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Simple Summary: The traditional approach in identifying cancer related protein biomarkers has
focused on evaluation of a single peptide/protein in tissue or circulation. At best, this approach has had
limited success for clinical applications, since multiple pathological tumor pathways may be involved
during initiation or progression of cancer which diminishes the significance of a single candidate
protein/peptide. Emerging sensitive proteomic based technologies like liquid chromatography
mass spectrometry (LC-MS)-based quantitative proteomics can provide a platform for evaluating
serial serum or plasma samples to interrogate secreted products of tumor–host interactions, thereby
revealing a more “complete” repertoire of biological variables encompassing heterogeneous tumor
biology. However, several challenges need to be met for successful application of serum/plasma
based proteomics. These include uniform pre-analyte processing of specimens, sensitive and specific
proteomic analytical platforms and adequate attention to study design during discovery phase
followed by validation of discovery-level signatures for prognostic, predictive, and diagnostic cancer
biomarker applications.

Abstract: Blood is a readily accessible biofluid containing a plethora of important proteins, nucleic
acids, and metabolites that can be used as clinical diagnostic tools in diseases, including cancer.
Like the on-going efforts for cancer biomarker discovery using the liquid biopsy detection of circulating
cell-free and cell-based tumor nucleic acids, the circulatory proteome has been underexplored for
clinical cancer biomarker applications. A comprehensive proteome analysis of human serum/plasma
with high-quality data and compelling interpretation can potentially provide opportunities for
understanding disease mechanisms, although several challenges will have to be met. Serum/plasma
proteome biomarkers are present in very low abundance, and there is high complexity involved due
to the heterogeneity of cancers, for which there is a compelling need to develop sensitive and specific
proteomic technologies and analytical platforms. To date, liquid chromatography mass spectrometry
(LC-MS)-based quantitative proteomics has been a dominant analytical workflow to discover new
potential cancer biomarkers in serum/plasma. This review will summarize the opportunities of
serum proteomics for clinical applications; the challenges in the discovery of novel biomarkers in
serum/plasma; and current proteomic strategies in cancer research for the application of serum/plasma
proteomics for clinical prognostic, predictive, and diagnostic applications, as well as for monitoring
minimal residual disease after treatments. We will highlight some of the recent advances in MS-based
proteomics technologies with appropriate sample collection, processing uniformity, study design,
and data analysis, focusing on how these integrated workflows can identify novel potential cancer
biomarkers for clinical applications.
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1. Introduction

An accumulation of genetic and epigenetic alterations that change protein expression can lead to
tumorigenesis and the aggressiveness of cancer post diagnosis. This complexity of tumorigenesis and
cancer progression has been rationalized in several hallmarks of cancer [1]. In addition, clonal evolutionary
processes after tumorigenesis appear to occur on an average of 1–10 mutations per cell division [2].
Some of these mutations result in functional and structural alterations in protein synthesis, which in turn
may influence the natural history of cancer progression or the responsiveness of a tumor to treatments and
interventions. For example, somatic mutations in leukemia-associated driver genes result in the expansion
of a genetically identical clone of marrow and blood cells that results in the development of overt neoplasia
at the rate of 0.5–1 percent of all cases. This clonal hematopoiesis of indeterminate potential (CHIP) [3]
illustrates that some but not all alterations are functional or impact disease outcomes. Recently, the Pan
Cancer Analysis of the Whole Genome (PCAWG) Consortium of the International Cancer Genome
Consortium (ICGC) and The Cancer Genome Atlas (TCGA) reconstructed the life history and evolution of
driver mutational sequences in 2778 cancers from 38 tumor types [4]. The phylogenetic evolutionary tree
of most cancers appears to be characterized by early mutations in a constrained set of driver genes and is
then followed by the continuous diversification of the mutational spectrum, leading to increased genomic
instability in later cancer stages. Protein expression and functions are dependent on the transcript levels
of driver genes, translational efficiency, regulated degradation, post-translational modifications (PTMs),
and protein–protein interactions. The identification of changes in protein-signaling networks can help us
understand underlying dynamic biological processes that lead to cancer progression and consequently
identify biomarkers for disease management [5]. The characterization of these biological processes and
complexities at the protein level is clearly needed. Serum/plasma proteomics has great potential in this
regard, but has not been well elucidated for clinical applicability in developing multi-analyte algorithms
to capture and incorporate biologically relevant clonal evolution based on serial profiling.

