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Abstract

The nucleosome remodeling deacetylase (NuRD) complex is a highly conserved regulator of chromatin
structure and transcription. Structural studies have shed light on this and other chromatin modifying machines,
but much less is known about how they assemble and whether stable and functional sub-modules exist that
retain enzymatic activity. Purification of the endogenous Drosophila NuRD complex shows that it consists of a
stable core of subunits, while others, in particular the chromatin remodeler CHD4, associate transiently. To
dissect the assembly and activity of NuRD, we systematically produced all possible combinations of different
components using the MultiBac system, and determined their activity and biophysical properties. We carried
out single-molecule imaging of CHD4 in live mouse embryonic stem cells, in the presence and absence of one
of core components (MBD3), to show how the core deacetylase and chromatin-remodeling sub-modules
associate in vivo. Our experiments suggest a pathway for the assembly of NuRD via preformed and active
sub-modules. These retain enzymatic activity and are present in both the nucleus and the cytosol, an outcome
with important implications for understanding NuRD function.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

The nucleosome remodeling deacetylase (NuRD)
complex combines chromatin remodeling and histone
deacetylation activities [1–4] and plays a central role in
the differentiation of embryonic stem (ES) cells toward a
Authors. Published by Elsevier Ltd. T
rg/licenses/by/4.0/).
committed lineage [5]. It has also been shown to either
inhibit or promote the reprogramming of adult cells into
induced pluripotent stem cells in different contexts [6–8]
and to exert chromatin-independent functions [9]. In the
absence of NuRD-med ia ted repress ion ,
pluripotency-associated genes are expressed at levels
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where ES cells are no longer able to respond to factors
that induce differentiation [10]. Although the mecha-
nisms are not yet clear, deacetylation of histoneH3K27
by NuRD leads to recruitment of the polycomb
repressive complex 2 resulting in subsequent H3K27
trimethylation at NuRD-controlled promoters [11].
In mammalian cells, the NuRD complex is known to

comprise helicase-containing nucleosome remodeling
ATPases (CHD3/4/5), histone deacetylases (HDAC1/
2), histone chaperones (RbAp46/48), methyl-cytosine
DNA-binding domain proteins (MBD2/3), metastasis
tumor antigens (MTA1/2/3), and the GATA-type zinc
finger proteins (GATAD2a/b) (for recent reviews,
see refs. [12,13]). [In Drosophila, the corresponding
proteins are as follows: Mi-2 (CHD4), Rpd3
(HDAC1/2), p55 (RbAp46/48), MBD-like, MTA-like,
and Simjang (GATAD2a/b). Note - we use CHD4
instead of Mi-2 throughout this paper.] It is therefore
clear that considerable component variability exists
within the mammalian NuRD complex suggesting
that different versions of the complex might have
distinct activities and biological functions in different
cell types [14]. However, at present not enough is
known about the assembly of the complex in order to
predict which combinations of core components
might form stable complexes—an essential prereq-
uisite for understanding NuRD function.
Three structures provide crucial information about

interactions within the NuRD complex. Firstly, the
structure of the ELM2–SANT domain of MTA1 bound
to HDAC1 shows that MTA1 dimerises to create a 2:2
(MTA1:HDAC1) complex [15]. Secondly, the structure
of a RbAp48–MTA1 complex has shown that a
C-terminal sequence motif in MTA1 is sufficient to
recruitRbAp48 [16]. Finally, the structure of a coiled-coil
formed between MBD2 and GATAD2A [17] provides a
third interaction. There are also structures of isolated
domains, including the PHD domains [18] and the
chromodomains (PDB code: 4O9I) of CHD4, the
methyl-DNA binding domain of MBD2 [19], and the
SANT domain of MTA3 (PDB code: 2CRG).
To investigate NuRD assembly, we studied the

Drosophila complex, where there is only a single
gene for each major NuRD component. We ex-
ploited label-free quantitative mass spectrometry
(MS)-based proteomics of purified endogenous
complexes, systematic co-expression/purification of
NuRD components in insect cells using the MultiBac
system, and biochemical and biophysical character-
ization of the sub-modules.

