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Parity-time-symmetric quantum critical
phenomena
Yuto Ashida1, Shunsuke Furukawa1 & Masahito Ueda1,2

Synthetic non-conservative systems with parity-time (PT) symmetric gain–loss structures

can exhibit unusual spontaneous symmetry breaking that accompanies spectral singularity.

Recent studies on PT symmetry in optics and weakly interacting open quantum systems have

revealed intriguing physical properties, yet many-body correlations still play no role. Here by

extending the idea of PT symmetry to strongly correlated many-body systems, we report that

a combination of spectral singularity and quantum criticality yields an exotic universality class

which has no counterpart in known critical phenomena. Moreover, we find unconventional

low-dimensional quantum criticality, where superfluid correlation is anomalously enhanced

owing to non-monotonic renormalization group flows in a PT-symmetry-broken quantum

critical phase, in stark contrast to the Berezinskii–Kosterlitz–Thouless paradigm. Our findings

can be experimentally tested in ultracold atoms and predict critical phenomena beyond the

Hermitian paradigm of quantum many-body physics.
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S
tudies of phase transitions and critical behaviour in
non-Hermitian systems date back to the discovery of the
Lee-Yang edge singularity1, where an imaginary magnetic

field in the high-temperature Ising model was demonstrated
to trigger an exotic phase transition. More recently, the
real-to-complex spectral phase transition has been found in
a broad class of non-Hermitian Hamiltonians that satisfy
parity-time (PT) symmetry2. While such systems were once
considered to be of purely academic interest, related questions are
now within experimental reach3–7.

A Hamiltonian Ĥ is said to be PT-symmetric if it commutes
with the combined operator P̂T̂ , but not necessarily with P̂ and T̂
separately. Here P̂ and T̂ are the parity and time-reversal
operators, respectively. PT symmetry is said to be unbroken
if every eigenstate of Ĥ is PT-symmetric; then, the entire
spectrum is real even though Ĥ is not Hermitian.
PT symmetry is said to be spontaneously broken if some
eigenstates of Ĥ are not the eigenstates of the PT operator even
though Ĥ; P̂T̂

� �
¼0; then, some pairs of eigenvalues of Ĥ become

complex conjugate to each other. PT symmetry breaking
is typically accompanied by the coalescence of eigenstates
and that of the corresponding eigenvalues at an exceptional
point8 in the discrete spectrum or the spectral singularity9 in
the continuum spectrum. While these features also hold for a
certain class of antilinear symmetries10, PT symmetry allows
experimental implementations by spatial engineering of gain–loss
structures, leading to a rich interplay between theory and
experiment in optics4–7,11, superconductors12, atomic physics13

and optomechanics14. In particular, the real-to-complex spectral
transition (PT transition) has been observed in experiments
of classical systems15. In all these developments, however,
many-body correlations still play no role.

Quantum critical phenomena, in contrast, arise from collective
behaviour of strongly correlated systems and exhibit universal
long-distance properties. In view of recent developments in
designing open many-body systems in ultracold atoms16–20 and
exciton–polariton condensates21, it seems ripe to explore the role
of PT symmetry in quantum critical phenomena and ask whether
or not the concept of the universality need be extended in
synthetic non-conservative systems.

Here we report that a combination of spectral singularity and
quantum criticality yields an exotic critical point in the extended
parameter space and that, in the PT-broken phase, a local
gain–loss structure results in an anomalous enhancement of
superfluid correlation owing to semicircular renormalization
group (RG) flows. This contrasts sharply with the suppression
of superfluid correlation due to hyperbolic RG flows in
the Berezinskii–Kosterlitz–Thouless (BKT) paradigm. Our
findings demonstrate that the interplay between many-body
correlations and PT symmetry leads to the emergence of
quantum critical phenomena beyond the Hermitian paradigm
of quantum many-body physics.

