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educn , Background: Detecting pathogenic proteins is the origin way to understand the
iiz(}zlci;?(g?uggﬂence mechanism and resist the invasion of diseases, making pathogenic protein prediction
Institute of Technology, develop into an urgent problem to be solved. Prediction for genome-wide proteins
Harbin, Heilongjiang 150001, may be not necessarily conducive to rapidly cure diseases as developing new drugs

China specifically for the predicted pathogenic protein always need major expenditures on

time and cost. In order to facilitate disease treatment, computational method to pre-
dict pathogenic proteins which are targeted by existing drugs should be exploited.

Results: In this study, we proposed a novel computational model to predict drug-
targeted pathogenic proteins, named as M2PP. Three types of features were presented
on our constructed heterogeneous network (including target proteins, diseases and
drugs), which were based on the neighborhood similarity information, drug-inferred
information and path information. Then, a random forest regression model was trained
to score unconfirmed target-disease pairs. Five-fold cross-validation experiment was
implemented to evaluate model’s prediction performance, where M2PP achieved
advantageous results compared with other state-of-the-art methods. In addition, M2PP
accurately predicted high ranked pathogenic proteins for common diseases with pub-
lic biomedical literature as supporting evidence, indicating its excellent ability.

Conclusions: M2PP is an effective and accurate model to predict drug-targeted path-
ogenic proteins, which could provide convenience for the future biological researches.
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Background

Overcoming diseases is the eternal goal of human beings, and the current treatment
strategies mainly depend on drugs, aiming to act on the target genes or proteins to alle-
viate the symptoms or even prevent the attack of the disease [1]. In the drug-target-
disease mechanism, identifying the disease-caused protein is a crucial and fundamental
problem, also becomes challenge at the same time [2]. Currently, computational meth-
ods to predict pathogenic targets have been widely applied because of their high effi-
ciency and low consumption prior to in vitro or in vivo biological experimental methods
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[3]. During the past decades, various prediction methods have been presented with dif-
ferent performances.

Earlier researches mainly focused on the protein—protein interaction (PPI) network,
whose topological structure was directly used to predict disease-gene associations [4, 5].
However, the large number of false positives in the PPI network from public databases
made these methods difficult to acquire higher prediction accuracy. Hence, the disease-
related clinical data was added into later studies, which were based on GWAS [6-8] and
gene expression [9-13], respectively. Although these methods obtained more accurate
prediction than methods which applied PPI network alone, limitations still existed. For
example, even the comprehensive platform TCGA [14] could only provide limited avail-
able data about uncommon cancers, let alone other non-cancer diseases, which greatly
restricted the performance of these methods. Difficult to break limitations on the data
source, researchers have begun to conduct in-depth research on algorithms, where the
most widely used were about machine learning. Model GCN-MF combined the graph
convolutional network with matrix factorization for disease-gene association identifica-
tion [15]. Natarajan et al. derived features of diseases and genes for the inductive matrix
completion [16]. Method CATAPULT was proposed by training a biased support vec-
tor machine model with features derived from a heterogeneous network [17]. Zeng et al.
considered this problem as the recommender system, presenting a probability-based
collaborative filtering model to predict pathogenic human genes [18]. Luo et al. devel-
oped a method to predict disease—gene associations with multimodal deep learning [19].
Although these efforts on algorithm development made prediction results improved,
most methods still extracted valid information only from gene data and disease data.
Actually, utilizing other information besides gene and disease to solve the prediction
problem is essential and urgent in such intricate biological networks.

The ultimate objective of predicting pathogenic genes or proteins is to find a break-
through for disease treatment. If predicting on the whole gene (protein) set, even though
a novel gene-disease (protein-disease) association is successfully predicted, it will still be
a long process to treat the disease specifically for this gene (protein). The reason comes
from many aspects, for example, the research and development for new drugs usually
take a long time. Actually, reducing the scope of the whole protein set to drug-targeted
protein set will be more conducive for the disease treatment in clinical research, because
for a novel predicted protein-disease association, the drugs which target this protein
can be regarded as a candidate collection for the disease treatment instead of develop-
ing new drugs. Hence, we proposed a method to predict drug-targeted pathogenic pro-
teins, named as M2PP. First, the target, disease and drug set were collected to construct
association networks and similarity networks. Then, features were constructed for each
target-disease pair based on the neighborhood similarity information, drug-inferred
information and path information, respectively. Finally, a random forest regression
model was trained to score unconfirmed target-disease pairs.