Results

Purification of Drosophila NuRD reveals a
putative core complex

We employed a GFP-tagging approach [20,21]
to purify the NuRD complex from Drosophila S2
Schneider cells. We modified an existing Gateway
plasmid with a metallothionein promoter-driven
expression cassette so that it expressed proteins
with a GFP–TEVx2–histidinex10 tandem affinity puri-
fication tag (Fig. 1a). We expressed the tagged
NuRD subunit p55 and generated stable Drosophila
S2 Schneider cell line, taking particular care to
ensure that the level of heterologous expression
matched that of endogenous p55 as judged by
Western blot. We affinity purified complexes con-
taining tagged p55 (Fig. 1b) and analyzed the
proteins by MS (Fig. 1c) revealing the presence of
known NuRD complex components p55 (the bait),
MTA-like, Rpd3, MBD-like, Simjang, CHD4, and
CG18292 (the homolog of human DOC1 [22]). In
addition to these NuRD-specific proteins, subunits of
other complexes containing p55 were also detected
(Supplementary Fig. S1). We used label-free quan-
titative MS-based proteomics to estimate the stoichi-
ometry of individual subunits [23,24]. Our analyses
consistently revealed a bipartite distribution of NuRD
subunits. MTA-like, Rpd3, MBD-like, and p55 were
present in one to several copies (Fig. 1d), while
S im j a n g , CHD4 , a n d CG182 9 2 we r e
sub-stoichiometric. The ratio of MTA-like, Rpd3, and
MBD-like was 2:2:1, while p55 (the bait) was present in
considerable excess consistent with its presence in
multiple chromatin complexes (Supplementary Fig.
S1). In summary, the majority of the captured material
contained only a subset of components, possibly
representing a physiological NuRD core complex. Of
note, we could purify substantial material from
cytosolic extracts, indicating that NuRD and its
sub-modules are not confined to the nucleus.

Recombinant expression produces a stable core
NuRD complex

We next produced a recombinant core NuRD
complex, formed by p55, MTA-like, MBD-like, and
Rpd3 (PMMR), using the MultiBac insect cell ex-
pression system [25]. A transfer construct encoding
p55, MTA-like, and Rpd3 (pKL_PMR) was fused to
a construct encoding MBD-like (pSPL_MBDlike) by
Cre-LoxP-mediated plasmid fusion yielding pLox-
PMMR, which encodes all four subunits of the puta-
tive NuRD core complex (Fig. 2a). pKL_PMR and
pLox_PMMR were expressed in Sf21 insect cells
and resulted in stable PMR and PMMR complexes
(Fig. 2b, right panel). Both were found in distinct
cytosolic and nuclear pools, as with the endogenous
preparations. In parallel, we purified the endoge-
nous complex by tagging MBD-like, resulting in
dNuRD containing p55, MTA-like, MBD-like, and
Rpd3—CHD4, Simjang, and CG18292 were again
lost during the purification (Fig. 2b, left panel)
indicating a transient association. We observed
minor differences between the recombinant material
and the endogenous preparation for MTA-like and
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Fig. 1. Endogenous dNuRD complex from Drosophila. (a) The endogenous dNuRD complex was purified from
Drosophila S2 Schneider cells using affinity capture of a GFP-tagged bait protein. The construct used for expressing
tandem affinity purification (TAP) tagged bait protein is shown in a schematic fashion. MT, matellothionin promoter; GFP,
green fluorescent protein; TEV, tobacco etch virus NIa protease recognition sequence; His, oligohistidine tag; attR1/attR2,
recombination sites; Cm, chloramphenicol resistance marker; ccdB, selection cassette. (b) The proteins captured by
GFP-trap resin (Chromotek) from a nuclear extract of cells expressing GFP-p55 were analyzed by SDS-PAGE and
Coommassie brilliant blue (CBB) staining. Components identified by MS and Western blot are marked with arrows and
denoted. (c) Statistically enriched proteins in the GFP-p55 pull-down experiment were identified in a permutation-based
FDR-corrected t test and are shown in a Volcano plot. (d) The relative stoichiometries of components within endogenous
dNuRD were determined using intensity-based absolute quantification [23]. The values are normalized to MBD-like
(stoichiometry = 1.0). Three individually purified samples (denoted p55#1, p55#2, and p55#3) consistently indicate a ratio
of 2: 2: 1 for the NuRD core components MTA-like, Rpd3, and MBD-like. In contrast, CHD4, Simjang, and CG18292
appear to bind sub-stoichiometrically.

