption and circuit complexity. Measurements showed
that the proposed DCO reduced the power consumption to 0.142 mW at 364 MHz with a
period resolution of 4.81 ps. The proposed DCO implements a cell-based design flow that
is easy to integrate with digital systems, and it can be migrated to different technologies.
The proposed DCO can be used to realize an area- and power-efficient clock generator for
advanced system applications.
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