Method

Data collection

We collected the drug-targeted single human target proteins from DrugBank [20],
where the drugs were approved by the Food and Drug Administration (FDA) [21]. For
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these targets, we extracted diseases which had curated associations with them from
the Comparative Toxicogenomics Database (CTD) [22]. Then, three sets (a target set, a
disease set and a drug set) were constructed. Next, we reduced these sets to make sure
that any element in one set had association with both the other two sets (all associa-
tions were from DrugBank and CTD). Finally, we obtained 1002 targets, 1035 diseases
and 1095 drugs (Fig. 1a)). The target set, disease set and drug set were represented as
T ={t,t2,...,ty,r} D= {dl, do,..., an} and M = {mj, my, ..., mpm}, respectively.

Network construction
First, we constructed three association networks among the target, disease and drug set:
(1) the target-disease association network, including 7342 curated associations from
CTD, whose adjacency matrix was represented as TDAM1D; (9) the target-drug inter-
action network, including 38,871 curated interactions from DrugBank and CTD, rep-
resenting its adjacency matrix as TDI"T*"M; (3) the disease-drug association network,
including 35,319 curated associations from CTD, with adjacency matrix of DDAMP>*M,
For target t; (1 <i < nT) and disease dj (1 <j< nD), if the known association between
them was existed,TDA;;j = 1; otherwise,TDA;; = 0. Analogously did TDI and DDA.

Then, we constructed the similarity networks:

(1) The disease-disease similarity network. We calculated the disease semantic simi-
larities based on the Medical Subject Headings (MESH) descriptors [23] by the IDS-
SIM algorithm [24] and based on Disease Ontology (DO) [25] by Wang et al’s method

a
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Fig. 1 The framework of M2PP. a Construct the target set, disease set and drug set; b Construct
heterogeneous networks: the target-disease association network, target-drug interaction network,
disease-drug association network, disease-disease similarity network, target-target similarity network and
drug-drug topological structure similarity network; ¢ Construct features for target-disease pairs; d Train the
random forest model and predict association scores for unconfirmed target-disease pairs
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[26], respectively. For a disease-disease pair, the mean value of the two similarities
was computed to construct the semantic similarity matrix DDS_S"*"P_Then, we cal-
culated diseases’ topological structure similarity [27], whose matrix was represented
as DDS_TnDxnD,

DDS_T;; = exp(—a||TDA,i - TDA,j||2) (1)

1 nD
=ao/— TDA .||?
a a/nD;H Kl

where1 < i,j < nD; TDA ; was the ith column of TDA; o’ was set to 1 according to previ-
ous study [28]. For the two similarity matrices DDS_S and DDS_T, we proposed an inte-
gration way based on the entropy to get the final disease similarity matrix DDS™P*1D,

The entropy of row i in matrix W**” was represented as E}':

y
EY =-=" pijlog(pi)) @)
j=1

y
pij = Wi, Z Wik
k=1

According to the formula above, the entropy of disease d; in matrix DDS_S and

DDS_T was calculated and represented as E?Ds—s and E?DS-T

eases could be divided into two subsets, D_A and D_B:

, respectively. All dis-

D_A={qEP”S <EP”T,1<i<nDf (3)

L
D B= {dj [EPPST _ EPDSS g _j nD} @
The similarity matrix DDS could be divided into four parts by D_A and D_B:

similarity matrix between D_A and D_A similarity matrix between D_A and D_B
similarity matrix between D_B and D_A similarity matrix between D_B and D_B

(5)

A low entropy value meant little random information from the similarities. Hence,

DDS = {

the upper left and lower right part of DDS were defined as below:

similarity matrix between D_A and D_A = DDS_Sp ap a (6)

similarity matrix between D_B and D_B = DDS_Tp gp B (7)

The similarities between D_A and D_B were still integrated based on the entropy.
D_A was divided into two subsets, D_A_aand D_A_b:
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DAa= {diIE?Ds,stA,Dfs < E?DSfT])fA,D?B, 1<i<|D_ A]} ®)
D_A b= {d[E)7 AN < EPPIAE < < D A} )

The similarity matrix between D_A and D_B could be represented as below:

