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Abstract

A key role for podocytes in the pathogenesis of proteinuric renal diseases has been established. 

Angiotensin II causes depolarization and increased intracellular calcium concentration in 

podocytes; members of the cation TRPC channels family, particularly TRPC6, are proposed as 

proteins responsible for calcium flux. Angiotensin II evokes calcium transient through TRPC 

channels and mutations in the gene encoding the TRPC6 channel result in the development of 

focal segmental glomerulosclerosis. Here we examined the effects of angiotensin II on 

intracellular calcium ion levels and endogenous channels in intact podocytes of freshly isolated 

decapsulated mouse glomeruli. An ion channel with distinct TRPC6 properties was identified in 

wild type, but was absent in TRPC6 knockout mice. Single channel electrophysiological analysis 

found that angiotensin II acutely activated native TRPC-like channels in both podocytes of freshly 

isolated glomeruli and TRPC6 channels transiently overexpressed in CHO cells; the effect was 

mediated by changes in the channel open probability. Angiotensin II evoked intracellular calcium 

transients in the wild type podocytes, which was blunted in TRPC6 knockout glomeruli. Pan-

TRPC inhibitors gadolinium and SKF 96365 reduced the response in wild type glomerular 
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epithelial cells, whereas the transient in TRPC6 knockout animals was not affected. Thus, 

angiotensin II-dependent activation of TRPC6 channels in podocytes may have a significant role 

in the development of kidney diseases.

INTRODUCTION

Nephrotic syndrome is a group of kidney disease characterized by heavy proteinuria, 

hypoalbuminemia, edema, and dyslipidemia. Urinary losses of macromolecules in nephrotic 

syndrome reflect a dysfunction of the highly permselective glomerular filtration barrier. In 

the past decade, genetic studies have led to the identification of proteins playing a crucial 

role in slitdiaphragm signaling and maintenance of podocyte integrity and functions.1 

Particularly, the gene encoding transient receptor potential canonical channel 6 (TRPC6) 

was identified as the genetic basis for an autosomal dominant form of focal segmental 

glomerulosclerosis (FSGS).2,3

Interstitial angiotensin II (Ang II), a major bioactive product of the renin-angiotensin 

system, is found to be the key mediator of renal inflammation and fibrosis in progressive 

chronic nephropathies.4 It was shown that expression of Ang II and its receptor is increased 

in patients with progressive glomerulopathies.5 It was also demonstrated that Ang II 

application increased intracellular calcium ([Ca2+]i) in the podocytes.6–8 Since TRPC6 

channel mutations were found in patients with FSGS, members of the TRPC-family 

emerged as prime candidates for this raise of [Ca2+]i.

Ang II can act through two different types of receptors: AT1 and AT2, which are both 

involved in regulation of intracellular signals in podocytes.9 However, the majority of Ang 

II actions in the glomerulus are mediated by AT1. It was shown that increased AT1 signaling 

in podocytes leads to proteinuria and FSGS.10 Studies in models of chronic hypertension 

and protein-induced renal damages revealed that inhibition of AT receptors is effective 

against proteinuria.11 AT1 receptor antagonist candesartan ameliorates the peak level of 

proteinuria by preventing a reduction in the expression of slit diaphragm functional 

molecules.12 Human trials demonstrated that the inhibition of AT1 receptors delayed disease 

progression in patients with diabetic kidney disease.13,14

Recent studies demonstrated that Ang II enhances albuminuria by activating TRPC6 

channels.15 Furthermore, Zhang et al. showed that alteration of TRPC6 expression and Ca2+ 

influx is involved in Ang II-induced apoptosis.16 Besides, it was highlighted that the 

deleterious effects of Ang II on podocytes and its pathogenic role in glomerular diseases 

coincides with enhanced TRPC6 expression17 and that Ang II activation of TRPC6 channels 

in rat podocytes requires generation of reactive oxygen species.18 However, the exact 

mechanisms of action of Ang II in intact glomeruli remain unclear. Furthermore, it is not 

clear if this hormone mediates changes in the number of channels at the plasma membrane 

and/or channel gating.

