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Abstract: In this study, copolymers based on 1,3-bis(carbazol-9-yl)benzene (BCz) and
three 3,4-ethylenedioxythiophene derivatives (3,4-ethylenedioxythiophene (EDOT), 3,4-(2,2-
dimethylpropylenedioxy) thiophene (ProDOT-Me2), and 3,4-ethylenedithiathiophene (EDTT))
were electrochemically synthesized and their electrochemical and electrochromic properties
were characterized. The anodic copolymer P(BCz-co-ProDOT) with BCz/ProDOT-Me2 = 1/1
feed molar ratio showed high optical contrast (∆T%) and coloring efficiency (η), measured
as 52.5% and 153.5 cm2·C−1 at 748 nm, respectively. Electrochromic devices (ECDs) based
on P(BCz-co-EDOT), P(BCz-co-ProDOT), and P(BCz-co-EDTT) as anodic polymer layers, and
poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) (PEDOT-PSS) as cathodic polymer
layer were fabricated. P(BCz-co-ProDOT)/triple-layer PEDOT-PSS ECD showed three different colors
(light yellow, yellowish-blue, and dark blue) at different applied potentials. In addition, the highest
optical contrast (∆T%) of P(BCz-co-ProDOT)/triple-layer PEDOT-PSS ECD was found to be 41% at
642 nm and the coloration efficiency was calculated to be 416.5 cm2·C−1 at 642 nm. All ECDs showed
satisfactory optical memories and electrochemical cyclic stability.

Keywords: electrochromic device; conducting polymer; electrochemical polymerization; optical
contrast; coloration efficiency; poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid)

1. Introduction

Organic electroactive materials have gained much attention for commercial electronic devices
due to their benefits of facile structural modifications, high optical contrast between redox state,
and fast photo-switching ability. π-conjugated polymers (CPs) are among the most widely explored
organic electroactive materials. CPs have been widely used in advanced technological fields including
polymer solar cells [1,2], polymer light-emitting diodes [3,4], catalysts [5–7], fluorescent sensors [8],
thin film transistors [9], and electrochromic devices (ECDs) [10]. In these fields, researchers have

Polymers 2016, 8, 368; doi:10.3390/polym8100368 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
http://www.mdpi.com/journal/polymers


Polymers 2016, 8, 368 2 of 15

focused enormously on the application of CPs in ECDs due to CPs being able to change their
spectroelectrochemical properties after application of an electrical voltage [11].

In the last decade, a class of CPs, known as polypyrroles [12], polythiophenes (PTh) [13],
polyanilines [14], polyfurans [15], polycarbazoles (PCz) [16], polyazulenes [17], polyindoles [18],
and poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) [19] have been widely used in
electrochromic materials. Among them, PCz is quite bleached in its neutral state and becomes colored
in its oxidized state. Carbazole can be substituted or polymerized at the 3,6- or 2,7-positions and
a wide variety of alkyl and aryl chains can be incorporated into the nitrogen atom of the carbazole
unit, leading it to be a good candidate for a number of opto-electronic applications. PTh and
their derivatives have been widely used due to their good redox reversibility, high conductivity
value, and the high optical contrast between redox states [20]. PTh can be formed directly on the
electrodes using electrochemical polymerization. Poly(3,4-ethylenedioxythiophene)s (PEDOT) and
poly(3,4-(2,2-dimethylpropylenedioxy)thiophene) (PProDOT-Me2) contain two electron-donating
oxygen atoms on the 3,4-positions of the thiophene unit, which decreases the onset potentials
of polymer films, and makes the band gaps of PEDOT and PProDOT-Me2 films lower than
PTh [21]. Moreover, 3,4-ethylenedithiathiophene (EDTT) is an electron-donating heterocyclic unit with
two electron-donating sulfur atoms on the 3,4-positions of the thiophene unit, leading to shifts in the
onset potential and absorption maximum of the polymer film. Copolymerization of distinct monomers
containing several diverse units can give rise to an interesting combination of the electrochromic and
electrochemical properties observed in the corresponding homopolymers. For this matter, copolymers
based on the carbazole derivative and 3,4-ethylenedioxythiophene derivatives were synthesized
electrochemically in this study. Furthermore, 1,3-bis(carbazol-9-yl)benzene contains two carbazole
units linked by a phenyl unit, which permits charge carrier transport and eases the formation
of stable radical cations (polaron) and dication (bipoloran). Three copolymers (P(BCz-co-EDOT),
P(BCz-co-ProDOT), and P(BCz-co-EDTT)) were synthesized using electrochemical copolymerizations,
and the spectroelectrochemical and electrochromic properties of copolymer films were systematically
and comprehensively studied. It was interesting to find that the slight structural variations of the
3,4-ethylenedioxythiophene derivatives brought about distinct electrochromic properties.