DDS_Sp A oD B

DDS_Tp A bp B (10)

Similarity matrix between D_A and D_B = [

To ensure the symmetry of DDS, the similarity matrix between D_B and D_A was
set as the transpose of similarity matrix between D_A and D_B. Finally, DDS could be
obtained as below:

DDS_Sp A _ab B
DPDS_Sp_ap_A [ DDS_Tp_a bp_B

DDS_Sp A aD B
DDS_Tp A bp B

DDS = 11)

T
] DDS_Tp Bp B

(2) The target-target similarity network. We calculated the target proteins’ amino
acid sequences similarity from the KEGG database [29] by the Smith-Waterman algo-
rithm [30] and the protein functional similarity by Chen et al’s method [31], respec-
tively. For a target-target pair, the mean value of the two similarities was calculated to
construct the similarity matrix TTS_S"T*"T, Then, targets’ topological structure simi-

TnTan

larity matrix TTS_ was computed as below:

TTS_T;j = exp(—,B||TDAi, — TDA,«,||2) 12)

) 1 nT )
B=F | IITDA]l
k=1

where1 < i,j < nT; TDA; was the ith row of TDA; 8/ = 1.
The target subset T_A, T_B, T_A_a and T_A_b were defined as below:

T A= {ulE"* < g™ 1<i<nT} (13)
TB={yg"" <E"51<j<nT} (14)
T Aa= {ti|El.TTS*ST—A'T—B <p/TTTATE ) << |T_A|} (15)
TAb= {t,»|13jTTS—TT—A'T—B <E AR << |T_A|} (16)

Finally, TTS_S and TTS_T were integrated into the final target similarity matrix
TTSnTan:
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TTS_St A 0T B
TTS Stata [TTs_TT_A_b,T_B

. 17
TTS_ St A 2T B TTS Tt BT B v
TTS_TT A bT B S

TTS =

(3) The drug-drug topological structure similarity networks. We calculated drugs’ top-
ological structure similarities in the target-drug interaction network and the disease-
drug association network, respectively. They were represented as MMS_T™>*"M 4nq
MMS_D"M*0M | peghectively:

MMS_T;; = exp(—y||TDI,,' - TDJ,,||2) (18)
1 nM

=y /= TDI||?

y=v nM;II &l

MMS_D;; = exp (—5||DDA,i — DDA| |2) (19)

/ 1 dl 2
§=34 H—MZHDDA,kH
k=1

where 1 <i,j < nM; TDI; and DDA ; was the ith column of TDI and DDA, respectively;
y' =18 =1

Finally, the heterogeneous network was constructed as shown in (Fig. 1b)). The char-
acteristics of data in these networks were summarized in Table 1, where the sparsity was
the ratio of edges to the network size. Obviously, our objective network (the target-disease
association network) was the most imbalanced.

Feature construction for model training to score unconfirmed target-disease pairs

For target-disease pair t;-d; (1 <i=<nT,1<j<nD), we constructed a 9-dimension fea-
ture based on its neighborhood similarity information, drug-inferred information and path
information (Fig. 1c)), shown in the following formulas:

Feal = mean (DDSp,j) (20)

Table 1 The instruction of the five networks' characteristics

Network Size of the network Number of  Range of the Sparsity
the edges edges’ weight

The target-disease association network 1002*1035 7342 Oorl 0.007
The target-drug interaction network 1002*1095 38,871 Oorl 0.035
The disease-drug association network 1035%1095 35,319 Oor1l 0.031
The disease-disease similarity network 1035%1035 1,071,225 [0,1] 1
The target-target similarity network 1002*1002 1,004,004 [0,1] 1
The drug-drug topological structure 1095%1095 1,199,025 [0,1] 1

similarity network
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P— {y| TDA;, = 0,1<y< nD}
Fea2 = mean (TTSi,Q) (21)
Q={x| TPA,; =01 < x = nT}

Fea3 = TTS;, x TDAa,j + TDA|}, x DDSb,j + TTSia x TDA,}, x DDSb,j (22)

a =arg max TTS;x—(1,2,.nTNi
X

b= arg max DDSy:{l,Z,...nD}\j,j
y

Fea4 = max (L;x/H;
e (L i) (23)
K = {z| TD];, = 1,DDAj, = 1,1 <z < nM}

Hiy = (TDI x MMS_T);x / [{x|TDL;, = 1, MMS_Tyj # 0,1 < x < nM}|

Ljx = (DDA x MMS_D)jy./|{yIDDA;, =1, MMS_Dy)c #0,1 <y < nM

Fea5 = (TTS x TDA);; / [{x|TTS;, # 0, TDAyj=1,1 <x <nT}| (24)