Results
Parity-time-symmetric sine-Gordon model. We consider a class
of one-dimensional (1D) quantum systems described by the field
theory Hamiltonian

Ĥ¼
Z

dx
‘ v
2p

K @xŷ
� �2

þ 1
K

@xf̂
� �2

� �
þVðf̂Þ

� 	
; ð1Þ

where f̂ is a scalar field, @xŷ is its conjugate momentum satisfying
½f̂ðxÞ; @xŷ x0ð Þ�¼� ipd x� x0ð Þ, and Vðf̂Þ is a potential for
the field f̂. Without the potential term, equation (1) is known
as the Tomonaga-Luttinger liquid (TLL) Hamiltonian, which
gives a universal framework for describing 1D interacting bosons

and fermions22. Here, v is the sound velocity, the TLL parameter
K characterizes the interaction strength, and @xf̂ and ŷ are
related to the density and the Josephson phase, respectively. The
introduction of the cosine potential Vðf̂Þ / cosð2f̂Þ results
in the sine-Gordon model, which describes the BKT transition
to a gapped phase. For bosons on a lattice, this corresponds
to a superfluid-to-Mott-insulator (MI) transition23. Here we
consider a generalization to the PT-symmetric case by adding
an imaginary contribution to the potential term as follows:

Vðf̂Þ¼ ar

p
cosð2f̂Þ� iai

p
sinð2f̂Þ; ð2Þ

where ar and ai characterize the strengths of the real
and imaginary parts of the potential. When the real part
becomes relevant, it suppresses the fluctuations of f̂, stabilizing
a non-critical, gapped phase. In contrast, if the imaginary part
is relevant, it facilitates the fluctuations of f̂ and enhances
correlation in the conjugate field ŷ, as we will see later. The field
theory (1) with the potential (2) satisfies PT symmetry since
the field f̂ has odd parity. The PT-symmetric Hamiltonian
Ĥ can be implemented by a continuously monitored
1D interacting ultracold atoms (see Supplementary Note 1 and
Supplementary Fig. 1).

We note that if ar4ai, Ĥ has a real spectrum and thus PT
symmetry is unbroken. This can be proved by the theorem24 which
states that the spectrum is real if and only if there exists an operator
Ô satisfying Ô� 1ĤÔ¼Ĥ0, where Ĥ0 is a Hermitian operator.
Indeed, we can explicitly construct such an operator for ar4ai by
the choice of Ô ¼ e� Zŷ0=2, where ŷ0 is a constant part of ŷ and
Z� arctanh(ai/ar). Then, the potential term in the effective
field theory is transformed to ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

r � a2
i

p
=pÞ

R
dx cosð2f̂Þ and

Ĥ reduces to the sine-Gordon Hamiltonian25. Divergence of Z at
ar¼ ai signals spontaneous breaking of PT symmetry.

Renormalization group analysis. To unravel the universal
critical behaviour of the PT-symmetric Hamiltonian Ĥ, we
perform an RG analysis26 to obtain the following set of flow
equations which are valid up to the third order in gr,i:

dK
dl
¼� g2

r � g2
i

� �
K2;

dgr

dl
¼ 2�Kð Þgrþ 5g3

r � 5g2
i gr;

dgi

dl
¼ 2�Kð Þgi� 5g3

i þ 5g2
r gi:

ð3Þ

Here l is the logarithmic RG scale and gr,i� ar,ia2/(:v) are the
dimensionless coupling constants with a being a short-distance
cut-off. The velocity v stays constant to all orders in gr,i because
of the Lorentz invariance of the theory. In contrast to the
two-dimensional phase diagram of the conventional sine-Gordon
model, the PT-symmetric system has the three-dimensional (3D)
phase diagram (Fig. 1a). When PT symmetry is unbroken, that is,
giogr, the spectrum is equivalent to that of the closed system as
discussed above and the conventional RG flow diagram with
hyperbolic flows is reproduced (Fig. 1b). Here the BKT boundary
between the superfluid TLL phase and the MI phase extends
over the curved surface. We note that the operator Ô does not
affect the critical properties of the ground state since it only
modifies the zero modes associated with the field f̂. Since the
non-Hermitian term can arise from the measurement backaction,
the quantum phase transition induced by increasing gi may be
regarded as measurement-induced.

In the strongly correlated regime Ko2, a new type of quantum
phase transition appears on the PT threshold plane gi¼ gr.
This phase transition is accompanied by spontaneous breaking
of PT symmetry in eigenstates, contrary to the ordinary
BKT transition exhibiting no symmetry breaking. The BKT and
PT phase boundaries merge on the line defined by K¼ 2 and
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gi¼ gr (Fig. 1c). In general, at the PT symmetry-breaking point,
the spectral singularity9 arises where two or more eigenvalues as
well as their eigenstates coalesce in the continuum spectrum. In
optics, the spectral singularity leads to unidirectional wave
phenomena5. In contrast, in many-body systems, the
coexistence of the spectral singularity and the quantum
criticality at gi¼ gr and K¼ 2 results in what we term a spectral
singular critical point, which represents a unique universality
class in non-conservative systems.