2933Nucleosome Remodeling and Deacetylase Complex
Rpd3, due to minor proteolysis or the presence of
different levels of post-translational modifications,
respectively.
The recombinant PMR and PMMR complexes

elute at similar retention volumes by size exclusion
chromatography (SEC) showing that the particles
have comparable dimensions (Fig. 2c). In addition,
both profiles showed smaller peaks containing only
p55 and MTA-like (PM). The endogenous dNuRD,
as well as recombinant PMR and PMMR, was
subjected to gradient centrifugation in the presence
of mildly cross-linking glutaraldehyde [26] followed
by SEC (Fig. 2e and f). The three complexes eluted
in a single symmetric peak with similar retention
volumes (Fig. 2f), confirming that all three assem-
blies have comparable molecular dimensions. SEC
of the PMMR complex followed by multi-angle laser
light scattering analysis (SEC-MALLS) indicated a
molecularmassof ~600 kDa (Supplementary Fig. S2).
To corroborate our observations, we co-expressed
all seven NuRD subunits detected in our GFP-affinity
capture experiment (Fig. 1d). This too resulted in
purification of the PMMR complex, consistent with our
preparations of the endogenous complex (Supplemen-
tary Fig. S3).

EM of dNuRD, PMMR, and PMR suggests that
they have similar shapes

Uranyl-acetate stained micrographs revealed ho-
mogenous particles for endogenous dNuRD and
recombinant PMMR and PMR complexes with similar
shapes and dimensions, confirming our previous
findings (Fig. 3a). Particles were picked and 2D
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class averages computed by reference-free multivar-
iate statistical analysis using EMAN2 and IMAGIC-5
[27,28]. Comparison of representative class averages
from the dNuRD,PMMR, andPMRdata clearly shows
the presence of similarly shaped, homogenously
structured particles, consistent with our biochemical
and MS analyses which suggest that the core NuRD
complex comprises stably associated p55, MTA-like,
MBD-like, and Rpd3 proteins. The 2D multivariate
statistical analyses show that the PM complex, by
contrast, forms significantly smaller particles.

dNuRD, PMR, and PMMR all deacetylate
comparably

We asked whether the deacetylase activity of
Rpd3 [29] is different in endogenous dNuRD, and
the recombinant PMR and PMMR complexes using
a synthetic N-terminal H4 peptide acetylated at
lysines K5, K8, K12, and K16 (Fig. 4a). When the
H4 peptide was incubated for 2 h in the presence
of equal amounts of dNuRD, PMR, or PMMR com-
plex (Fig. 4b), the removal of one acetyl group was
detected by MS analysis, with comparable intensity
in all the different samples (Fig. 4c). Thus, the ab-
sence of MBD-like does not influence Rpd3 activity.
Addition of inositol (1,4,5,6) tetra-phosphate [15]
had no effect on deacetylation, suggesting that this
co-factor remains stably bound in our preparations.
Fig. 2. Recombinant NuRD complexes. (a) Constructs u
MultiBac system [25] are shown in a schematic representation.
respectively [25]. LoxP sites used for Cre recombination are sh
of replication are depicted as colored boxes. Genes encoding
stands for p55, MTA-like, and Rpd3, respectively. Tags are sh
affinity purification tag comprising a deca-histidine tag and a
MBP, maltose binding protein; CBP, calmodulin binding pept
resistance marker; Spec, spectinomycin resistance marker. O
respectively, are indicated. pLox_PMMR is generated from
plasmid fusion. PMMR contains in addition a gene encoding fo
(in kilobases, kb) is indicated in brackets. (b) SDS-PAGE secti
capture using GFP trap (left). Four subunits (MTA-like, MBD-li
bands in SDS-PAGE gels (marked by arrows). A weak Cooma
molecular weight marker; B, Complex bound to GFP-nanobod
masses of marker bands are indicated in kilodalton (kDa). SD
and PMMR complexes are shown on the right. Subunits are m
elution fractions from anti-FLAG beads. (c) SEC profiles and co
recombinant PMR complex (left) and purified recombinant PMM
bars in the SEC profiles (top) and above the SDS-PAGE secti
PMR or PMMR complex are highlighted by a number (in gree
2-ml retention volume contains Flag peptide from the affinity pu
at around 1.3 ml, indicative of similar hydrodynamic radii. The m
and corresponds to 600 kDa (Supplementary Fig. S2). (e
centrifugation in the presence and absence of glutaraldehy
were analyzed by SDS-PAGE with uncross-linked (−XL) and
peak fractions from the +XL gradient contain a single high-m
(f) SEC analyses of GraFIX-treated endogenous NuRD prepa
recombinant PMR and recombinant PMMR (right) are shown
indicating comparable overall molecular dimensions.
Longer reactions resulted in multiple lysine residues
being deacetylated (Fig. 4d), confirming Rpd3's
broad substrate specificity [29].