There have been few reports about 1,3-bis(carbazol-9-yl)benzene-based copolymers as anodic
layers in ECDs. For this matter, several ECDs were fabricated using PBCz, P(BCz-co-EDOT),
P(BCz-co-ProDOT), and P(BCz-co-EDTT) as the anodic layers of the coloring electrode,
and poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) (PEDOT-PSS) as the cathodic layer
of the complementary electrode. The spectroelectrochemistry, optical contrast, switching velocity,
and cycling stability of the ECDs were also studied.

2. Materials and Methods

2.1. Materials

2,2-Dimethyl-3,4-propylenedioxythiophene (ProDOT-Me2) was prepared based on previously
published procedures [22]. 1,3-Bis(carbazol-9-yl)benzene (BCz), 3,4-ethylenedioxythiophene (EDOT),
and 3,4-ethylenedithiathiophene (EDTT) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
For the materials of polymer composite electrolytes, PMMA (Mw = 350,000) purchased from Acros
organics (Geel, Belgium) was dried at 100 ◦C under vacuum for 1 day and LiClO4 obtained from
Aldrich was dried at 120 ◦C under vacuum for 1 day. Propylene carbonate (often abbreviated PC) was
bought from Alfa Aesar (Ward Hill, MA, USA) and was used as received.

2.2. Electrochemical Polymerization of PBCz, P(BCz-co-EDOT), P(BCz-co-ProDOT), and P(BCz-co-EDTT) Films

PBCz, P(BCz-co-EDOT), P(BCz-co-ProDOT), and P(BCz-co-EDTT) films were prepared
potentiostatically at 1.0 V (vs. Ag/AgNO3) on ITO electrodes with a charge density of 60 mC·cm−2,
using 0.002 M monomer in a solution containing 0.2 M LiClO4 in PC/acetonitrile (ACN) solution.
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The feed species of these films are summarized in Table 1. An Ag/AgNO3 electrode (calibrated
using ferrocene) and a platinum wire were used as the reference and counter electrodes, respectively.
The double layers cathodic PEDOT-PSS polymer film was prepared using spin coating techniques;
the spin condition for film preparation was 2000 rpm. The active area of polymer film on indium tin
oxide (ITO) electrode was 1.0 × 1.5 cm2.

Table 1. Feed species of anodic polymer electrodes (a), (b), (c), and (d).

Electrodes Anodic polymer Feed species of anodic polymer Feed molar ratio of
anodic polymers

(a) PBCz 2 mM BCz Neat BCz
(b) P(BCz-co-EDOT) 2 mM BCz + 2 mM EDOT 1:1
(c) P(BCz-co-ProDOT) 2 mM BCz + 2 mM ProDOT-Me2 1:1
(d) P(BCz-co-EDTT) 2 mM BCz + 2 mM EDTT 1:1

2.3. Construction of Electrochromic Devices

A gel electrolyte consisting of PMMA, 0.2 M LiClO4, PC, and ACN was prepared and the gel polymer
electrolyte was coated on anodic PBCz, P(BCz-co-EDOT), P(BCz-co-ProDOT), and P(BCz-co-EDTT)
films. A double-layer cathodic PEDOT-PSS film was placed onto the electrolyte membrane to
construct an electrochromic device. The edges of electrochromic devices were sealed with epoxy
resin to prevent the interface from being attacked by moisture and oxygen. The effective area of the
prepared electrochromic devices was about 1.5 cm2. For comparison, cathodic films were coated with
a triple-layer PEDOT-PSS and a quadruple-layer PEDOT-PSS on ITO electrodes. ECDs were also built
by arranging P(BCz-co-ProDOT) and a triple-layer PEDOT-PSS (or quadruple-layer PEDOT-PSS) facing
each other in order that they could to be separated by a gel electrolyte. The configuration of ECD is
shown in Figure 1.
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Figure 1. Schematic diagrams of P(BCz-co-ProDOT)/triple-layer PEDOT-PSS device.