When the PT symmetry is broken, that is, gi4gr, unconven-
tional RG flows emerge: starting from the Ko2 side, gr,i and
K initially increase, and after entering the K42 side, the flow
winds and converges to the fixed line with gr,i¼ 0 (Fig. 1d).
Physically, this significant increase in the TLL parameter
K indicates that the superfluid correlation decays more slowly
and is thus enhanced by the non-Hermiticity of an imaginary
potential. The enhancement is viewed as anomalous because, in
the conventional BKT paradigm, a real potential suppresses the
fluctuation of f̂ and stabilizes the gapped MI phase for Ko2.
Moreover, owing to the semicircular RG flows, the imaginary
potential allows for a substantial increase of the TLL parameter
K even if its strength gi is initially very small. The PT-broken

phase exhibits other observable consequences such as anomalous
lasing and absorption as observed in optics27 (see Supplementary
Note 2 for the experimental implementation in ultracold atoms).

Ground-state phase diagram of the lattice model. To
numerically demonstrate these findings, we introduce a lattice
Hamiltonian

ĤL¼
XN

m¼1

� J þ � 1ð Þmigð Þ Ŝx
mŜx

mþ 1þ Ŝy
mŜy

mþ 1

� �
þDŜz

mŜz
mþ 1þ � 1ð ÞmhsŜ

z
m

� �
;

ð4Þ
whose low-energy behaviour is described by the PT-symmetric
effective field theory Ĥ. Here Ŝ x;y;z

m are the spin–1/2 operators at
site m and the parameters (�D, hs, g) are related to (K, gr, gi) in
the field theory, where we set J¼ 1. The non-Hermitian term
represents a periodic gain–loss structure and effectively
strengthens the amplitude of the hopping term, leading to
enhanced superfluid correlation. The determined phase diagram
and a typical exact finite-size spectrum are shown in Fig. 2.
The BKT transition is identified as a crossing point of appropriate
energy levels28 and the PT threshold is determined as
a coalescence point in low-energy levels, as detailed in Methods
section and Supplementary Methods. The coalescence point
is found to be an exceptional point from the characteristic
square-root scaling8 of the energy gap (see the inset figure in
Fig. 2b). We note that, above the PT threshold, some highly
excited states turn out to have positive imaginary parts of
eigenvalues and cause the instability in the long-time limit. The
presence of such high-energy unstable modes is reminiscent of
parametric instabilities in exciton–polariton systems29, and can
ultimately destroy the 1D coherence30. In our set-up, where the
imaginary term is adiabatically ramped up, the amplitudes of
these unstable modes can greatly be suppressed and the system
can remain, with almost unit fidelity, in the ground state in which
the critical behaviour is sustained (see Supplementary Note 3 and
Supplementary Figs 2 and 3 for details).

Numerical demonstration of enhanced superfluid correlation.
To demonstrate the anomalous enhancement of superfluid
correlation in the PT-broken regime, we have performed
numerical simulations using the infinite time-evolving block
decimation (iTEBD) algorithm31. The correlation function
exhibits the critical decay with a varying critical exponent and
the corresponding TLL parameter significantly increases,
surpassing K¼ 2 as shown in Fig. 3. Physically, this enhance-
ment of superfluid correlation at long distances can be interpreted
as follows. A local gain–loss structure introduced by the
imaginary term causes locally equilibrated flows15 in the
ground state. This results in the enhancement of fluctuations
in the density, or equivalently, the suppression of fluctuations
in the conjugate phase. It is this effect that increases the
superfluid correlation. The numerical results are consistent with
the analytical arguments given above, and demonstrate that the
RG analysis is instrumental in studying critical properties of
a non-Hermitian many-body system.

Experimental realization in a one-dimensional Bose gas. The
PT-symmetric many-body Hamiltonian Ĥ discussed above can
be implemented in a 1D interacting ultracold bosonic atoms
subject to a shallow PT-symmetric optical lattice V(x)¼Vr

cos(2px/d)� iVi sin(2px/d), where Vr and Vi are the depths of the
real and imaginary parts of a complex potential and d is the lattice
constant. An imaginary optical potential can be realized by using
a weak near-resonant standing-wave light (Methods section).
Since V(x) remains invariant under simultaneous parity operation
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Figure 1 | Quantum critical phenomena in PT-symmetric many-body

systems. (a) 3D phase diagram of a PT-symmetric many-body system in

the parameter space (K, gr, gi). Here K and gr (gi) characterize the strength

of the inter-particle interaction and the depth of the real (imaginary) part

of a complex potential, respectively. The MI and TLL phases are separated

by the surface of the BKT transition for K42 and that of the PT transition

for Ko2. An example of the BKT (PT) transition is illustrated by the blue

(red) curve with the transition point indicated by the filled (open) circle.