We demonstrate here that Ang II up-regulates TRPC6 activity in intact podocytes of freshly 

isolated glomeruli and that this channel’s activation further results in extensive Ca2+ flux in 

podocytes. For these experiments recently developed single channel analysis of TRPC 
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channels19,20 and calcium measurements21 in their native setting, freshly isolated glomeruli, 

were performed. Transient overexpression of TRPC6 channels together with AT1 receptor in 

CHO cells was also utilized to test effects of Ang II. Altogether, these techniques were 

employed to establish the effects of Ang II on TRPC channels in the podocytes of the 

glomeruli, and allowed hypothesizing that TRPC6 blockade and/or inhibition of ATRs may 

be of therapeutic benefit in the treatment of the nephrotic syndrome and particularly FSGS.

RESULTS

TRPC6 channels recordings in the freshly isolated mouse glomeruli

We have recently established a novel approach allowing us to perform single channel 

analysis of native TRPC-like channels in the podocytes of freshly isolated glomeruli.19,20 

After the glomeruli are isolated from the kidneys of the mice, cell bodies of the podocytes 

appear in the light microscope as oval structures on the surface of the glomerular capillary 

loops. Single channel analysis was used to assess TRPC activity in the podocytes in freshly 

isolated glomeruli of mice. TRPC channels typically show low levels of constitutive 

activity.22 Figure 1a demonstrates the activity of a channel recorded in cell attached 

configuration in symmetric chloride solutions at different potentials. The channel has 

distinct TRPC family properties, including reverse potential close to zero, kinetics, slight 

voltage dependency and conductance of approximately 22 pS. The summarized current-

voltage dependence for this channel is shown on Figure 1b. TRPC channels activity was also 

tested in the TRPC6 knockout mice; with the current solutions and conditions we were 

unable to record the activity of the channels similar to those recorded in the wild type mice.

Angiotensin II activates TRPC6 channels in freshly isolated mouse glomeruli and in 
transfected CHO cells

Figure 2a illustrates the time course of TRPC6 channel activity in the isolated glomerulus 

following addition of Ang II (1 µM). As summarized in Figure 2b, application of Ang II 

resulted in the acute increase in the channel open probability (Po) in this native preparation. 

We20 and others3,7,22,23 previously demonstrated that multiple members of the TRPC family 

are expressed in podocytes, but only TRPC6 is known as a cause of FSGS2,3,24. Thus, we 

tested an effect of Ang II specifically on the TRPC6 channel. For these experiments we 

analyzed activity of endogenous channels in response to treatment with Ang II in TRPC6 

knockout mice. We did not observe any similar ion channel activity in the podocytes of the 

TRPC6−/− mice. Furthermore, application of Ang II did not result in the activation of any 

kind of ion channels in podocytes of the TRPC6−/− mice (Figure 2c). Occasionally, in both 

wild type and TRPC6 knockout mice, we were able to record the background activity of 

other ion channels, distinctly different from the TRPC6 (data not shown). However, identity 

of these channels requires further studies and none of them were activated by Ang II.

We further tested the involvement of TRPC6 channel in Ang II-mediated effects. For these 

experiments we overexpressed TRPC6 together with AT1 receptor in CHO cells. Current-

voltage dependence and representative current traces at different potentials recorded in the 

transfected CHO cells are shown in Figure 3; the conductance of the channels was 24.0 ±1.1 

pS. As shown on Figure 3a and summarized in Figure 3b, Ang II significantly increased 
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TRPC6 Po in CHO cells, similar to native TRPC-like channels of the podocytes in the 

freshly isolated mouse glomeruli. Please note that Ang II washout resulted in fadeaway of 

the TRPC6 activity, whereas recurrent application of Ang II caused its restitution. Current-

voltage relationship of the recorded channels is shown in Figure 3c. As a negative control 

we have used either untransfected CHO cells or cells transfected with the TRPC6 channel 

without AT1 receptor. In both cases, we were unable to record the activation of the channels 

in response to Ang II (Figure 3d).