2.4. Electrochemical and Spectroelectrochemical Characterization

The electrochemical experiments were executed in a multi-component cell with a CHI627D
electrochemical analyzer (CH Instruments, Austin, TX, USA). An ITO coated glass plate (1× 1.5 cm2 area),
Ag/AgNO3 electrode, and platinum wire were used as working, reference, and counter electrodes,
respectively. The spectroelectrochemical experiments were performed with a HITACHI spectrophotometer
to record the in situ UV–Visible spectra. The double potential chronoamperometry was carried out
with the assembled cell using a CHI627D electrochemical analyzer and a HITACHI spectrophotometer
(Hitachi, Tokyo, Japan).
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3. Results and Discussion

3.1. Electrochemical Polymerization

Figure 2 shows the anodic polarization curves of the neat EDTT, BCz, ProDOT-Me2, and EDOT in
PC/ACN solution containing 0.2 M LiClO4 at a scan rate of 100 mV·s−1. The onset potential of neat
EDTT, BCz, ProDOT-Me2, and EDOT were 0.86, 0.94, 1.00, and 1.04 V, respectively. The Eonset of EDTT
is smaller than that of EDOT, indicating the incorporation of dithio group on 3,4-positions of thiophene
led to lower oxidation potentials of polymer films than the dioxy group. Moreover, EDTT showed
lower Eonset than BCz and ProDOT-Me2. The discriminations between onset potential of neat BCz vs.
neat EDOT, neat BCz vs. ProDOT-Me2, and neat BCz vs. neat EDTT were small (<0.1 V), implying the
feasibility of copolymerizations of BCz with EDTT (or ProDOT-Me2, EDOT).
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and (d) 2 mM EDOT in a PC/ACN (1:1, by volume) solution containing 0.2 M LiClO4 at a scan rate of
100 mV·s−1.

Figure 3a–d shows the cyclic voltammograms of the neat BCz, the mixture of BCz + EDOT,
the mixture of BCz + ProDOT-Me2, and the mixture of BCz + EDTT in 0.2 M LiClO4/(PC + ACN)
solution at a scan rate of 100 mV·s−1. As the CV scan continued, the relative intensities of the oxidation
and reduction peaks increased with increasing scanning cycles; this can be attributed to the growth
of homopolymers and copolymers on the electrode [23]. As shown in Figure 3a, PBCz had two
oxidation peaks at 0.87 and 1.25 V and two reduction peaks at 0.46 and 0.75 V. The oxidation and
reduction peaks of P(BCz-co-EDOT) located at 1.34 and 0.47 V (Figure 3b), which are different to
the redox potentials of neat PBCz, demonstrating the formation of P(BCz-co-EDOT). In a similar
condition, P(BCz-co-ProDOT) had two oxidation peaks at 0.79 and 1.19 V and two reduction peaks at
0.45 and 0.69 V (Figure 3c). The oxidation and reduction peaks of the P(BCz-co-EDTT) film occurred
at 1.32 and 0.50 V (Figure 3d). The redox potentials of P(BCz-co-ProDOT) and P(BCz-co-EDTT) films
were different to those of PBCz, indicating that the copolymer films were deposited on the ITO
electrodes. The electrochemical polymerization routes of PBCz, P(BCz-co-EDOT), P(BCz-co-ProDOT),
and P(BCz-co-EDTT) are displayed in Figure 4.

The P(BCz-co-ProDOT) films deposited through the electrocopolymerization of BCz and
ProDOT-Me2 were studied at various scan rates between 10 and 200 mV·s−1 in order to verify
the scan rate dependence of the copolymer films. Figure 5 shows the cyclic voltammograms of the
P(BCz-co-ProDOT) film (prepared by scanning the potentials between 0.0 and 1.7 V) at various scan
rates in 0.2 M LiClO4/(PC + ACN) solution. The P(BCz-co-ProDOT) film shows a couple of oxidation
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and reduction peaks and the current density of redox peaks is linearly proportional to the scan rate,
implying the P(BCz-co-ProDOT) film well-adhered onto the ITO electrodes and that the electrochemical
processes of P(BCz-co-ProDOT) film were characteristic of a nondiffusional redox process [24].
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Figure 5. Cyclic voltammetry (CV) curves of the P(BCz-co-ProDOT) film at different scan rates between
10 and 200 mV·s−1 in a PC/ACN (1:1, by volume) solution containing 0.2 M LiClO4. The inset is scan
rate dependence of the P(BCz-co-ProDOT) anodic and cathodic peak current densities, respectively.