The MI (TLL) phase corresponds to the 3D region containing the blue (red)

shaded plane at gi¼0. On the critical line with K¼ 2 lies a SSCP (black

open circle). Dashed lines indicate the phase boundaries on the plane with

fixed gr for comparison with numerical results in Fig. 2a. (b) Hyperbolic RG

flows in a PT-unbroken region (giogr), which reproduce the conventional

flow diagram in the sine-Gordon model. (c) RG flows on the two phase

boundaries separated by an unconventional fixed line (thick black line). (d)

Unconventional semicircular RG flows in a PT-broken region (gi4gr). Along

each flow, the TLL parameter K monotonically increases, indicating the

anomalous enhancement of the superfluid correlation.
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Figure 2 | Phase diagram and finite-size spectrum. (a) Ground-state phase diagram of the PT-symmetric many-body lattice Hamiltonian. The MI and TLL

phases are separated by the BKT transition (blue curve with filled circles) and PT-symmetry breaking (red line with filled triangles). The point where the two

boundaries merge defines the SSCP (open circle). (b) Typical low-energy excitation spectrum in the lattice model. The three lowest levels in the Sz¼0
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is the total magnetization. The energy difference dE between the two coalescing levels (for example, red and green) obeys the square-root scaling (inset)

and closes at the PT-symmetry breaking point. The BKT transition point corresponds to a crossing of appropriate levels (red and blue). We set the

parameter hs¼0.1 for both (a,b). In (a), the plotted data are obtained through extrapolation to the thermodynamic limit, while the data in b are obtained for

N¼ 16 and �D¼0.735. The plotted variables are dimensionless since we set J¼ 1.
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Figure 3 | Anomalous enhancement of superfluid correlation in the PT-broken quantum critical phase. (a) Critical decay of the correlation function

Re½hŜþr Ŝ�0 i�. (b) TLL parameter K as a function of the distance r, giving the critical exponent of the correlation function, hŜþr Ŝ�0 i / 1=rð Þ1=ð2KÞ. The exponent

is extracted by the linear fitting of the correlation function in the log-log plot around the distance r. The parameters are set to be �D¼0.61, hs¼0.1 and

g¼0.08, and w denotes the dimension of the matrix product state that controls the accuracy of the iTEBD simulation.
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Figure 4 | Experimental set-up of a PT-symmetric many-body system in ultracold atoms. (a) 1D ultracold atoms in a PT-symmetric optical lattice. Real

(blue curve) and imaginary (red curve) parts of a complex potential are created by a pair of far-detuned and weak near-resonant standing waves.

An imaginary potential results from a near-resonant light (red arrow) on atoms whose excited state has fast decay modes. The two periodic potentials are

displaced from each other by one half of the lattice spacing so that the system possesses PT symmetry. (b) Mapping to a PT-symmetric lattice model that

reproduces the same critical behaviour as the continuum model. Atoms are strongly localized by a deep optical lattice that does not affect the universal

critical behaviour. The real and the imaginary parts of the complex potential introduce the on-site potentials ±hs and imaginary hopping terms ±ig.

A lattice site occupied (not occupied) by a hard-core boson is represented by the up (down) spin.
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(x-� x) and time reversal (that is, complex conjugation), the
system satisfies the condition of PT symmetry (Fig. 4a). In open
quantum systems, by postselecting null measurement outcomes,
the time evolution is governed by an effective non-Hermitian
Hamiltonian32–34. The achieved experimental fidelity has already
been high enough to allow experimenters to implement various
types of postselections35–37. The low-energy behaviour of this
system is then described by the PT-symmetric effective field
theory Ĥ. We note that the lattice Hamiltonian (4) can also be
realized in ultracold atoms by superimposing a deep lattice that
does not influence the universal critical behaviour (Fig. 4b).

We stress that the dynamics considered here is different from
the one described by a master equation, where dissipative
processes, in general, tend to destroy correlations underlying
quantum critical phenomena. In contrast, the postselections allow
us to study the system free from the dissipative jump processes,
while non-trivial effects due to measurement backaction still
occur via the non-Hermitian contributions in the effective
Hamiltonian.