Since proteins are not easily synthesized or replicated like DNA in vitro, and exist in a wide range of
concentrations, it is analytically challenging to characterize them. Highly sensitive mass spectrometric
(MS)-based proteomic technologies have been developed to identify protein-based markers for cancer
diagnosis, minimal residual disease monitoring, drug response prediction, prognostication, and the
identification of novel therapeutic targets [6–9]. Broadly, the two stages of proteomics strategies that
are currently used in cancer research are global quantitative proteomics and targeted quantitative
proteomics. Global comparative proteomics deals with cataloguing and quantifying the abundance of
proteins, protein modifications, or protein complexes in a given tissue or body fluid at a given time.
Here, the patterns of protein expression are quantitatively measured and compared between cancer
and non-cancer samples. This enables the researcher to identify potential candidate biomarkers for
clinical applications [10–12]. Most studies based on global comparative proteomics have discovered
hundreds of proteins present at differential abundances in sample groups depending upon the
sample type. However, the validation of findings has been lacking, in part owing to the variance in
large-scale proteome screening data caused by tumor heterogeneity and flaws in the design of the study.
Targeted quantitative proteomics, on the other hand, focuses on the known candidate protein/disease
markers and quantitatively measures their differential abundance between the cancer and non-cancer
states in a relatively large set of samples [13,14]. Targeted quantitative proteomics mostly relies on
the single/multiple reaction monitoring (SRM/MRM) method, which is faster, multiplexing large
numbers of targets, and has a high sensitivity and a good degree of correlation with traditional
antibody-based targeted analysis [15]. However, the sensitivity and dynamic range of SRM even under
the most advanced MS cannot span or characterize the entire proteome of any given organism, and the
development of a mass spectrometry assay for each of the target biomarkers is not cost effective.
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A big analytical challenge in proteomic research for the characterization and validation of the
proteome biomarker candidates is to deal with the dynamic nature and complexity of the cellular
proteomes from different biological specimen types, such as blood, serum, plasma, and tissue.
Novel MS-based analytical platforms and technologies are being constantly developed [16], which can
interrogate tissue as well as fluid-based specimens. Human serum/plasma has a vast array of
proteins and complexes, which makes it an attractive diagnostic platform for disease-associated
biomarkers with clinical applications. It has advantages such as its minimal cost and ease of serial
sample collection and processing. The growing interest in serum/plasma proteomics has led to
a large number of biomarkers identified by MS-based discovery for different diseases, including
cancer [17–20]. However, serum/plasma proteomics also brings unique challenges for biomarker
discovery, which include experimental design, critical strategies for sample preparation and data
acquisition, and data mining tools [21,22]. This paper will review advanced MS-based proteomics
technologies and the clinical impact of proteomics biomarkers, and will focus on the recent development
of proteomic strategies for serum/plasma specimens. Finally, we discuss future perspectives for
MS-based proteomics and its clinical impact on the management of disease.

2. General Considerations for Serum/Plasma Proteomics-Based Biomarker Discovery

2.1. Choice of Blood Plasma or Serum for Proteomics Studies

Blood is the most commonly used medium for clinical laboratory assays and is an important
circulating biofluid for the proteomic discovery of putative biomarkers used in the diagnosis and
prognosis of many diseases. Blood samples are reasonably easy to obtain and process, are mostly
considered as homogeneous, and have less variation among the healthy samples compared to other
body fluids [23]. Serum/plasma are the most commonly used blood fractions for cancer biomarker
development [24]. One of the most commonly asked questions for proteomic analysis is whether to
use serum or plasma from blood. Plasma samples are obtained by the addition of an anticoagulant
such as EDTA and citrate for proteomic analysis, and subsequent centrifugation to remove the cellular
material from the collected blood. It is a challenging biological matrix, due to the large dynamic range
of protein abundance predominated with albumin, immunoglobulin, and fibrinogens. Based on the
Plasma Proteomic Project by the Human Proteome Organization (HUPO), the recommendation is the
use of plasma over serum because of the integrity of the “raw” plasma with the expected lower degree
of ex vivo degradation [25]. Serum samples, on the other hand, are obtained by withdrawing blood in
the absence of any anticoagulants, allowing for the formation of a fibrin clot. Then, serum samples are
centrifuged to remove blood cells, the fibrin clot containing a large portion of the fibrinogen content,
and the platelets, which results in the qualitative difference between plasma and serum samples.
Studies have reported that other proteins are also removed by specific or nonspecific interactions
within the fibrin clot [26]. In addition, it was found that, due to removal of fibrinogen, certain proteins
are inversely increased in serum, such as the levels of platelet-secreted vascular endothelial growth
factor (VEGF) [27]. Despite the fact that the protein concentration of serum is only 3–4% less than that
of plasma, prolonged clotting times may affect the serum proteome composition [28]. Hence, the choice
of a sample type and preparation method has to be very specific and determined based on biomarker
discovery in specific projects, but also the sample-collection protocol (e.g., the type of collection tube)
and the sample-processing procedure (e.g., coagulation temperature, time allowed for coagulation,
and anticoagulant used) are very important for removing any bias [29].

2.2. Important Factors for Designing Proteomic Studies for Cancer Biomarker Discovery

To begin with initial serum/plasma marker discovery, the clinical application question has to be
precisely defined [30] in the context of the application of the test and the population of interest (Table 1).
A marker can be for disease screening or early detection, where the focus is on detecting disease in a
high-risk or highly susceptible patient population while still asymptomatic. Alternatively, it may be a
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diagnostic cancer marker, which provides an indication of the presence of disease in a symptomatic
patient. A disease-monitoring marker indicates disease burden during treatment or monitoring.
A prognostic cancer marker gives an indication of future patient outcome regardless of treatment.
A treatment selection or predictive biomarker gives an indication of the expected outcome of a
specific treatment. Thus, each is intended for use in a different patient population, requires specimens
collected at different time points in the course of disease, and thus requires different study designs for
marker discovery and validation. The disease incidence and prevalence, as well as the cost of false
positive or false negative results, will drive the needed marker performance metrics of sensitivity
and specificity. For example, general population screening for pancreatic cancer, a very deadly but
low-prevalence disease, would require a specificity and sensitivity of at least 99% and 60%, respectively,
to simultaneously be worthwhile and minimize the undue stress of false positive diseases [31].
On the other hand, specificity requirements can be lower for a disease with a higher prevalence.
Guidance for determining ideal performance metrics in light of disease prevalence and the cost/benefit
ratio is available, and markers with varying performance characteristics are described herein in
later cancer-specific sections [32]. For developing proteomic-based predictive/prognostic/monitoring
biomarkers, the challenges go beyond the prevalence of disease and will also need to take into
account the type of targeted therapy; response rates to treatment; and time to event analysis, such as
progression-based survival and death. The context of the downstream clinical application therefore
will need to be included during the discovery design phase of development, but confirmed using
independent validation cohorts.

Table 1. Experimental design and statistical considerations for maximizing the likelihood of reproducible
biomarker discovery findings.

Study Design Step Statistical Considerations

Study Goal
Define the population in which the protein marker will be used.
Define the purpose of the protein marker—e.g., early detection,

disease monitoring, etc.