3.2. Electrochromic Characterizations of Polymer Films

Spectroelectrochemistry of the PBCz, P(BCz-co-EDOT), P(BCz-co-ProDOT), and P(BCz-co-EDTT)
films coated on ITO electrode was investigated in 0.2 M LiClO4/(PC + ACN) solution. Figure 6a–d shows
the spectroelectrochemical spectra of PBCz, P(BCz-co-EDOT), P(BCz-co-ProDOT), and P(BCz-co-EDTT)
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films, respectively, at various potentials in 0.2 M LiClO4/(PC + ACN) solution. There was no
conspicuous absorption peaks of PBCz film in the neutral state. Upon applying 0.9 V, new charge carrier
bands appeared at 420 and 1050 nm, which can be assigned to the formation of polaron and bipolaron
bands [25]. The polaron and bipolaron bands of P(BCz-co-EDOT) film in 0.2 M LiClO4/(PC + ACN)
solution located at 420, 732, and 1050 nm, and at the middle band (732 nm) can be ascribed to the
polaron and bipolaron bands of 3,4-ethylenedioxythiophene unit in an oxidation state. Similarly,
the polaron and bipolaron bands of P(BCz-co-ProDOT) film occurred at 420, 748, and 1050 nm in
moderate and high oxidized states, whereas those of P(BCz-co-EDTT) film located themselves at 420,
749, and 1050 nm. The absorption peaks of P(BCz-co-ProDOT) and P(BCz-co-EDTT) at 748 and 749 nm,
respectively, can be attributed to the polaron and bipolaron bands of ProDOT-Et2 and EDTT units in
an oxidation state.
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Figure 6. UV–Visible spectra of: (a) PBCz; (b) P(BCz-co-EDOT); (c) P(BCz-co-ProDOT);
and (d) P(BCz-co-EDTT) on ITO in a PC/ACN (1:1, by volume) solution containing 0.2 M LiClO4.

The PBCz film showed multicolor electrochromism, which was transparent in the neutral state
(0.0 V), light yellow in the intermediate state (0.6 V), yellowish green in the oxidized state (0.9 V),
and blackish green in highly oxidized states (1.2 V). For the copolymer films, the P(BCz-co-EDOT) film
was transparent in the neutral state (0.0 V), yellow in the intermediate state (0.8 V), grayish blue in
the oxidized state (1.0 V), and grayish green in highly oxidized states (1.2 V). The P(BCz-co-EDOT)
film exhibited different colors to those of PBCz film in moderate and highly oxidized states. In similar
conditions, the P(BCz-co-ProDOT) film was transparent in the neutral state (0.0 V), light yellowish
brown in the intermediate state (0.9 V), yellowish brown in the oxidized state (1.1 V), and green in
highly oxidized states (1.2 V). However, P(BCz-co-EDTT) film showed less multiple color variations
than the P(BCz-co-EDOT) and P(BCz-co-ProDOT) films. The P(BCz-co-EDTT) film was transparent
in the neutral state (0.0 V), gray in the intermediate state (0.8 V), and grayish brown in oxidized
states (1.2 V).
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The electrochromic switching of PBCz, P(BCz-co-EDOT), P(BCz-co-ProDOT), and P(BCz-co-EDTT)
films at specific wavelengths were examined by double-potential-step chronoamperometry [26].
Figure 7 shows the transmittance–time profiles of PBCz, P(BCz-co-EDOT), P(BCz-co-ProDOT),
and P(BCz-co-EDTT) films in 0.2 M LiClO4/(PC + ACN) solution, which were stepped by repeated
potential between 0.0 and 1.2 V with a residence time of 10 s. The maximum optical contrast (∆Tmax%)
of PBCz, P(BCz-co-EDOT), P(BCz-co-ProDOT), and P(BCz-co-EDTT) from the bleaching state to the
coloration state in 0.2 M LiClO4/(PC + ACN) solution were estimated to be 18.6%, 36.0%, 52.5%
and 50.0%, respectively. Among these electrodes, P(BCz-co-ProDOT) film shows the highest ∆Tmax,
and copolymers (P(BCz-co-EDOT), P(BCz-co-ProDOT), and P(BCz-co-EDTT)) show higher ∆Tmax than
that of homopolymer (PBCz) in 0.2 M LiClO4/(PC + ACN) solution, indicating the copolymerization
of BCz with EDOT, ProDOT-Me2, or EDTT monomer led to an increase in the ∆Tmax in 0.2 M
LiClO4/(PC + ACN) solution.
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electrodes in a PC/ACN (1:1, by volume) solution containing 0.2 M LiClO4 between 0.0 V and 1.2 V
with a residence time of 10 s.