Discussion
The reported fixed points in the extended parameter space
suggest that an interplay between spectral singularity and
quantum criticality results in an exotic universality class
beyond the conventional paradigm. It remains an open question
how the universality accompanying spectral singularity found in
this work is related to non-unitary conformal field theories (CFT)
studied in various fields ranging from statistical mechanics38 to
high-energy physics39. It is particularly notable that a certain
critical point of the integrable spin chain with PT-symmetric
boundary fields corresponds to an exceptional point and is
believed to be described by non-unitary CFT40. This suggests an
intimate connection between the spectral singular critical point
and the non-unitary CFT. Given recent success in measuring
entanglement entropy in ultracold atoms37, it is of interest to
study how quantum entanglement behaves in the presence of
spectral singularity. In the PT-broken phase, we have shown that
the ground state exhibits the enhanced superfluid correlation
indicating the tighter binding of the topological excitations,
in stark contrast to their proliferation as found in the BKT
paradigm. In Hermitian systems, a relevant perturbation around
RG fixed points has a tendency to suppress fluctuations of the
concerned field and stabilize a non-critical, gapped phase. Our
finding indicates that a relevant imaginary perturbation can
realize the opposite situation of enhancing fluctuations of the
concerned field and facilitating correlation in the conjugate field.
An exploration of such unconventional quantum criticality in
other synthetic, non-conservative many-body systems presents an
interesting challenge. Further studies in these directions, together
with their possible experimental realizations, could widen
applications to future quantum metamaterials.

Methods
Details of numerical calculations. The phase diagram in Fig. 2a is determined
from the exact diagonalization analysis of the lattice Hamiltonian (4). To identify
the BKT transition point, we calculate the exact finite-size spectrum and find a
crossing of low-energy levels having appropriate quantum numbers28. The PT
transition point is identified as the first coalescence point in the low-energy
spectrum with increasing g. The calculations are done for different system sizes and
the final results are obtained through extrapolation of the data to the
thermodynamic limit. Further details are given in Supplementary Methods and
Supplementary Fig. 4. The correlation function and the associated variation of the
TLL parameter K shown in Fig. 3 are calculated by applying the iTEBD
algorithm31. We emphasize that this method can be applied to study the ground-
state properties of the non-Hermitian system. The method can accurately calculate
the imaginary-time evolution expð� ĤtÞjC0i=kexpð� ĤtÞ C0ikj for an infinite
system size, where t is an imaginary time, C0j i is an initial state and �k k denotes
the norm of the state. In the limit of large t, we obtain the quantum state, the real

part of which eigenvalue is the lowest in the entire spectrum, that is, an effective
ground state of a non-Hermitian system. We note that the imaginary part of the
eigenvalue does not affect the calculation since it only changes an overall phase of
the wavefunction in the imaginary-time evolution. We then determine the TLL
parameter K from the calculated correlation function by using the relation
hŜþr Ŝ�0 i / 1=rð Þ1=ð2KÞ.

Derivation of the low-energy field theory of ultracold atoms. Here we explain
the derivation of the low-energy effective field theory (1) of ultracold atoms. We
start from the Hamiltonian in which the periodic potential Vr cos(2px/d) is added
to the Lieb–Liniger model41. Then, we introduce an imaginary optical lattice
potential by using a weak near-resonant standing-wave light. This scheme is
possible if the excited state ej i of an atom has decay modes other than the initial
ground state gj i and its decay rate is faster than the spontaneous decay rate from
ej i to gj i and the Rabi frequency42–44 (Fig. 4a). Such a condition can be satisfied by,

for example, using appropriate atomic levels45 or light-induced transitions16. The
difference between the wavelengths of the real and imaginary periodic potentials
caused by different detunings of the lasers can be negligible. Using a second-
order perturbation theory8 for the Rabi coupling and adiabatically eliminating the
excited state, we obtain an effective time-evolution equation for the ground-state
atoms. We then assume that null measurement outcomes are postselected so
that the dynamics is described by the non-Hermitian Hamiltonian32–34. In this
situation, the overall imaginary constant in the eigenvalue spectrum does not affect
the dynamics since it can be eliminated when we normalize the quantum state,
leading to the imaginary potential iVi sin(2px/d). Finally, we follow the standard
procedure22 of taking the low-energy limit of the model and arrive at the
Hamiltonian (1). The details of the calculations and experimental accessibility in
ultracold atoms are described in Supplementary Notes 1 and 2.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author on request.
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