Interaction of CHD4 with the core PMMR complex

We tested whether we could detect weak CHD4/
PMMR interactions in electrophoretic mobility shift
assays with nucleosomes having been unable to
demonstrate an interaction between CHD4 and the
core PMMR complex only. However, while robust
interactions between CHD4 and nucleosomes were
detected, no additional complex was formed when
we added the PMMR complex (Supplementary
Fig. S4), suggesting that other components are
needed for the assembly of intact NuRD.
Because we were unable to purify either Simjang

or CG18292 sufficiently for reconstitution with CHD4
and the core PMMR complex, we turned to single-
particle tracking photo-activated localization micros-
copy (sptPALM) to study the interaction in vivo.
We used mouse ES cells (mESCs) and generated
knock-in cell lines where we tagged CHD4 with the
photo-activatable mEos3 protein [30]. We then
measured CHD4 dynamics using sptPALM at
10-ms time resolution [31] in both wild-type and
MBD3-null cells [32]. (MBD3 is the major mouse
homolog of MBD-like in mESCs.) The fluorescence
trajectory from an individual mEos3 molecule could
sed to express recombinant NuRD complexes with the
pKL and pSPL are MultiBac Acceptor and Donor plasmids,
own as circles filled in red. Resistance markers and origins
NuRD subunits are shown as arrows filled in white. PMR
own as colored rectangles and marked. His-Flag, tandem
triple FLAG epitope (DYKDHDGDYKDHDIDYKDDDDK);
ide. Gent, gentamycin resistance marker; Kn, kanamycin
rigins of replication (oriBR322, oriR6Kγ) on pKL and pSPL,
pKL_PMR and pSPL_MBD-like by Cre-LoxP-mediated
r MBP-tagged MBD-like protein. The size of the plasmids
on showing endogenous NuRD complex purified by affinity
ke, Rpd3 and p55 appear as dominant Coomassie stained
ssie stained band corresponding to CHD4 is labeled. MW,
y beads; E, Complex eluted after TEV cleavage. Molecular
S-PAGE sections of MultiBac-produced recombinant PMR
arked by arrows and labeled. E1-3 denotes stepwise batch
rresponding SDS-PAGE gel sections are shown for purified
R complex (right). Elution fractions are marked by colored