Specimens

Select case and control specimens randomly.
Select from a prospectively collected (prior to knowledge of disease

status) specimen biobank.
Select specimens from the relevant time point in the disease course.

Avoid convenience samples.
Avoid pooling of specimens.

Study Design
Plan sufficient sample size for discovery in light of realistic expected

differences.
Randomize specimens to assay run order.

Differential Abundance Detection
Assess protein difference signals relative to variation.
Incorporate statistical design into the analysis model.

Apply correction for multiple comparisons.

Panel or Signature Model Building
Finalize analysis plan in writing prior to beginning analyses.

Employ optimism correction methods.
Generate a fixed, locked-down algorithm.

Validation
Perform verification of initial protein marker identifications.

Perform internal model validation in the discovery sample set.
Perform external model validation in an independent sample set.

The relevance and population of interest is critical to guide choice of study design and specimens
for use in discovery [33]. Marker discovery work is best performed using samples collected at the
stage in which the marker is intended for use (Table 1) [34–37]. For example, new-onset diabetes can
be a prodromal illness for pancreatic cancer in some people up to three years prior to cancer diagnosis.
In patients with newly diagnosed maturity onset diabetes, serum proteomics could be used to identify
a detection marker of pancreatic cancer with the intention to screen patients newly diagnosed with
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diabetes for pancreatic cancer [38,39]. Marker discovery would ideally be performed using specimens
collected at the diagnosis of diabetes in two groups of people—those who go on to have pancreatic
cancer in the next three years (cases) and those who do not (controls). Differences in the protein
abundance of any potential cancer markers between these two groups of patients would admittedly be
expected to be small, but will truly represent the state of disease. Unfortunately, using convenience
samples of specimens for such studies, while potentially generating initial exciting results, has typically
led to unreliable markers of disease. This is likely due to a variety of pre-analytical sample handling
methods and both known and unknown differences in case and control patient populations causing
biases [40–43]. The same is true for attempting to discover markers of early stage disease in the extremes
of the disease spectrum, such as healthy and end-stage disease [37]. Case and control specimens should
be selected randomly from the same biobank of patients recruited prior to developing disease to ensure
similar recruitment practices and specimen handling, and avoid biases in patient recruitment [44].
Such a retrospective nested case control study performed in prospectively collected specimens is
known as the PRoBE (prospective-specimen collection, retrospective-blinded-evaluation) design in
the biomarker literature. It highlights the need for establishing large biobanks of specimens collected
prospectively and using uniform processing protocols prior to knowing eventual case or control status
to enable such studies. This recognition has led to establishing such biobanks to support proteomic
platforms for discovery and validation [41,44].

3. Pre-Analytic Challenges and Opportunities in Serum/Plasma Proteomics Cancer
Biomarker Development

The serum/plasma generated from whole blood contains a wide range of proteins and small
molecules secreted from various types of cells and tissues. There is an extraordinarily wide dynamic
range of the serum/plasma proteins in terms of their abundance. In the serum/plasma from cancer
patients, the abundance of clinically useful protein biomarker associated with cancer is typically at least
1000-fold lower than that of the commonly expressed highly abundant proteins. This leads to a huge
analytical hurdle to identify clinically useful markers in serum/plasma samples. Other factors also can
influence the discovery of serum-based markers in cancer patients, such as the pre-analytical processing
of serum and the storage conditions of biospecimens. For example, serum samples stored at −20 ◦C
versus−80 ◦C and processed at 4 ◦C versus 22 ◦C can impact the protein stability and subsequent marker
discovery [45]. Serum specimens that undergo freeze-thaw cycles, which lead to the degradation
of some proteins, may have poor outcomes for serum proteomic profiling. Enzymatic degradation
can further complicate serum/plasma proteomics, as there may be a further loss of biomarkers
in the serum/plasma, although this can be mitigated by adding protease inhibitors earlier during
sample processing. It is critical to recognize and address these pre-analytical challenges accordingly.
Some of these challenges can be overcome by techniques that employ the immunological depletion
of high-abundance proteins such as albumin and immunoglobulins; the deployment of extensive
fractionation using orthogonal three-dimensional protein separation to reduce complexity; and the
targeted enrichment of specific subgroups of proteins or peptides of interest, such as glycoproteins and
cysteine-rich proteins [46].

Despite these challenges, the application of the latest MS-based proteomic technologies to
uniformly collected, prepared, and appropriately stored serum/plasma specimens offers great potential
for cancer biomarker discovery. Uniformly applied pre-analytical strategies in serum proteomics has
shown the successful identification of low-abundance proteins in blood, such as EGFR (1.3–3.5 µg/mL)
and the hepatocyte growth factor activator (400 ng/mL) [47]. In ovarian cancer, diagnostic, prognostic,
and predictive markers have similarly been reported using the comparative proteomic analysis of
serum from ovarian cancer patients and healthy women. Sun et al. have found there are differentially
expressed proteins with a higher sensitivity and specificity for prostate cancer patients [19,48–50].
This has led to intense MS-based research in other tumor types to identify proteins at very low
concentrations for the potential discovery of cancer biomarkers.
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4. Experimental Design and Statistical Considerations in Serum/Plasma Proteomics

It is important to study an adequate number of specimens. It is difficult to distinguish true
biological differences from random and/or assay variability with small sample sizes [51]. Sample size
planning involves the consideration of the expected differences between cases and controls, the desired
power (chance of detecting true differences), the desired control over false discoveries (declaring
significant differences that are actually null), technical variation, and biological variation. Chang et al.
provide insights regarding sample size requirements for SRM measurements based on SRM variability
in plasma from human ovarian cancer patients, and demonstrate that approximately 50 cases and
50 controls would be required to detect a fold change in a specific protein of 1.2 with 80% power and a
5% type I error rate [52]. If serum is the focus, these estimates can serve as a starting point for planning
pilot studies in serum to evaluate variability for use in full study planning [53]. Fortunately, tools exist
to assist in assessing these study design parameters during the study planning stages, and authors are
starting to report information regarding technical and biological variability in addition to fold change,
enabling educated parameter estimates for use in calculations [52,54–57].