The coloration response time (τc) and bleaching response time (τb) of polymer films in a solution
state are summarized in Table 2; the response time was calculated at 90% of the full-transmittance
change. For PBCz film in 0.2 M LiClO4/(PC + ACN) solution, the response time at 1050 nm was
estimated to be 7.0 s from the bleaching state to the coloring state and 6.0 s from the coloring state
to the bleaching state. Copolymer (P(BCz-co-EDOT), P(BCz-co-ProDOT), and P(BCz-co-EDTT)) films
show a shorter τb than the PBCz film, indicating the incorporation of EDOT, ProDOT-Me2, or EDTT
unit into the polymer backbone facilitated color change from the coloring to the bleaching state when
we used 0.2 M LiClO4/(PC + ACN) as a supporting electrolyte.

Table 2. Optical and electrochemical properties investigated at selected applied wavelength for
the electrodes.

Electrodes λ (nm) a Tox Tred ∆T ∆OD Qd (mC·cm−2) η (cm2·C−1) τc·(s) τb·(s)

(a) 1050 18.5 37.1 18.6 −0.301 −1.67 180.3 7.0 6.0
(b) 732 38.5 74.5 36.0 −0.287 −3.67 78.2 6.0 2.5
(c) 748 17.0 69.5 52.5 −0.612 −4.00 153.5 7.0 2.4
(d) 749 15.2 65.2 50.0 −0.637 −4.60 138.5 6.5 2.5

a The selected applied wavelength for the electrodes.

∆OD is the variation of optical density, which can be determined using the formula,

∆OD = log
(

Tox

Tred

)
(1)
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where Tox and Tred indicate the percentage of transmittance in the oxidized state and the reduced state,
respectively. The ∆ODmax of PBCz, P(BCz-co-EDOT), P(BCz-co-ProDOT), and P(BCz-co-EDTT) films in
0.2 M LiClO4/(PC + ACN) solution are also summarized in Table 2. Similar to the tendency of ∆Tmax,
P(BCz-co-ProDOT) and P(BCz-co-EDTT) films show a larger ∆OD than PBCz and P(BCz-co-EDOT) films.

Coloration efficiency (η) is an efficient tool for the measurement of the power requirements of an
electrochromic material, and can be determined using the following formula at a specific wavelength,

η =
∆OD
Qd

(2)

where Qd is the injected/ejected electronic charge of the electrodes per active area, and ∆OD is the
variation of optical density at a specific wavelength. As shown in Table 2, the η of PBCz film at 1050 nm,
P(BCz-co-EDOT) film at 732 nm, P(BCz-co-ProDOT) at 748 nm, and P(BCz-co-EDTT) at 749 nm were
180.3, 78.2, 153.5, and 138.5 cm2·C−1, respectively.