ons in (d) below. The peaks in the SEC profiles containing
n) representing the retention volume. The peak at around
rification step. Both the PMR and PMMR complexes elute
olecular mass of PMMR was determined by SEC-MALLS
) NuRD complexes were further purified by gradient
de cross-linker (GraFix). Peak fractions of the gradients
cross-linked (+XL) samples loaded side-by-side (left). The
olecular weight band representing cross-linked complex.
red by GFP-trap affinity capture (dNuRD, left) as well as
. All complexes elute at around 1.3-ml retention volume
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Fig. 3. Electron microscopy of NuRD complexes.
(a) Representative negative-stain electron micrographs
are shown of purified endogenous dNuRD (top, left) and
recombinant PMMR (top, right), PMR (bottom, left), and
PM (bottom, right) complexes stained with uranyl acetate.
The scale bar corresponds to 50 nm. (b) Multi-variance
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comparable dimensions. In contrast, considerably smaller
particles are observed in the PM sample. The scale bar
corresponds to 18 nm.
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be tracked, with a mean trajectory length of 5.1 ± 0.3
frames, and we recorded an average of ~3000 tra-
jectories per movie of one or two cells. Jump-
distance analysis showed that in wild-type mESCs,
CHD4 exhibits two major diffusion coefficients
(0.100 ± 0.008 and 0.65 ± 0.04 μm2 s−1). The
slowly diffusing fraction 49% ± 6% appears to be
stably bound to chromatin, as its diffusion is similar
to that observed for histone H2B [31]. [The value is
limited by the precision to which a single molecule's
position can be determined, which in our experi-
ments is 62 ± 4 nm corresponding to a diffusion
coefficient of ~0.1 μm2 s−1 at 10-ms time resolution
(as confirmed in fixed cells).] In MBD3-null cells,
CHD4 still exhibits the slowly diffusing fraction
(49% ± 3%; 0.100 ± 0.008 μm2 s−1), but the fast
moving fraction now moves significantly more quickly
(0.80 ± 0.08 μm2 s−1) (p b 0.004). This is consistent
with our hypothesis that CHD4 should move more
rapidly as the smaller CS complex in MBD3-null cells,
while in wild-type cells, it would diffuse more slowly
because it is associated with PMMR (Fig. 5b).
Discussion

Here, we report our dissection of NuRD, a
transcriptional regulator that combines deacetylase
and ATP-dependent chromatin remodeling activi-
ties. We purified endogenous NuRD from Drosophila
S2 Schneider cells and found that the complex we
purified consists of only a subset of its constituent
proteins (p55, MTA-like, MBD-like, and the deacety-
laseRpd3)with awell-defined stoichiometry. The three
remaining subunits, Simjang, the ATP-dependent
helicase CHD4, and the Drosophila DOC1 homolog
CG18292, in contrast, appear to be peripheral, more
loosely attached NuRD subunits which are lost during
purification. Reminiscent of what we found for TFIID
[33], our results are consistent with a bipartite ar-
chitecture of NuRD in which PMMR interacts with
Simjang, CHD4, and Doc1 at certain times to yield a
bi-functional holo-NuRD complex, which combines
the two known enzymatic activities (histone deacetyla-
tion and chromatin remodeling).
We applied a two-pronged approach to verify our