Fea6 = (TDA x DDS);; /| {y|TDA,, = 1, DDS,; #0,1 <y <nD}, (25)

(TTS x TTS x TDA);;

Fea7 = (26)
[{(,$)|TTS;, # 0, TTSys # 0, TDAgj =1,1 <x,s <nT}|
Feat (TTS x TDA x DDS);;
= T{(xy)[TTS,, #0, TDA,, = 1, DDSy; #0,1 <x <nT,1 <y < nD}|
(27)
(TDA x DDS x DDS);;
Fea9 = (28)

’{(y, t)|TDA,, = 1, DDSy # 0,DDS; #0,1 <yt < nDH

The analysis of these features were summarized in Table 2, including each feature’s type,
description, content and information source. Considering each target-disease pair in the
training set as a sample, the pair with known associations was regarded as a positive sample
which was labelled as 1, while the pair which did not have known associations was regarded
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Table 2 Information summary of the constructed features and their influence coefficient

(2022) 23:7

Type

Description

Feature Content

Information source

Influence
coefficient

The neighborhood
similarity informa-
tion

The drug-inferred
information

The path informa-
tion

Information based
on the similarities
between the specific
disease (target) and
its neighborhoods

Information inferred
by drugs based on
the drug-target-
disease mechanism

Information from
paths (length=2
and length=3)
between the specific
target and the
specific disease

Feal

Fea2

Fea3

Fead

Fea5

Fea6

Fea7

Fea8

Fead

The average similar-
ity between the
specific disease and
its neighborhoods
which did not have
known associations
with the specific
target

The average similar-
ity between the
specific target and
its neighborhoods
which did not have
known associations
with the specific
disease

The sum of weights
for paths which
connected by the
nearest neighbor-
hood of the specific
target and the near-
est neighborhood of
the specific disease

The maximum quo-
tient of the average
weight for the spe-
cific disease-drug
paths divided by the
average weight for
the specific target-
drug paths

The average weight
of paths from the
specific target to
the specific disease
based on target-tar-
get-disease pattern

The same as above
but based on target-
disease-disease
pattern

The same as above
but based on target-
target-target-disease
pattern

The same as above
but based on target-
target-disease-
disease pattern

The same as above
but based on target-
disease-disease-
disease pattern

DDS TDA

TTSTDA

TTS DDSTDA

0.58

0.576

0.638

TDI DDA MMS_T MMS_D.671

TTSTDA

DDS TDA

TTS TDA

TTS DDS TDA

DDS TDA

0.745

0.722

0671

0.654

0.593
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as a negative sample labelled as 0. After constructing features for each sample, the training
set was used to train the random forest regression model [32], then the prediction model
was used to score the unconfirmed target-disease pairs (Fig. 1d)). A higher score repre-
sented a larger possibility that the unconfirmed pair was associated. Parameters of mtry
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and ntree in the random forest model were set to 3 (the number of features/3) and 500
according to the default settings in R package, respectively.

Results

Evaluation metric

The fivefold cross-validation (CV) experiment was implemented to evaluate the perfor-
mance of diverse prediction models. In the target-disease association network, there were
7342 known associations and 1,029,728 unconfirmed pairs. First, the 7342 target-disease
associations and 7342 randomly selected unconfirmed pairs were considered as posi-
tive samples and negative samples, respectively. The remaining 1,022,386 unconfirmed
pairs was unlabeled samples. Then, the positive samples and negative samples were evenly
divided into 5 parts, where each part contained the same amount of positive and negative
samples. In each CV, four parts were taken as training set in turn to train the model, while
the remaining part and all unlabeled samples were taken as test set. For each test sam-
ple, the model could give a score representing the possibility that the pair was associated.
We calculated the true positive rate (TPR) and false positive rate (FPR) for these scores
under different thresholds to acquire the areas under the receiver operating characteristic
curve (AUROC) and the areas under the precision-recall curve (AUPR). In fivefold CV,
we obtained five AUROC/AUPR values and adopted the average AUROC/AUPR value to
evaluate the performance of the model in this CV. To make the results more reliable, we
repeated fivefold CV for 5 times to compute the mean and standard deviation (SD) val-
ues of the five average AUROC/AUPR values as the final evaluation metrics for prediction
models.