While it is tempting to take short-cuts and proceed with small numbers or pool specimens
due to the time- and resource-intensive nature of proteomics experiments, it has been shown that
it is possible to proceed with larger sample sizes with the appropriate use of controls, replication,
and statistical analysis tools for quantification and hypothesis testing [53,58]. The pooling of specimens
prior to mass analysis without the specimens being labeled should be avoided, as it relies on the
assumption of biological averaging and constrains the types of analyses that can be performed [59].
It is important to utilize randomization at all steps to protect from hidden or unknown biases,
both when selecting samples to be studied and when allocating their specimens to the assay run order.
Statistical experimental design can be especially useful here. The use of what is called a Randomized
Block Design ensures that cases and controls are balanced in the assay run order [59–61]. For example,
in a study comparing two groups using a label-free MS protocol, randomly allocating one specimen from
each group in blocks of two in the run order prevents drift over time from confounding the group effects.
Similarly, in a labeled protocol such as 8-plex isobaric tags for relative and absolute quantification
(iTRAQ), randomly [59,62] assigning four specimens from each study group to each iTRAQ run as the
authors describe accomplishes the same goal [22]. Other designs, such as a Split Plot or Latin Square,
can be used to control for conditions that are difficult to randomize [63]. Labeled workflows have been
shown to be more accurate in quantification, while label-free workflows are less expensive and have
a higher throughput [52]. Note that even in labeled workflows, analysts should not generate ratios
within runs prior to downstream analysis [52]. Rather, they should rely on the statistical model which
incorporates the experimental design to perform the proper comparisons [52].

Statistical inference is crucial for distinguishing true differences in protein abundance from
the natural biological variability and machine noise [57,59,64,65]. Choi et al. evaluated several
statistical workflows in terms of the precision and accuracy of detecting true differential abundance [64].
They found that one of the most important determinations to guard against false discoveries was
the use of methods that compare the biological signal to the amount of variation in the data. This is
precisely what a t-test does: (measure of signal)/(measure of noise). There are statistical packages
tailored for proteomic data which incorporate this at a more general level, with applicability to
more than two groups, randomized block designs, time-course experiments, and more, appropriately
accounting for the randomization process [54,66]. While intensity-based measurements of protein
abundance are most common, spectral count methods are useful as well, and both can be used to
successfully identify the differential abundance between groups, provided that some adjustment of
multiple comparisons is performed [64]. The accuracy of differential expression findings was also
found to be highly associated with the data analyst experience, highlighting the complexity of data
analysis and the need for mentoring in the field [64]. The identity of interesting proteins or peptides
discovered via global proteomic methods should be verified using targeted proteomic methods prior
to further validation [24].
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It is frequently desired to develop a panel of markers or signature that together performs better
than a single marker alone, for which a complete study design and analysis plan should be finalized
prior to beginning data collection [30]. Many computational methods are available for determining
mathematical functions combining multiple proteins, peptides, or other ‘omics markers [67,68].
Performance is measured by metrics of accuracy (correct predictions), including receiver operating
characteristic (ROC) area under the curve (AUC), sensitivity, specificity, and overall accuracy, with the
specific metric driven by the study goals. The sample size requirements for this work are dependent
primarily in the magnitude of differences, the number of proteins or markers used, and the proportion
of cases to control [69–71]. Common regression modeling and machine learning tools used to develop
such models generate the best fit to the data used, and thus generally yield overly optimistic estimates of
model performance and are less likely to be validated. As a result, methods employing the penalization
or shrinkage of regression parameter estimates or some other form of optimism correction should be
employed during model development [72]. Lasso and elastic net are two such penalized regression
tools that have been developed specifically for high-dimensional data with correlated features, as we
see in proteomics [73,74]. The modeling results must be validated both internally with the data used to
build the model, and externally with data generated from completely independent patients in order to
ensure the reproducibility of the findings (Table 1) [41,75,76]. Internal validation can be performed
via resampling methods such as cross validation or bootstrapping. These methods rely on repeatedly
sampling a subset of study patients for use in the model development (training), and then applying
the fitted model to the remaining patients (testing) to generate more realistic estimates of how the
panel will perform in new datasets [77–79]. External validation is performed by applying this panel
in a completely different set of patients, ideally from a different institution, and possibly even from
a different country [30,72]. External validation is the strongest level of validation possible, and the
panel algorithm and decision rules must be completely locked down before this level of validation is
performed. The following references are excellent examples of use of internal and/or external validation
in proteomic discovery work [80,81]. Guidelines are available for the full reporting of marker panel
discovery and validation efforts [82–85].

5. Global Comparative Proteomics versus Targeted Quantitative Proteomics for Serum/Plasma
Cancer Biomarker Discovery

Shotgun-based comparative proteomics technologies have emerged as the preferred tool, promising
the systematic detection of discriminatory protein targets and their characteristic PTMs that collectively
constitute molecular fingerprints secreted into blood or other tissues, reflecting the presence of cancer
and the disease phenotype [62,86–88] (Figure 1). The differentially expressed proteins reflect their
functions and the associated pathways that are involved, and can potentially be used for early diagnostic
intervention. Global comparative proteomics with either labeled or label-free approaches have been
widely used to compare the protein expression pattern across the samples, as well as to find out the
therapeutic targets for the diagnosis (Figure 1) [89,90].