hypothesis. First, we further purified the endogenous
dNuRD complex. Second, we co-expressed the four
putative core subunits using the MultiBac system
[25] and confirmed that the endogenous dNuRD and
recombinant PMMR complexes contained the same
four constituent proteins. SEC-MALLS defined the
stoichiometry of PMMR as 4:2:2:1 for p55, MTA-like,
Rpd3, and MBD-like in good agreement with our
proteomics results. In support of this overall stoichi-
ometry we found that the RbAp proteins also bind to
a homologous central sequence in the MTA proteins
in addition to binding to the C-terminus16 (data not
shown). We conclude that PMMR may indeed
represent a core NuRD complex. We also expressed
recombinant PMR complex, which eluted at similar
SEC retention volumes as PMMR. All three com-
plexes, endogenous dNuRD and recombinant
PMMR and PMR, exhibited virtually identical dea-
cetylase activities, but are devoid of the chromatin
remodeling activity conferred by CHD4. Of note, in
all three, we observed distinct, comparably prom-
inent, cytosolic, and nuclear pools. The presence of
these cytosolic pools hints at non-nuclear functions
of NuRD. Analysis of our complexes, recombinant
and endogenous, by negative stain electron mi-
croscopy compellingly underscored our results,
evidencing homogenous particles of similar size
and shape for PMR, PMMR, and the endogenous
dNuRD complex. By contrast, the PM complex
resulted in significantly smaller-sized particles. We
conclude that partial NuRD complexes can be
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Fig. 4. Deacetylase activity of NuRD complexes. (a) A synthetic peptide corresponding to the N-terminal 21 amino acids
of histone H4 was used as substrate for the deacetylation assays. The amino acid sequence is shown with acetylated
lysine residues indicated (5, 8, 12, and 16; Ac, acetylated lysine ε-amino group). A biotin tag is present at the C-terminus.
(b) SDS-PAGE section from a NuPAGE Bis-Tris gradient mini gel (4%–12%) showing that the concentration of
endogenous (dNuRD) and recombinantly produced PMR and PMMR complexes is similar in all the assays. Recombinant
MTA-like protein with the oligohistidine-triple FLAG epitope tandem affinity purification tag (marked with an asterisk)
migrates at a higher molecular weight than endogenous MTA-like. A minor contaminant in the PMMR preparation was
identified as Hsp70. (c) The deacetylase activity of dNuRD, PMR and PMMR complexes was assessed by MALDI-TOF
MS analysis of the acetylated peptide substrate. Deacetylase reactions were terminated by addition of acid after 2 h
incubation and analyzed by MALDI-TOF. H4, tetra-acetylated histone H4 (1–21) peptide; −1Ac, H4 (1–21) peptide with
one acetyl group removed. (d) MALDI-TOF analysis after an overnight deacetylation reaction of tetra-acetylated histone
H4 (1–21) peptide by the dNuRD complex. Substrate peptides lacking up to four acetyl groups (complete deacetylation)
are detected.
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produced that retain deacetylase activity conferred
by Rpd3, in the absence or presence of MBD-like.
PMR, in turn, is assembled from the binary com-
plexes PM and MR, the latter of which contains
the histone deacetylase. Previous studies have
characterized the PM and MR interactions at
near-atomic resolution [15,16], providing invaluable
molecular-level insight about key interactions in
the NuRD assembly pathway to the holo-complex
(see Fig. 5b).
Our results imply that the putative PMMR core

NuRD complex then accretes CG18292, CHD4 and
Simjang, possibly when triggered by cellular or ex-
ternal stimuli, to give rise to holo-NuRD. We were
unable to demonstrate an interaction between
PMMR and CHD4, which we and others [34–36]
have shown functions as an ATPase-dependent
remodeler by itself. However, our previous chemical
cross-linking/MS experiments [37] show that, in the
mammalian NuRD complex, CHD4 and GATA2Da
associate. We therefore hypothesized that the holo-
NuRD complex may assemble through the interac-
tion of a chromatin-remodeling sub-module, com-
prising CHD4 and Simjang (CS) with PMMR. This
interaction between Simjang in CS and the
MBD-like subunit in PMMR would occur through
the formation of a coiled coil, as seen in the
structure of the GATA2Da–MBD2 complex [17].



2938 Nucleosome Remodeling and Deacetylase Complex
We sought evidence for the hypothesis that a
Simjang/MBD-like (or GATA2Da/b–MBD2/3) inter-
action is important for the association of the core
PMMR deacetylase and CS chromatin-remodeling
sub-modules, by carrying out single molecule track-
ing studies of CHD4 in the presence and absence of
MBD3 in mESCs. The slowly moving molecules are
not affected by the presence or absence of MBD3,
and given the higher concentrations of CHD4 in the
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cell, and its known NuRD-independent functions,
we suspect that they may correspond to CHD4 that
is not associated with NuRD [38]. The more rapidly
moving CHD4 molecules (which we expect are
diffusing along chromatin) provide direct evidence
that the MBD component plays an important role in
the association of CHD4 with NuRD, consistent with
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Fig. 5b). In this model, CG18292 (or DOC1 in
mammalian cells) might either interact with PMMR
by itself or as part of the CS complex.
In summary, our experiments suggest a pathway for

the assembly of the complete and functional NuRD
complex via preformed and active sub-modules. The
fact that the sub-modules retain similar enzymatic
activities and are present in different cellular compart-
ments when expressed at endogenous levels is
consistent with the idea that they may have indepen-
dent activities in both the nucleus and the cytosol.