Feature analysis

M2PP acquired mean AUROC of 0.986 and mean AUPR of 0.417 under fivefold CV for 5
times. To detect the influence of features on model’s prediction performance, we removed
each feature in turn to run M2PP with the remaining features under the same fold settings.
After removing the investigated feature, the more reduced the prediction performance,
the more effective the feature was. The AUROC and AUPR values via removing different
feature were exhibited by boxplots in Fig. 2, where the mean values were represented by
point in the box. It could be observed that the mean AUROC/AUPR values of using all fea-
tures was better than removing any feature. The paired t-test [33] was performed between
AUROC (AUPR) values of using all features and values of removing any feature to check
whether the average difference in their performance is significantly different from zero. All
p-values were less than 0.05 as shown in Fig. 2, indicating that the performance of using
all features is significantly better than removing any feature. This result demonstrated that
each feature was indispensable. To further explore the influence of different feature on pre-
diction performance, we defined an indicator named influence coefficient as below:

Influence coefficient of Feai = mean(DifferenceAUROC;, DifferenceAUPR;)  (29)

DifferenceAUROCi — 1/ (1 + e_sum(AUROCallfeatures_AUROCullﬁzutures\Feai))
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Fig. 2 Analysis of features in M2PP. a AUROC values via all features and removing each feature with p-values
of paired t-test, where the point in the box represent the mean value; b AUPR values via all features and
removing each feature with p-values of paired t-test, where the point in the box represent the mean value

DiﬁerenceAUPRi — 1/ (1 + e—sum (AupRallfeatures_AUPRallﬁatures\Feal))

where 1 < i < 9; AUROC yjieatures and AUPR yjifeqpures represented the AUROC and AUPR
values of five times fivefold CV by using all features, respectively; AUROC yjieatures\Feai
and AUPR yjfeaures\Feai represented the AUROC and AUPR values of five times fivefold
CV by removing feature Feai, respectively. The larger the influence coefficient, the more
effective the feature was. The influence coefficient of each feature were shown in Table 2.
In the neighborhood similarity information type, Fea3 got the largest influence coeffi-
cient, because Fea3 mainly utilized the nearest neighborhoods’ similarity, which was the
most valid information in similarity networks. In the path information type, Fea5 and
Fea6 obtained advantageous influence coefficients, because paths of length =2 provided
more basic, direct and non-redundant information than length=3. The drug-inferred
information type, Fea4, also acquired decent influence coefficient, indicating that drug
indeed play an effective role in predicting target-disease associations because of the
drug-target-disease mechanism. Hence, our constructed features were effective, reason-

able and indispensable to achieve excellent prediction performance.
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Comparison with existing prediction models

M2PP was compared with six state-of-the-art models, which were RFLDA [34], DDR
[35], NEDD [36], IREMDA [37], GCRFLDA [38] and MFLDA [39]. The first four meth-
ods were based on random forest algorithm, and the last two methods were based
on the graph convolutional matrix completion and the matrix factorization, respec-
tively. We performed fivefold CV for five times on each model, exhibiting the mean
and SD of AUROC/AUPR values in Fig. 3a). The AUROC values were 0.986 £0.001
(M2PP), 0.918£0.002 (MFLDA), 0.92240.001 (IRFMDA), 0.9364+0.001 (GCRFLDA),
0.936+0.001 (NEDD), 0.97£0.001 (DDR) and 0.979+0.001 (RFLDA); the AUPR val-
ues were 0.417+0.016 (M2PP), 0.301+0.018 (MFLDA),
0.341+0.018 (GCRFLDA), 0.353 +0.015 (NEDD), 0.39 +0.014 (DDR) and 0.402 +0.015

(2022) 23:7
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(RFLDA). Whether AUROC or AUPR values, M2PP always achieved the advantageous
performance among all methods.