Angiotensin II application in concentrations above 10 µM results in contraction of mouse 
glomeruli

Different concentrations of Ang II in the range of 100 nM to 25 µM were tested to establish 

the appropriate concentration for a detectable response both in patch-clamp experiments and 

in calcium concentration measurements. Ang II evoked the response at all studies 

concentrations (data not shown). However, the concentration of 1 µM was selected as the 

most suitable for the experimental procedures, as all the concentrations of Ang II above 10 

µM resulted in contraction and subsequent relaxation of the glomeruli, which made 

electrophysiological studies impossible due to detachment of the patch pipette from the 

podocytes. Figure 4 summarizes the effect of 1 µM (Figure 4a) and 10 µM (Figure 4b) of 

Ang II on glomerular volume. Supplementary Video 1 illustrates the absence of glomerular 

contraction in response to 1 µM of Ang II (first mark) and a significant visible contraction 

after addition of 10 µM of Ang II (second mark).

Intracellular calcium response is impaired in the podocytes of the TRPC6−/− mice 
compared to wild type animals

We tested the intracellular calcium response of the podocytes of the wild type and TRPC6−/− 

mouse glomeruli by the ratiometric confocal measurement with Fluo4/FuraRed fluorescent 

dyes. Figure 5a shows typical confocal images of the wild type and TRPC6 knockout mouse 

glomeruli in the calcium free solution and after the solution change to the one containing 2 

mM CaCl2; increase in the fluorescence intensity evoked by the calcium influx from the 

extracellular space can be clearly seen. Supplementary Video 2 shows a rotating confocal 

3D reconstruction from a z-stack image collection (18 z-slices) of the glomerulus stained 

with Fluo4 and FuraRed. Fluorescent podocytes can be clearly seen on the surface of the 

glomerulus close to the glass.

Figure 5b summarizes the intracellular calcium response evoked by the extracellular calcium 

concentration change; the transient was significantly higher in the wild type podocytes 

compared to the podocytes from the TRPC6−/− animals. Therefore, this observed difference 

in the increase of the intracellular calcium concentration conforms to the expected blunted 

calcium influx in cells deficient for the TRPC6 channels. In all of the experiments calcium 

levels returned to the basal level after solution was changed for the calcium-free. In order to 

estimate the contribution of the TRPC channels into calcium influx in the podocytes, we 

performed ratiometric confocal calcium measurements with a pan-TRPC blocker GdCl3, 

which is also known to potentiate TRPC5 channels.25,26 Figure 5b illustrates the effect of 1 

min pre-incubation of the wild type and TRCP6−/− glomeruli with 100 µM GdCl3; as 

apparent from the calcium transient, Gd3+ precluded the increase in the intracellular calcium 
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levels stimulated by the solution change. In the TRCP6−/− glomeruli, the same concentration 

of gadolinium resulted in a slightly less blunted decrease of the transient compared to 

control. Thus, while these data demonstrate that there are some compensatory changes in 

response to gadolinium, it also shows that TRPC6 is important for this response in wild type 

animals. We have also tested flufenamic acid (FFA) known to stimulate TRPC6 

channels.25,27 As seen from Figure 5c, FFA produced a fast and significant calcium transient 

in the podocytes.

The effect of SKF 96365 on Ang II – stimulated increase in the intracellular calcium in wild 
type and TRPC6-deficient mouse podocytes

Figure 6a shows representative fluorescence images of the wild type mouse glomeruli 

stained with Fluo4 and FuraRed before and after application of 1 µM of Ang II. The right 

panel of Figure 6a demonstrated the responses of the Fluo4 and FuraRed signals separately. 