Label-free quantification is based on the signal intensity created by the peptides in the mass
spectrometer. Those peptide ions with the same mass, charge, and retention time for each sample are
compared and quantified on the basis of the difference in the peptide signal intensity that reflects the
protein abundances in complex samples [91,92]. After a nanoLC-MS/MS analysis of tryptic digests
from individual protein samples, generally more than 20,000 circulating peptides can be identified in
human plasma. Two or more uniquely quantified peptides per protein are generally required to certify
the confident identification and accurate quantitation of the target proteins. Recently, some label-free
quantitation methods for in-depth serum proteomics have been used for the diagnosis of pancreatic
cancer [93,94]. For label-free approaches, it is extremely important to generate reproducible patterns
across all samples and variable time points and to develop software tools that can reliably align and
match the related patterns across samples [95].
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Figure 1. Current serum proteomics workflows for the discovery, verification, and validation of
cancer biomarkers. Top panel: global comparative serum proteomics workflow for screening some
candidates of protein signature from tens/hundreds of differentially expressed proteins found between
healthy and cancer patients. Middle panel: targeted quantitative serum proteomic workflow in a larger
number of samples for verifying potential biomarker candidates. Bottom panel: the development of an
immunoassay for selected potential biomarkers for validation and clinical application.

One of the most widely used chemical labeling techniques for global comparative proteomics is
isobaric tags for relative and absolute quantification (iTRAQ) or tandem mass tag (TMT), which was
used for labeling free amine groups at the peptide level [96]. TMT is an MS/MS-based strategy using
isobaric labels for the accurate quantification of peptides and proteins from multiple samples within a
single run [97]. The isobaric tags consist of an amine-specific reactive group, a balance group and a
reporter group that provides a mass signature. Reporter signature ions are released during the MS2
fragmentation of tagged peptides, yielding the simultaneous identification and relative quantification
of the peptides among multiple samples. The key feature of the TMT labeling approach is that it can
afford a high degree of multiplexing, since it is able to analyze up to 16 samples in a single analysis.
The intensities of each mass tag reflect the relative concentration of the original labeled peptide in each
of the samples. TMT multiplex, which contains a maximum of 16-plex currently, has been widely
implemented in comparative proteomics for its superior features of high quantitative accuracy and
precision, and has been used for global discovery in serum proteomics [98]. TMTs have been heavily
applied for various samples such as cells, tissues, and body fluids in shotgun proteomics for cancer
research [99,100].

Selected reaction monitoring (SRM), a most common method for targeted quantitative proteomics,
is copied from an original small molecule analysis. SRM is often used for the absolute quantitation
of peptides/proteins, as it is highly sensitive, reproducible, and robust, offering a high accuracy and
precision (Figure 1) [101,102]. Generally, the SRM-based quantitation required a triple quadrupole
(QQQ) mass spectrometer where the precursor molecular ions are selected in Q1 and fragmented in Q2
collisional cells, and a unique fragment ion is monitored in Q3. The absolute quantitation of a targeted
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peptide selected from a previously identified target protein is obtained by the use of a stable isotope
labeled synthetic peptide serving as an internal standard (IS). The targeted peptide and the synthetic
peptide are co-eluted in LC-MS/MS, and the ratio of the chromatographic peak area for the target/IS
peptides is determined and used for absolute quantitation. A calibration curve of the SRM response
of each synthetic native peptide versus its series of concentrations was generated. This calibration
curve is central to the design, validation, and application of SRM assays. The high sensitivity and wide
dynamic range, in combination with the inherent selectivity of MS, make SRM an ideal tool in the
targeted quantitative analysis of complex clinical samples for cancer diagnosis [103,104].

Post-translational modifications (PTMs), including phosphorylation, acetylation, ubiquitination,
and methylation, are identified and validated as critical for signaling transduction, protein degradation,
and transcriptional regulation. PTMs are the main players for protein functions, and they contribute to
abnormal cellular proliferation, adhesion characteristics, and morphology in cancer. However, there are
limited published studies targeting PTMs in serum/plasma for cancer biomarkers [105]. The high
abundance of proteins in the serum/plasma and generally low occupancy rate for most PTMs make
it particularly challenging for the detection of low-abundance proteins, and most likely even harder
for their PTMs. Therefore, a particular PTM enrichment workflow is needed [106]. The enrichment
method allows PTM profiling from a reasonable volume of serum/plasma (~250 µL for multiple
PTM enrichment), followed by LC-MS/MS analysis. The ability to acquire high-content quantitative
information, determine the state of modification, and study protein–protein interactions for thousands
of proteins in native biological samples provides key insights into the composition, regulation,
and function of protein complexes and pathways, which allows us to develop a better understanding
of cellular and physiological processes and disease mechanisms. Recently, new approaches to the
proteomic profiling of cell type-specific proteins in circulating exosomes in serum have been developed
to provide new diagnostic tools and monitor therapeutic response in cancer-related research [107,108].
Data-independent acquisition (DIA) is a relatively new MS data acquisition technology emerging
in proteomics where each of the precursor ions are selected sequentially for co-fragmentation with
a predefined m/z range [109–111]. Its untargeted and systematic sampling process enables the
acquisition of comprehensive LC−MS data, consisting of all precursors and product ions present
in the sample within the m/z range measured. DIA adds some unique advantages compared to
traditional data-dependent acquisition (DDA) in proteomics, where only one selected precursor ion at
a time over particular threshold is used for fragmentation. The main challenge for the conventional
DDA-based quantification is the dynamic range of quantification, as a single survey of entire co-eluting
ions is used for the quantification. In addition, DDA often fails to detect some of the relatively
medium- or low-abundance peptides/proteins due to its limited acquisition cycle time for complex
samples. In the case of DIA, theoretically all precursor ions are co-fragmented and have never been
missed. More importantly, the DIA data can be retrospectively analyzed in a pseudo targeted fashion
by extracting the co-eluting fragment ions corresponding to their precursor peptides of interest for
both quantitation and the verification of identity [112,113]. DIA-based quantitation adds the MS2
measurement, which is expected to be better than MS1 alone in particularly complex matrices due to
its better selectivity and lower background noise [114]. The main downside of DIA is that, in most
cases for global proteome application, an upfront generation of a spectra library is often required by
DDA analysis on the fractionated complex samples for the confident identity of peptides/proteins
due to the complexity of MS2 co-fragmentation in DIA data. Recently, DIA workflows are used for
proteomic quantitative analysis for biomarker discovery in cancers using plasma, tissue, or other body
fluids [115,116].