Each disease belonged to at least one category provided by MESH, for example, dis-
ease “Lymphoma” belonged to three categories, which were “C04: Neoplasms’, “C15:
Hemic and Lymphatic Diseases” and “C20: Immune System Diseases”. In our network,
diseases involved 24 categories, where the number and proportion of diseases in each
category were shown in the left graph in Fig. 3b). Proportion of the top 5 category “C23:
Pathological Conditions, Signs and Symptoms’; “C10: Nervous System Diseases’, “C04:
Neoplasms’, “C14: Cardiovascular Diseases” and “C16: Congenital, Hereditary, and Neo-
natal Diseases and Abnormalities” exceeded 10%, whose UpSet chart was shown in the
right side in Fig. 3b) to exhibit the details of diseases in them. For these five categories,
we detected models’ prediction performance for their diseases. First, we trained the
model with a training sample set which included known target-disease (excluded dis-
eases in the investigated category) associations as the positive samples and the randomly
selected unconfirmed target-disease (excluded diseases in the investigated category)
pairs as the negative samples, noting that the number of positive and negative samples
were the same. Second, the pairs between all targets and each disease in the investigated
category were considered as the test set in turn to acquire scores by the model. Then,
we could compute the AUROC and AUPR values for each disease in the investigated
category, and the average AUROC/AUPR value was considered as the prediction perfor-
mance of the investigated category. The process was repeated for 5 times to get reliable
results. Each model’s mean and SD of AUROC/AUPR values for the five categories were
exhibited in Fig. 3c), where M2PP always achieved the best performance. These results
indicated the excellent ability of our model.

Case studies

We predicted new pathogenic proteins for five common diseases: lung cancer, breast
cancer, colon cancer, leukemia and lymphoma. For one investigated disease, M2PP was
trained with a training sample set, where the known target-disease (excluded the inves-
tigated disease) associations was the positive samples and the randomly selected uncon-
firmed target-disease (excluded the investigated disease) pairs of the same size was the
negative samples. Then, M2PP could predict for the pairs between all targets and the
investigated disease to acquire prediction scores. We repeated the process for 5 times,
so the pair between one target and the investigated disease had five scores, and finally
the average score was considered as the prediction score of the pair. We sorted the pre-
diction score of all unconfirmed pairs between targets and the investigated disease,
and manually searched the top 10 pairs in public biomedical literature to find the sup-
porting evidence. All top 10 targets were successfully predicted for lung cancer, breast
cancer and colon cancer, nine targets for leukemia and seven targets for lymphoma,
shown in Table 3. Here, we mainly introduced the top 1 predicted target for each dis-
ease. Researchers found that TNF played a key role in inducing resistance to epidermal
growth factor receptor inhibition in lung cancer, and suggested that a concomitant inhi-
bition of epidermal growth factor receptor and TNF maybe a potentially new treatment
strategy for lung cancer patients [40]. IL2 inhibited the growth of breast cancer cells
through improving the proliferation of natural killer cells [41]. Inhibiting or knocking
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Table 3 Successfully predicted pathogenic targets in top 10 for common diseases

Disease Rank Target

Have CDs Evidence Disease

Rank Target

Have CDs Evidence

name name name name
Lung 1 TNF Yes [40] Colon 4 ESR1 Yes [46]
cancer cancer

2 IL1B Yes [47] 5 ACE Yes [48,49]

3 CTNNB1 Yes [50,51] 6 CYP2A6 Yes [52]

4 ESR1 Yes [53] 7 CA1 Yes [54]

5 MMP9 Yes [55] 8 PIK3CA Yes [56]

6 MAPK3 Yes [57] 9 PLAU Yes (58]

7 SOD1 Yes [59] 10 CYP2E1 Yes (60]

8 AKT1 Yes [61] Leukemia 1 VEGFA Yes [43]

9 MAPK1 Yes [62] 2 HIF1A Yes [63]

10 PTGS2 Yes [64] 4 TGM2 Yes [65]

Breast 1 L2 Yes [41] 5 JUN Yes [66]
cancer

2 NR3C1 Yes [67] 6 TP53 Yes [68]

3 PON1 Yes [69, 70] 7 AKT1 Yes [71]

4 JAK2 Yes [72] 8 GSTP1 Yes [73,74]

5 ICAM1 Yes [75] 9 CDK4 Yes [76]

6 VEGFA Yes [77] 10 SMO Yes [78]

7 CccL2 Yes [79] Lym- 1 CHKA Yes [44]

phoma
8 ADRB2 Yes [80] 3 BCL2 Yes [81]
9 PLAU Yes [82,83] 4 GSTP1 Yes [84, 85]
10 B2M Yes [86] 5 HMOX1 Yes [87]