A region of interest (ROI) denoted on Figure 6b was used to create separate intensity 

profiles recorded from Fluo4 and FuraRed.

A typical acute transient evoked by Ang II (1 µM) in the podocytes of the glomeruli isolated 

from wild type mice is shown on Figure 6b. The magnitude of the response to Ang II in 

podocytes isolated from wild type mice was decreased by the pretreatment with low 

concentrations of SKF 96365 (1 µM), which is a potent pan-TRPC inhibitor. The response to 

Ang II was significantly blunted in the podocytes of the TRPC6−/− mice, whereas SKF 

96365 did not affect this Ang II – evoked transient. We also tested the effect of 1 µM Ang II 

in the wild type glomeruli in the absence of extracellular calcium. Podocytes still show an 

increase in calcium in response to Ang II in the absence of the extracellular calcium; thus, 

the transient recorded under these conditions most likely accounts for the release of calcium 

from the intracellular depot. The remaining response that we see after SKF96365 incubation 

has the same amplitude as the transient recorded in the calcium-free solution. It can be 

concluded that the remaining response after SKF96365 accounts for the depot depletion. 

This was further confirmed by testing the effect of Ang II in the TRPC6−/− podocytes in 

presence of 100 µM Gd3+; the data showed that the effect of Ang II remains unchanged 

when the sample was pre-incubated with Gd3+. Summarized responses to Ang II in wild 

type and TRPC6−/− mice are shown in Figure 6c and are represented by the maximum 

magnitude of the ratiometric transients. We further tested the effect of Ang II in the wild 

type podocytes in presence of 10 µM MK801, which is a non-competitive NMDA receptor 

antagonist, and found that the Ang II-mediated calcium transient is preserved when NMDA 

receptors are inhibited (Supplementary Figure S1).

DISCUSSION

Whereas many studies have shown an important role of TRPC channels in podocytes and 

mediation of calcium flux by Ang II, the regulation of these channels has not yet been 

investigated in freshly isolated glomeruli except for the elegant study by Gloy et al., who 

demonstrated in the intact glomerulus that Ang II depolarizes podocytes directly by opening 

a Cl− conductance.6 The authors proposed that the activation of Cl− conductance is mediated 

by an AT1 receptor and may be regulated by the intracellular Ca2+ activity.6 Since it is 
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difficult to directly transfer data obtained from cultured glomerular epithelial cells to the 

responses of podocytes in vivo, we have established an experimental approach that allowed 

us to study podocytes in freshly isolated intact glomeruli. Calcium imaging and single 

channel analysis in the podocytes of intact glomeruli demonstrated that Ang II application 

results in calcium influx, which is regulated by the changes in the channel open probability 

of TRPC channels. Further electrophysiological and confocal experiments in the podocytes 

of the wild type and TRPC6−/− mice combined with the use of the pharmacological tools: 

TRPC blockers Gd3+ and SKF 96365, TRPC6 activator FFA and NMDA blocker MK801, 

and studies in heterologous expression system confirmed that this effect is mediated by 

TRPC6 channels.

Recent studies utilizing TRPC6-deficient mice revealed that proteinuria is attenuated in 

TRPC6-deficient mice. Interestingly, elimination of TRPC6 has no effect on normal 

glomerular structure or function and does not affect blood pressure.15 However, this could 

be potentially explained by compensatory mechanisms mediated by other TRPC-family 

members expressed in podocytes.7,28 For instance recent studies identified that loss or 

inhibition of TRPC5 abrogates podocyte cytoskeletal remodeling and this channel is an 

important determinant of albuminuria.29

Nitschke et al. demonstrated that podocytes in the intact glomerulus respond to Ang II with 

an increase of [Ca2+]i via an AT1 receptor. Interestingly, this effect was specific since 

neither bradykinin, nor arginine vasopressin, thrombin, or serotonin influenced [Ca2+]i in 