The main limitations and bottlenecks to be overcome in this field are reducing the inter and
intra- individual variability of the samples without impacting the depth of the proteome coverage.
This requires studies with adequately large numbers of samples from multiple independent cohorts to
be analyzed to achieve validation. Large improvements in sample preparation methods for blood-based
proteomics are still needed for those very low-abundance biomarkers, particularly for serum samples
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with an extremely wide dynamic range of proteins. Another challenge is to effectively integrate
the proteomic data into clinical applications. For example, the need to determine the exact role of
candidate proteins discovered in quantitative proteomics as validated and useful diagnostic, prognostic,
predictive, or resistance biomarkers with rapid turnaround times for patient care for any specific
clinical application remains a challenge.

6. Clinical Serum/Plasma Proteomics and Molecular Signatures of Cancers

The unravelling of cancer mutational landscapes has enabled the development of targeted
therapies called New Molecular Entities (NMEs). In the past decade, multiple drug choices for the same
tumor type in the same tumor stage have emerged and created an urgent need for identifying predictive
molecular signatures of response and/or resistance, since none of the NMEs are effective in all patients
and are linked to causing drug toxicities in some patients. Ongoing research efforts have recently
focused on the integration of “multi-omics”, which include genomic and genetic alterations along with
serum proteomic biomarkers into a single platform or signature for clinical application to match drugs
to a patient’s individual molecular profile for increasing the effectiveness and limiting harm.

An example of an integrated multi-omics algorithm-based approach for cancer screening that
uses mutational alterations and proteins is the CancerSEEK clinical test. This test focuses on driver
mutations in key genes detected in cell-free DNA from blood, along with key proteins detected in
blood as a screening test for the earlier detection of cancers of the ovary, liver, stomach, pancreas,
esophagus, colorectal, lung, or breast. A similar integration of serum proteomic biomarkers for
screening in patients with an increased cancer risk based on their family history or inherited disorders
such as Lynch Syndrome characterized by mutations in genes such as the DNA mismatch repair
genes (MLH1, MSH2, MSH6, PMS1, PMS2) [117], TP53-associated cancers in the case of Li–Fraumeni
syndrome, and BRCA1/2 for breast cancer is currently lacking. Similarly, post-cancer diagnosis genomic
and proteomic companion diagnostics are currently being explored for staging, prognostication,
and choosing specific therapies for practicing precision medicine [118], but have not yet changed
clinical practice. Clinical research and the applications of polygenic risk scores [119] continue to be
refined for molecular prognostication [120] for predicting response to treatments (molecular predictive
biomarkers), predicting the recurrence of cancer after initial treatments [121], predicting the lack of
response to specific therapy (markers of primary resistance), and monitoring minimal residual disease
(MRD) after treatments. A comprehensive list of tumor types in the last 10 years of publications
with clinical applications based on a wide variety of proteomic techniques on blood-based fluid
is summarized in Table 2. In this section, an overview of the top four tumor types from the list
is highlighted.
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Table 2. Clinical applications of blood-based proteomic profiling in cancer.

Tumor Type (Serum/Plasma)-Proteomics Method Biomarker Identified Clinical Application in Cancer Stage of Tumor References

Lung

Plasma-MALDI-TOF, PRM EGFR, SPRAC, SAA1, SAA2 Screening/Prognostic Advanced/Local [122–124]

Serum-Shotgun PTM profiling, (Hp) β chain Screening Advanced [125]

Plasma-Shotgun Cytokines, Peroxiredoxins Diagnosis/screening local [126]

Breast

Serum–QTOF LC-MS PRG4, C1-inh Screening local [127]

Plasma-2Dgel, shotgun CLU, SAA, SERPINB4, COL11A1 Screening Advanced [128]

Plasma-iTRAQ THBS1, BRWD3, EGFR, CFHR3 Prognostic local [129]

Colorectal

Plasma-MRM-MS MASP1, OPN, PON3, TFRC Screening local [130,131]

Plasma-MRM-MS 270 protein biomarkers Diagnosis local [132]

Serum-LC-MS/MS, 2Dgel Reporter peptides, NDKA Screening/prognostic Advanced [133,134]

Ovarian

Plasma-SRM CA125, IGHG2, LGALS3BP, DSG2, L1CAM, THBS1 Diagnosis Advanced [53]

Serum-MALDI-TOF, LC-MS/MS PTM profiling, RBP4 Diagnosis Local/Advanced [49,135]

Serum-iTRAQ, MRM Protein Z, CA125, CLIC4, TPM Screening, Diagnosis Local [136,137]

Prostate
Serum-, iTRAQ sE-cadherin, TSR1, SAA, KLK3 Diagnosis Local [138,139]

Plasma-, Shotgun CA1 Diagnosis Advanced [140]

Colon

Serum-iTRAQ, MRM LCN-2, CELA1, CEL2A, CTRL, LRG1, TUBB5 Prognostic/Screening Local/Advanced [126,141–143]

Plasma-, MRM SLeA, TIMP1, COMP, THBS2, MMP9 Prognostic/Screening Local/Advanced [126,131,141,142]