Materials and Methods

Production and purification of NuRD complexes

EndogenousNuRDcomplexwaspurified fromDrosophila
S2 Schneider cells using stable cell lines and a
metallothionein-induceable promoter (Thermo Fischer
Scientific) as described in Supplementary Data. Recombi-
nant NuRD complexes were overexpressed using the
MultiBac system [25] and purified as detailed in the
Supplementary Methods.

Mass spectroscopy

The generation of the GFP-tagged p55 and GFP control
S2 Schneider cell lines has been described previously
[16]. Sample cleanup and nanoLC-MS/MS analysis was
also carried out as described [18]. Statistically enriched
proteins in the GFP-p55 pull-down were identified by a
permutation-based FDR-corrected t test. The label-free
quantification intensity of the GFP pull-down relative to
the control pull-down, GFP only (fold change, x-axis) is
plotted against the − log10-transformed p value of the t test
(y-axis). The proteins in the upper right corner represent
the bait and its interactors. The relative stoichiometry of the
Fig. 5. Interaction of CHD4 with the core PMMR complex
CHD4 molecules in live mESCs show differences in the diffusi
(WT) and absence of MBD3 (MBD3-null). Representative imag
488-nm excitation (green form of mEos3) and 405-nm/561-nm
number of the individual tracks from this cell are also shown in
exact diffusion coefficients extracted from the data are shown i
20,039 tracks were analyzed for the wild-type and MBD3-null
assembly is shown in a schematic representation. Protein in
structures (PDB identifiers 4BKX and 4PBY) are shown. The
green) (MR) are based on the structure of MTA1/HDAC1 eluc
interaction of p55 (dark green) with MTA-like is modeled on th
(PDB ID 4PBY, [16]). Two molecules of p55 interact with one m
motifs in the centre and C-terminus of MTA-like (residues 618
p55, MTA-like, and Rpd3 proteins assemble into a complex
MBD-like protein (yellow) interacts with PMR to yield the cor
consistent with that determined by SEC-MALLS (Supplementa
(putative Doc1, gray) are more loosely associated, peripheral
does not interact with core PMMR by itself, but likely interacts
the interaction of Simjang with MBD-like (as structurally charac
The interaction of the two sub-modules combines the ATP-de
deacetylase activity conferred by Rpd3 in one holo-enzyme. Pr
MR) represent stable and enzymatically active deacetylases, w
endogenous dNuRD components was determined using
the intensity-based absolute quantification method [18].

Electron microscopy

For the endogenous dNuRD complex, 5 μl was
adsorbed onto carbon film for 60 s followed by 2% uranyl
acetate staining for 30 s. One hundred micrographs were
recorded under low-dose conditions at room temperature
on a F20 electron microscope (FEI) operating at 200 kV
using a 4k × 4k CCD camera. The nominal magnification
used was 40,000, which corresponds to a pixel size of
2.855 Å.
SEC analysis of both recombinant PMMR and PMR

complexes revealed the presence of an additional smaller
complex comprising only MTA-like and p55 (PM) eluting
in a separate peak. Five microliters of PMMR, PMR, or PM
was adsorbed onto carbon film and stained as described
above for the endogenous dNuRD sample. Low-dose
images of 320, 150, and 120, respectively, were recorded
with a JEOL 1200 EX II microscope operated at 100 kV
using a 2k × 2k CCD camera at a nominal magnification of
40,000. All micrographs were corrected for the contrast
transfer function and phase-flipped using the program bctf
from Bsoft [39]. A total of 14,288 (dNuRD), 4753 (PMMR),
3610 (PMR), and 7901 (PM) particles were picked and
extracted manually using e2boxer.py from EMAN2 [27].
Picked particles were subjected to four rounds of 2D
multi-variance statistical analysis and classification using
IMAGIC-5 [28], resulting in 200 reference-free classes for
the dNuRD and PMMR complexes, and 100 reference-free
classes for the PMR and PM complexes.
Deacetylase activity assay