podocytes.30 The authors demonstrated that the Ang II-induced increase of [Ca2+]i was due 

to both a Ca2+ release from the intracellular space and a Ca2+ influx from the extracellular 

space.30 Using available inhibitors, the authors attempted to identify a channel responsible 

for this extracellular calcium flux. However, neither the L-type Ca2+ channel blocker 

nicardipine, nor an increase of the extracellular K+ concentration changed [Ca2+]i in the 

glomeruli.30

Gd3+ and SKF 96365 used in this study for identification of the source of Ca2+ flux are not 

specifically selective for TRPC6 but rather are pan-TRPC inhibitors. However, our calcium 

measurement data obtained in the knockout animals in combination with 

electrophysiological observations provide definite conclusions about the channel responsible 

for the Ang II-mediated increase of [Ca2+]i in the podocytes of the intact glomeruli. Our data 

are in a good agreement with recent data published by Anderson et al18 who reported that 

Ang II increases cationic currents in rat podocytes of an isolated glomerulus preparation and 

suggested that production of reactive oxygen species could permit activation of TRPC6 

channels by G protein-coupled receptors and PLC-dependent cascades initiated by Ang II 

acting on AT1 receptors in podocytes.18 Role of NADPH oxidase Nox2 in this signaling 

mechanism was also proposed.31 Nijenhuis et al. demonstrated that Ang II regulates TRPC6 

mRNA and protein levels in cultured podocytes and that Ang II infusion enhances 

glomerular TRPC6 expression in vivo and that TRPC6 expression correlates with glomerular 

damage markers and glomerulosclerosis.17 The authors proposed that the deleterious effects 

of Ang II on podocytes and its pathogenic role in glomerular disease involved enhanced 

TRPC6 expression via a calcineurin/NFAT positive feedback signaling pathway.17 Our 

studies demonstrate that Ang II has acute effect on both increase of [Ca2+]i and TRPC6 
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activity. Furthermore, the effect on channel activity is mediated by changes in the channel 

open probability. However, we cannot exclude that both mechanisms mediate TRPC6 

activity with rapid changes in gating properties and long term effect on the level of 

transcription and protein expression.

Furthermore, role of the actin cytoskeleton as a downstream signaling event involved in Ang 

II-mediated increase of [Ca2+]i was proposed. It was shown that Ang II caused a reactive 

oxygen species-dependent rearrangement of cortical F-actin and a migratory phenotype 

switch in cultured mouse podocytes with stable AT1 receptor expression.32 Small GTPases 

Rac1 and RhoA were identified as antagonistic regulators of actin remodeling in podocytes. 

The authors defined TRPC5 and TRPC6 as channels being downstream of the Ang II–

evoked nonselective cationic conductance in podocytes.33 The application of Ang II 

revealed three populations of channels with the corresponding conductances of 39, 68 and 

80 pS. TRPC5 was identified as channel forming a molecular complex with Rac1, whereas 

TRPC6 was shown in a complex with RhoA.33

It is necessary to mention that apart from the Ang II-mediated calcium entry, which is now 

recognized to be an important part of the signal transduction events in the podocytes, there is 

a plethora of other processes in these cells, which involve calcium influx though various 

calcium conducting channels. For example, both TRPC5 and TRPC6 channels were 

identified to be antagonistic regulators of actin remodeling and cell motility in fibroblasts 

and kidney podocytes.29,33 Functional NMDA receptors were also found to be expressed in 

the podocytes and to contribute to calcium entry in these cells.34–36 However, our data are 

consistent with the idea that TRPC6 is the main channel responsible for Ang II-mediated 

calcium signaling.