Serum-Shotgun IGJ, APOA1, PCOLCE, SAA2 Prognostic Local [131,144,145]

Lymphoma Serum-Shotgun SOX3, CA9, MSLN, CCL20, SCF, MMP-10, IGF-1, TRIM3 Prognostic/Diagnosis Local/advanced [144–148]

Gastric
Serum-iTRAQ, MALDI-TOF GRN, 14-3-3β Prognostic/Diagnosis Local [146–150]

Serum-SEC-Shotgun, MALDI-TOF YWHAG, RBM6, LAMC2 Prognostic/Diagnosis Local/Advanced [149–153]

Pancreatic
Serum-MRM apoA-IV, apo-CIII, IGFBP-2 ICAM-1, TIMP-1 Diagnosis Advanced [151–155]

Plasma-LC-MS/MS F9, CFI, AFM, HPR, ORM2 Prognostic Local [154–156]

Cervical

Serum-2Dgel MMP Diagnosis Local/Advanced [156,157]

Serum-MALDI-TOF Peptide profiling Diagnosis Local [157,158]

Plasma-iTRAQ, LFQ TXN, TXNDC5 Screening Local [158,159]

Multiple Myeloma
Serum-LC-MS/MS SAA2, KLKLB1, APOA1, CD44 Diagnosis Advanced [159–161]

Serum-MALDI-TOF Peptide Profiling Diagnosis Local [160–162]

MALDI-TOF: Matrix-assisted laser desorption ionization-time of flight; QTOF: Quadrupole time-of-flight; PRM: Parallel reaction monitoring; 2D-gel: Two dimensional gel electrophoresis;
iTRAQ: Isobaric tag for relative and absolute quantitation; LC-MS/MS: Liquid chromatography tandem mass spectrometer; MRM: Multiple reaction monitoring; SEC: Size exclusion
chromatography; LFQ: Label-free quantitation; PTM: Posttranslational modifications.
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6.1. Lung Cancer

Lung cancer has the highest cancer-related mortality in both men and women [163]. The overall
5-year survival rate for lung cancer is 19%, and late diagnosis is a major obstacle in improving
lung cancer prognosis [164,165]. The five-year survival rate for the early lung cancer patients is 80%,
suggesting that early detection is an important management tool for improving outcomes. Screening for
lung cancer using cancer biomarkers therefore has immense value. Some of the serum/plasma
tumor markers recently developed for the detection, diagnosis, prognosis, or management of
lung cancers include cytokeratin 19 fragments (CYFRA 21-1), carcinoembryonic antigen (CEA),
epidermal growth factor receptor (EGFR), soluble mesothelin-related proteins (SMRP), and Osteopontin
(pOPN) [123,124,166,167]. Table 2 summarizes the ongoing research efforts on potential markers that
use a variety of proteomic technologies. Additionally, both serum- and plasma-based profiling have
been investigated for the screening and diagnosis of lung cancers [168]. Nevertheless, the validation of
promising candidate markers in a large set of samples remains to be performed.

6.2. Breast Cancer

Breast cancer (BCa) is the most common cancer in women, resulting in about 15% of deaths in
females [163]. Several advancements in breast cancer screening and diagnosis, novel therapeutic drugs,
and combination treatments with radiation and surgical techniques have resulted in an increase in
the 5-year survival rate to up to 90% if the cancer is detected early and treated appropriately [169].
Mammography is one of the most important screening tools as a population strategy, but has limitations
in young women (under 40 years old) or women with large breasts, with a sensitivity of as low as
25–59% and high rates of false negative and false positive in diagnosis [170]. Blood-based proteomics
as a screening diagnostic with novel noninvasive biomarkers for the early detection of BCa in
asymptomatic individuals for the diagnosis and prognosis of the disease states has been an area of
research interest [171,172]. Promising candidate biomarkers such as CA125, carcinoembryonic antigen
(CEA), oncogenic protein RS/DJ-1, human epidermal growth factor receptor-2 (HER2), and circulating
cytokeratin fragments (tissue polypeptide antigen (TPA), tissue polypeptide-specific antigen (TPS),
and CYFRA 21-1) have been identified, but are pending validation [173]. Several of these are less
specific for breast cancer or have a low sensitivity [173–175]. For example, a set of 10 potential BCa
serum biomarkers and cancer antigens (haptoglobin, osteopontin (OPN), CA15-3, CA125, carbohydrate
antigen 19-9 (CA19-9), CEA, prolactin, α-fetoprotein (AFP), leptin, and migration inhibitory factor
(MIF)) were developed for diagnosis and screening, but none of them are detected to have a high
specificity, particularly in detecting early stage disease [176,177]. Other plasma candidate biomarkers
available used for the screening and diagnosis of BCa include serpin peptidase inhibitor (SERPINB4),
secreted-clusterin (CLU), serum amyloid (SAA), and heat shock proteins (HSPs) [128,129,178,179],
but have yet to be validated in large studies for population application strategies. The majority of the
markers reported by single breast cancer studies are based on a limited number of samples, hence the
validation of biomarker candidates by the targeted profiling analysis of large cohorts of samples and
populations is crucial for implementing those in clinical application.