One microgram each of endogenous dNuRD, recombi-
nant PMR, or recombinant PMMR complex was mixed
with 20 μM of a synthetic tetra-acetylated peptide
. (a) 2D single-molecule tracking of single mEos3-tagged
on of a sub-population of CHD4 molecules in the presence
es of the same cell are shown (top right) using low power
excitation (photo-activated red form of mEos3). A small

dicating the fast and slow diffusing fractions of CHD4. The
n a box-and-whisker plot (lower right). A total of 23,854 and
cells, respectively. (b) A putative model of NuRD complex
teractions which can be modeled from known molecular
interactions between MTA-like (light blue) and Rpd3 (light
idated by X-ray crystallography (PDB ID 4BKX, [15]). The
e structure of RbAp48 with a C-terminal fragment of MTA1
olecule of MTA-like via interactions with two related peptide
–622 KKAARQ and 848–853 RRAARK, respectively). The
with presumed 4:2:2 stoichiometry (PMR). One copy of
e NuRD complex (PMMR) with a stoichiometry of 4:2:1:2
ry Fig. S2). Simjang (dark blue), CHD4 (red), and CG18292
subunits that interact with the core NuRD complex. CHD4
as a sub-module with Simjang (and perhaps CG18292) via
terized by the p66α–MBD2 interaction), to give holo-NuRD.
pendent chromatin remodeling function of CHD4 with the
eformed PMR and PMMR sub-modules (and quite possibly
hich may catalyze distinct cellular functions on their own.
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corresponding to residues 1 to 21 of histone H4 (AnaSpec,
AS-64,989) in deacetylation buffer [25 mM Hepes (pH 7.5),
200 mM NaCl, 0.1 mM EDTA, and 2% glycerol supple-
mented with fresh 0.5 mM DTT]. Protein complex con-
centrations were confirmed by SDS-PAGE using a 4%–
12% NUPAGE® Bis-Tris gradient mini gel (Invitrogen)
stained with SYPRO® Ruby Protein Gel Stain (Molecular
Probes™). A 20-μL deacetylation reaction was incubated
at 30 °C and stopped after 2 h by adding 5 μL of Stop
Solution (1 M HCl and 0.16 M acetic acid). Reaction
mixtures were analyzed by MALDI-TOF MS.

sptPALM

mESCs expressing CHD4 tagged at the C-terminus with
mEos3 [30] were generated as described in Supplemen-
tary Data. Prior to imaging, cells were washed once with
PBS and then cultured for a day in phenol-free serum and
LIF conditions. For cell fixation, cells were incubated in
1% formaldehyde in PBS at room temperature for 15 min.
The fixed cells were washed with PBS before imaging.
Collimated 561 nm (Cobolt, Jive 200), 488 nm (Toptica,
iBeam Smart 488,100 mW), and 405 nm (Oxxius, Laser-
Boxx 405) laser beams were aligned and focussed at the
back aperture of an Olympus 1.49 NA 60× oil objective
mounted on an IX71 Olympus inverted microscope frame.
The power of the collimated beams at the back aperture of
the microscope was, respectively, 10 kW/cm2, 1 kW/cm2,
and 10–100 W/cm2. The fluorescent signal was filtered
with a four-band dichroic (Semrock, Di01-R405/488/561/
635) and either a 488 long-pass filter (Semrock, BLP01-
488R, for beads), or a combination of a 561 long-pass
(Semrock, BLP01-561R) and a 587 band-pass filter
(Semrock, FF01-587/35), expanded through a 2.5× ach-
romatic beam expander (Olympus, PE 2.5 × 125) and
finally projected onto an EMCCD (Photometrics, Evolve
512). Image stacks of 10,000 frames were collected and
then analyzed by software that detects single-molecule
trajectories from the PALMmovies and carries out the jump
distance analysis [40]. Only fluorescent puncta smaller
than 5 pixels and with a signal-to-noise greater than 4 were
analyzed. Fluorescent puncta were considered to be the
same molecule if they were within 5 pixels between frames
because we do not expect to see diffusion coefficients
greater than 30 μm2 s−1 for CHD4.
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