Selective inhibition or activation of signaling pathways may be an effective means of 

modulating proteinuria. However, the cellular mechanisms of these processes are still 

uncertain and require further investigation. Successful specific therapy of glomerular 

diseases depends on concurrent targeting of multiple signaling pathways. The ability of 

podocytes to precisely regulate intracellular Ca2+ levels plays a central role in glomerular 

disease processes. Manipulating Ca2+ levels by inhibiting TRPC channel activators may be a 

useful strategy for treating patients with FSGS and nephrotic syndrome.

MATERIALS AND METHODS

Animals

Animal use and welfare adhered to the NIH Guide for the Care and Use of Laboratory 

Animals following a protocol reviewed and approved by the IACUC of the Medical College 

of Wisconsin. For experiments, male wild type (c57BL/6) or TRPC6−/−37,38 mice were used. 

Mice were provided with food and water ad libitum.

Isolation of the mouse glomeruli

The kidneys of 8 to 12-weeks-old male mice were removed and then decapsulated; the 

cortex was isolated and minced as described previously for the rat kidney preparation.19,20 

The minced tissue was sequentially pushed through a steel sieve of 150 µm mesh and then 
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pipetted through a 106 µm sieve. This tissue homogenate was then pipetted onto a 75 µm 

sieve; the filtrate was then pushed through the 53 µm sieve and the glomeruli were rinsed 

from the both 75 and 53 µm sieves. For experiments, isolated glomeruli were allowed to 

settle onto cover glass chips coated with poly-D-lysine.

Electrophysiology

Cover glasses that contained glomeruli were placed into a perfusion chamber mounted on an 

inverted Nikon Ti-S microscope and superfused with a physiologic saline solution (pH 7.4). 

Single-channel current data were acquired as described previously.19,20 After a high 

resistance seal was obtained, cell-attached recording was performed immediately. The 

membrane resistance was monitored regularly to ensure the quality of recording. For 

measurements of acute effect only one experiment was performed per dish to avoid any 

possibility of examining cells whose properties might have been altered by extended 

exposure to Ang II. The recordings were made in symmetric chloride solutions. The bath 

solution consisted of 126 NaCl, 1 CaCl2, 10 HEPES, 2 MgCl2, 10 glucose, pH 7.4. The 

pipette solution contained 126 NaCl, 1.5 CaCl2, 10 HEPES, 10 glucose; pH7.4; plus added 

directly before the patch-clamp experiments were 100 µM niflumic acid or DIDS (to block 

Ca2+-activated Cl− channels), 10 mM TEA (to inhibit large-conductance Ca2+-dependent K+ 

channel), 10 nM iberiotoxin (to block Ca2+-activated K+ channels), 10 µM nicardipine (to 

block N-type Ca2+ channels). During the patch-clamp measurements in the single-channel 

mode the activity of the ion channels was first monitored in response to the potential applied 

in steps of 10 or 20 mV in the range of – 90 mV to + 60 mV in order to estimate the 

channel’s conductance and I-V relationship. After that, the voltage was clamped at – 60 mV 

and the channels’ activity was recorded for several minutes before the drugs were applied.

Glomerulus contraction measurements

For the volume response measurements freshly isolated mouse glomeruli were affixed to 

glass coverslips coated with poly-L-lysine. The glomerular responses were recorded using 

confocal microscopy (Nikon A1-R). Glomerular volume (V) was calculated at the maximum 

points before and after addition of the drugs from the surface area (S) of the glomerulus 

using the formula V = 3/4π(S/π)3/4 using the ImageJ software as previously described.39 

ΔV was calculated as (Vfinal−Vinitial)/Vinitial. At least ten glomeruli from three or more 

mice were studied under each condition. Control glomeruli were treated with equivalent 

volumes of buffer and no changes in the glomeruli volume was detected.

cDNA constructs and cell culture

The wild type Chinese hamster ovary (CHO) cells were obtained from the American Tissue 

and Culture Collection and cultured in DMEM medium containing 10% FBS, 2 mM 

glutamine, and 80 µg/ml gentamicin. The plasmid encoding the wild type TRPC6 channel 

gene was previously described.40 Plasmid encoding AT1 receptor was obtained at Missouri 