6.3. Ovarian Cancer

Ovarian cancer is one of the top five causes of cancer deaths in women, with over 21,000 new
diagnoses and nearly 14,000 deaths expected in 2020 in the United States alone [163]. The 5-year
survival rate for those diagnosed with distant disease is approximately 30% compared to nearly 93%
for those diagnosed with localized disease [163,180]. Thus, early detection and diagnosis has potential
for a profound impact on the survival rate [181,182]. For general population screening, early detection
markers with a high sensitivity and extremely high specificity are needed to maximize the number of
cases detected, while at the same time avoiding great numbers of false positive results [32,183,184].
Cancer Antigen 125 (CA125), a glycoprotein, is by far the most studied and useful single biomarker until
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today for the diagnosis of serous and endometroid epithelial ovarian carcinomas, but it is non-specific
due to its presence in other benign gynecological and abdominal conditions [185–188]. The sensitivity of
CA 125 in distinguishing between benign and malignant masses ranges between 61% and 90%, while the
specificity ranges between 35% and 91% [189]. Thus, in spite of its strengths, improvements can be
made. It is unlikely that a single marker can achieve the needed discrimination due to the complexity
and heterogeneous nature of ovarian cancer. A combination of biomarkers may provide a higher
specificity and sensitivity for the early detection of ovarian cancer [190]. Serum proteomics profiling is
widely used for discovery of such markers, offers a high level of information across a large group of
heterogeneous patients, and has been proven to be more likely to contain successful markers than the
single low molecular weight serum biomarker [191,192]. Several potential serum/plasma biomarkers
for the early detection and disease monitoring of ovarian cancer have been reported [80,135,193,194].
In ovarian cancer, the identification of biomarkers in serum/plasma is difficult even if they are highly
expressed in plasma, since ovarian cancer is characterized by loss-of-function mutations and the
downregulation of tumor suppressor activities [136]. Nonetheless, detecting those low-abundance
proteins by mass spectrometry is extremely challenging from a technical standpoint, with high levels
of glycosylation. Recently, the so-called mass-spectrometry-based quantitative proteomics has become
the common strategy for identifying proteins and their alterations [195]. Hence, our hope is that
additional studies will be performed adhering to the study design principles described herein to
discover novel serum protein signatures to improve not only the early detection of ovarian cancer,
but also the guidance on ovarian cancer therapy. Biomarker research is now focusing on the discovery
of different biomarkers either in serum or plasma expressed in different stages and different subtypes
of the disease [17,196–198].

6.4. Prostate Cancer

Prostate cancer is one of the most common malignancies among men, with a global incidence
of 1.3 million new cases every year [199]. While prostate cancer may require minimal or even
no treatment at early stages, metastasizing to the bone is a serious concern for about 65–80% of
advanced stage cases [200,201]. The five-year survival rate of prostate cancer patients with localized
prostate cancer has increased to over 90% with improved technologies for the treatment at an early
stage; however, once the tumor cells metastasize, the 5-year survival rate substantially decreases to
only 28% [202]. Prostate-specific antigen (PSA) is a serine protease that has been used extensively
in clinical practice since 1988. The discovery of PSA as a serum biomarker for prostate cancer
revolutionized its usage for monitoring disease recurrence after initial treatment and for evaluating
response to cancer treatments [203]. However, the serum levels are elevated from both malignant
and non-malignant causes and furthermore, cannot discriminate lethal from indolent prostate cancer.
A significant up-regulation of periostin, a serum biomarker, was found in prostate cancer patients for
prognosis, but is also a potential target for therapeutic intervention [204]. Larkin et al. found with
serum profiling via iTRAQ labeling that the combination of Pre-rRNA-processing protein TSR1 along
with PSA improved the diagnostic performance [139]. In advanced stage disease, where androgen
deprivation therapy (ADT) remains a cornerstone intervention, predictive biomarkers are not well
established. Recently, using an iTRAQ-based serum proteomic profiling in 50 serum specimens
from 30 advanced prostate cancer patients, Kohli et al. discovered some response biomarkers
to ADT. An initial discovery set of 47 potential serum biomarkers associated with ADT response
factors during the treatment included small molecules such as elevated beta estradiol and estrone
sulphate levels [22]. Several potential biomarkers recently found in either serum/plasma need further
validation [138,140,205]. However, the validation of this small study including longitudinal follow-ups
of clinical outcomes is needed. Other proteomic approaches, including the use of cell lines or animal
models for discovery, followed by validation in clinical specimens, have demonstrated early promise
for discriminating between cancer and healthy patients, or as markers of [206–208], but validation
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cohorts will be needed for confirming the value of serum/plasma proteomic-based biomarkers in
clinical settings.

7. Conclusions

Proteomics approaches may enhance biomarker research in cancer, but challenges remain.
A step-wise approach to meeting pre-analytic and analytic challenges and an a priori statistical and
data analysis approach can yield a huge amount of information. Proteomics provides an opportunity
for a relatively non-invasive and sensitive tool for identifying characteristic proteins and peptides,
which may allow the potential for serial disease monitoring. Meeting these biological and technical
challenges is critical for synthesizing analytical study designs and future research. These challenges can
be overcome by using statistical methodologies incorporated in proper study designs, implementing
strict protocols for specimen biobanks and sample handling, establishing robust validation assays,
and exploring innovative tools. Prior to and/or during the discovery design phase, the sensitivity,
the specificity of detection, the downstream clinical application for the development of the biomarker,
and the population of interest are critical determinants for successful proteome biomarker development.
Technical innovations such as increasing the reproducibility, minimizing the variability, improving
strategies for quality control, increasing the sample throughput. and detecting various types of
protein alterations would help biomarker discovery efforts. New developments in mass spectrometry
instruments and recently developed quantitative reagents such as TMT 16-plex help to include a larger
number of samples, resulting in high throughput and increased data reliability, and are expected to
accelerate proteomic biomarker discovery. As a result, following validation analysis against large
cohort samples, a growing number of blood-based biomarkers are expected to become cancer signatures
used for clinical application in the diagnosis and prognosis of disease states and predictive response to
specific therapies. In the future, continuous advances in targeted MS technologies and applications
for enhanced sensitivity, accuracy, and throughput will revolutionize the field of clinical research by
measuring patients’ protein concentrations in large numbers of clinical specimens. Enhancing the
sensitivity for in-depth proteome coverage can be also achieved by either simplifying or increasing the
efficiency of the front-end sample preparation steps.
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