Colon 1 MET Yes [42] 6 ATP6V1B2  Yes [88]
cancer

2 NOS3 Yes [89] 7 TP53 Yes [90,91]

3 ESR2 Yes [92] 8 VEGFA Yes [93]
Table 4 Successfully predicted target-disease associations on the whole network in top 10
Target name Disease name Have CDs Rank Evidence
ALOX5 Breast cancer Yes 1 [45]
NQO1 Lung cancer Yes 2 [94]
MMP14 Non-small-cell lung cancer Yes 3 [95, 96]
BRAF Breast cancer Yes 5 [97]
ERBB2 Colon cancer Yes 6 [98, 99]
MMP14 Stomach cancer Yes 8 [100]
ERBB2 Hepatocellular Cancer Yes 0 [101,102]

MET down made colon cancer cells sensitive on cetuximab-mediated growth inhibition,

implicating that targeting MET was a rational strategy for reversing cetuximab resist-

ance in colon cancer [42]. VEGFA was observed to have additive effect in inflating the

risk of leukemia [43]. CHKA possessed oncogenic activity and could be a potential ther-

apeutic target in lymphoma [44]. We also predicted target-disease association scores on

the whole network and sorted all unconfirmed pairs’ scores. Seven associations in top

10 has been successfully predicted with public literature as evidences, shown in Table 4.
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For example, researchers investigated the expression and functions of ALOXS5 in breast
cancer cells, and demonstrated that inhibiting ALOX5 had therapeutic potential in
breast cancer [45]. In addition to these literature evidences, we also found that no mat-
ter in Tables 3 or 4, targets and diseases in all successful predictions had co-associated
drugs (CDs), which were drugs simultaneously associated with the target and disease.
The phenomenon further demonstrated that these high-rank predicted pairs were rea-
sonable from the aspect of both computational data and biomedicine verification. Other
drugs which interacted with the predicted target might be potential candidate therapeu-
tic strategies for the investigated disease, needing to be explored in future clinical trials.
These results indicated the ability of M2PP to provide conveniences for the future bio-

logical researches.

Conclusion

Predicting drug-targeted pathogenic proteins is crucial for understanding disease mech-
anism and implementing disease treatment. In this study, we presented a novel model
M2PP to predict drug-targeted pathogenic proteins. First, we constructed a heterogene-
ous network, including the target-disease association network, target-drug interaction
network, disease-drug association network, disease-disease similarity network, target-
target similarity network and drug-drug topological structure similarity network. Then,
we developed three types of features on the network, which were based on neighbor-
hood similarity information, drug-inferred information and path information. Finally,
we trained a random forest model with these features to score unconfirmed target-dis-
ease pairs. In the result section, we first analyzed our constructed features in detail. By
removing each feature in turn to check the change of prediction performance, we found
that each feature was indispensable. Three types of feature obtained the average influ-
ence coefficient of 0.598 (the neighborhood similarity information), 0.671 (the drug-
inferred information type) and 0.677 (the path information type), respectively. The path
information type acquired the highest value mainly benefited from paths of length=2,
which provided more basic, direct and non-redundant information than paths of
length =3. In addition, the drug-inferred information type also got decent value, indi-
cating that drugs were effective in predicting target-disease associations because of the
drug-target-disease mechanism. Then, we compared M2PP with several state-of-the-
art models, where M2PP obtained advantageous performance among them. Accord-
ing to the disease category, we extracted sub-networks from the whole target-disease
association network for the top 5 category to perform the prediction. Results showed
that category of “C23’, “C04” and “C14” achieved better performance. This was because
that diseases in “C23’ “C04” and “C14” have more associations with targets than in the
other two categories “C10” and “C16". The average degree of diseases in “C23’, “C04” and
“C14” were 6.84 (1670 associations /244 diseases), 12.03 (1985/165) and 7.16 (960/134);
while in “C10” and “C16’, the average degree of diseases were 5.06 (1057/209) and 2.95
(348/118). Finally, we predicted new target-disease associations using M2PP, where sev-
eral high rank associations were successfully confirmed with public literature as evi-
dence. These results demonstrated that M2PP was effective and accurate, which might

be convenient for biological researches in the future.
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