S&T cDNA Resource Center (AGTR10TN01). Cell transfection with 1 µg of each plasmid 

encoding TRPC6 and AT1 receptor and 0.5 µg of green fluorescent protein was performed 

24–48 hrs before the experiments.
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Confocal laser-scanning fluorescence microscopy

Calcium imaging was performed with laser scanning confocal microscope system Nikon 

A1-R. Images were collected in time series (xyt, 4s per frame) with the Nikon imaging 

software. Changes in intracellular Ca2+ concentration were estimated according to a protocol 

described previously21 from ratiometric fluorescence images of Fluo-4 and Fura Red loaded 

glomeruli. Emitted light was collected by the objective lens Plan Apo ×60 oil DIC2. The 

glomeruli suspension was loaded with the dyes by adding Fluo-4 AM and Fura Red AM (5 

µM of each; Invitrogen). Glomeruli were mounted on the poly-D-lysine covered glass in a 

registration chamber and washed for ~ 10 min with bath solution containing (in mM): 145 

NaCl, 4.5 KCl, 2 MgCl2, 10 Hepes, pH 7.35. After stabilization of the fluorescence signal 

podocytes were identified on the basis of anatomic considerations, and fluorescence 

intensity ratios were recorded. Fluorescent signal was observed only from cells on the 

surface of glomeruli in area attached to glass. In each experiment, 4 to 7 podocytes of at 

least one glomerulus were selected; experiments for every compound tested were repeated at 

least 3 times.

Statistical analysis

Data are presented as mean ± s.e.m. The values of intracellular calcium ion concentration at 

every moment of time for individual cells were averaged by the number of regions 

registered in the experiment. Data are compared using the Wilcoxon signed-rank test and 

P<0.05 is considered significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Natvie TRPC6 channels in the freshly isolated mouse glomeruli
(a) Representative current traces from the podocytes of the freshly isolated wild type mouse 

glomeruli. The activity of the identified TRPC6 channels is shown at different potentials. c 

and oi denote closed and open states of the channels. (b) A summarized current-voltage 

dependency of the identified TRPC6 channel in the podocytes of the freshly isolated 

glomeruli. Conductance (S) is shown on the graph. Each point is the mean of at least 6 

independent observations made on 5 animals.
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Figure 2. Ang II activates TRPC6 channels in the podocytes of freshly isolated mouse glomeruli
(a) Representative current traces of a TRPC6 channel from a cell-attached patch of a 

podocyte from a wild type mouse glomerulus. A continuous current trace is shown (upper 

row), arrow demonstrates addition of Ang II (1 µM) to the external bath solution. All 

patches were held at a −60 mV during the course of experiment. The c and oi denote closed 

and open current levels, respectively. (b) Summary graph for the channel’s open probability 

before and after application of Ang II. **P<0.01 versus before Ang II, the number of 

patches tested was 10. (c) A representative recording made on the podocytes of the freshly 

isolated glomerulus of a TRPC6 knockout mouse. Arrow demonstrates addition of Ang II (1 

µM) to the external bath solution. No TRPC6 channel activity was recorded in any of the 

patches before or after application of Ang II. The total number of animals used was 11 wild 

type and 7 TRPC6−/−, respectively.
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Figure 3. Ang II activates TRPC6 channels in transfected CHO cells
Shown is a representative current trace from the cells transfected with AT1 receptor and 

TRPC6 before and after application of 1 µM Ang II and following washout and second Ang 

II application (total length 30 min) with an expanded region (10 s) showing the activity of 

the channel on an expanded scale (a) and a graph summarizing the channels’ open 

probability before and after application of Ang II (b). *P<0.001 versus before Ang II. 

Cumulative current-voltage dependence of the recorded TRPC6 channel calculated from 6 

independent patches is shown on (c). The number of independent experiments testing the 

effects of Ang II was 8. (d) A representative current trace illustrating the absence of the 

TRPC6 activity before or after application of Ang II in CHO cells transfected with the 

TRPC6 channel only.
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Figure 4. Angiotensin II application results in the changes of the glomerular volume
The graph summarizes the effect of Ang II in concentration 1 (a) and 10 µM (b) on the 

glomerular volume. * denotes P<0.05 vs before application of Ang II. The summary was 

calculated from 12 independent glomeruli from 5 different wild type mice.
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Figure 5. Intracellular calcium response in the podocytes of the freshly isolated glomeruli of 
TRPC6−/− mice compared to wild type animals
(a) Representative images illustrating the wild type (upper row, WT) and TRPC6−/− (bottom 

row) mouse glomeruli stained with Fluo4 (green pseudocolor) and FuraRed (red 

pseudocolor) in the calcium-free solution (bright field (BF) merged with fluorescence and 

fluorescence only) and after solution change to the calciumcontaining solution (2 mM Ca2+). 

The lower intensity green-colored fluorescence in the knockout podocytes after the solution 

change should be noted. Arrows denote the typical regions of interest (ROIs) where the 

fluorescence signal intensity was recorded. Scale bar shown is 50 µm. (b) Shown is the 

summarized intracellular calcium transient in the podocytes of the freshly isolated glomeruli 

of the wild type and TRPC6 knockout mice in response to the extracellular solution change 

from calcium-free (nominal 0 mM Ca2+) to calcium-containing (2 Ca2+) and back; 

representative traces recorded in the wild type and TRPC6−/− glomeruli in presence of 100 

µM Gd3+ are also shown. The calcium response is shown as the ratio of the signal from the 

fluorescent dyes Fluo4/FuraRed. The number of animals used was 7 and 9 (total number of 

ROIs was 89 and 106) for the knockout and wild type mice, respectively. (c) The effect of 

flufenamic acid (FFA, 30 µM) on intracellular calcium concentration in podocytes of wild 

type glomeruli. Asterisk denotes p ≤ 0.05.
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Figure 6. Ang II-evoked calcium influx in the podocytes of the wild type and TRPC6-deficient 
mouse glomeruli
(a) Representative images of the wild type mouse glomeruli stained with Fluo4 (green 

pseudocolor) and FuraRed (red pseudocolor) (shown are bright field merged with 

fluorescence and fluorescence only before and after application of Ang II). ROIs (regions of 

interest) are marked with arrows. Right panel demonstrates separate intensity signals 

recorded from Fluo4 (green) and FuraRed (red) from a ROI marked with a circle. Please 

note the typical increase and decrease in Fluo4 and FuraRed intensities, respectively. (b) 

Upper panel shows the representative calcium transients caused by the application of 1 µM 

of Ang II in the podocytes of the wild type mouse glomeruli which were treated with vehicle 

(WT) or 1 µM of the pan-TRPC channel blocker SKF 96365 (WT + SKF) in the presence of 

extracellular calcium, and with 1 µM of Ang II in the calcium-free solution (WT, 0 Ca). 

Bottom panel illustrates the effects of Ang II on the calcium transients in the podocytes of 

the TRPC6−/− mouse glomeruli treated and not treated with SKF 95365 (KO and KO + SKF, 

respectfully) and glomeruli pre-incubated with 100 µM Gd3+ (KO + Gd); (c) Graph 

demonstrating the summarized responses of the wild type or knockout podocytes of mouse 

glomeruli treated or not treated with SKF 96365 or Gd3+ to 1 µM of Ang II in calcium-free 

or calcium-containing solution. The data were summarized from at least 8 glomeruli for 

each column and the responses were recorded from at least 6 different animals for each 

group. Scale bar shown is 30 µm. Asterisk denotes p ≤ 0.05 compared to application of Ang 

II in wild type mice in calciumcontaining buffer.
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