3.3. Spectroelectrochemistry of Electrochromic Devices (ECDs)

Dual type ECDs were fabricated with configurations of PBCz/double-layer PEDOT-PSS (ECD (a)),
P(BCz-co-EDOT)/double-layer PEDOT-PSS (ECD (b)), P(BCz-co-ProDOT)/double-layer PEDOT-PSS
(ECD (c)), P(BCz-co-ProDOT)/triple-layer PEDOT-PSS (ECD (c3)), P(BCz-co-ProDOT)/quadruple-layer
PEDOT-PSS (ECD (c4)), and P(BCz-co-EDTT)/double-layer PEDOT-PSS (ECD (d)), and their
spectroelectrochemical properties were examined by increasing the applied potential stepwise of
absorbance measurements. Figure 8a–c shows the UV-Vis spectra of ECD (a), ECD (c), and ECD (c3),
respectively. At 0.0 V, ECDs (a), (c), and (c3) did not reveal conspicuous absorption peak below 400 nm.
At this situation, the anodically coloring material (PBCz or P(BCz-co-ProDOT)) was in its neutral state,
revealing a light yellow color. The cathodically coloring material (PEDOT-PSS) was in its oxidized state,
revealing a transparent color. The ECD (c3) revealed a light yellow color at 0.0 V. Upon increasing the
applied potential stepwise, PBCz (or P(BCz-co-ProDOT)) films began to oxidize and the PEDOT-PSS
layer started to reduce. Accordingly, new peaks at 420 and 640 nm emerged stepwise and the ECD (c3)
revealed a yellowish-blue color at 1.0 V and a dark blue color at 2.0 V (Figure 1).
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P(BCz-co-ProDOT)/double-layer PEDOT-PSS ECD; and (c) P(BCz-co-ProDOT)/triple-layer 
PEDOT-PSS ECD. 
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Figure 9 shows the transmittance profiles as a function of time for the PBCz/double-layer
PEDOT-PSS, the P(BCz-co-ProDOT)/double-layer PEDOT-PSS, and the P(BCz-co-ProDOT)/triple-layer
PEDOT-PSS ECDs. The electrochromic switching of these ECDs was performed between 0.0 V
and 2.0 V at a regular interval of 10 s. The ∆T, η, τc, and τb of ECDs (a), (b), (c), (c3), (c4),
and (d) estimated at 2nd double-step potential cycle are summarized in Table 3. The ∆T of the
P(BCz-co-ProDOT)/double-layer PEDOT-PSS, the P(BCz-co-ProDOT)/triple-layer PEDOT-PSS, and the
P(BCz-co-ProDOT)/quadruple-layer PEDOT-PSS ECDs show a larger ∆T than the PBCz/double-layer
PEDOT-PSS ECD, indicating the incorporation of P(BCz-co-ProDOT) as the anodic layer led to
a higher ∆T at 642 nm than PBCz. However, the PBCz/double-layer PEDOT-PSS ECD shows
larger ∆T than the P(BCz-co-EDOT)/double-layer PEDOT-PSS and the P(BCz-co-EDTT)/double-layer
PEDOT-PSS ECDs. Moreover, the P(BCz-co-ProDOT)/triple-layer PEDOT-PSS ECD showed a larger
∆T than the P(BCz-co-ProDOT)/double-layer PEDOT-PSS and the P(BCz-co-ProDOT)/quadruple-layer
PEDOT-PSS ECDs, implying that the triple-layer PEDOT-PSS as the cathodic layer led to a higher ∆T
than the double-layer and quadruple-layer PEDOT-PSS ECDs.

The η of ECDs (a), (b), (c), (c3), (c4), and (d) are greater than those of PBCz, P(BCz-co-EDOT),
P(BCz-co-ProDOT), and P(BCz-co-EDTT) films in 0.2 M LiClO4/(PC + ACN) solution. This can be
attributed to ECDs containing two polymer films (one an anodic layer, the other a cathodic layer),
which are separated by an electrolyte. However, there is no complementary electrode for PBCz,
P(BCz-co-EDOT), P(BCz-co-ProDOT), and P(BCz-co-EDTT) films. The P(BCz-co-ProDOT)/double-layer
PEDOT-PSS, the P(BCz-co-ProDOT)/triple-layer PEDOT-PSS, the P(BCz-co-ProDOT)/quadruple-layer
PEDOT-PSS, and the P(BCz-co-EDTT)/double-layer PEDOT-PSS ECDs show larger than that
the PBCz/double-layer PEDOT-PSS ECD, indicating the incorporation of P(BCz-co-ProDOT) and
P(BCz-co-EDTT) films as the anodic layers led to a higher than PBCz. However, the PBCz/double-layer
PEDOT-PSS ECD shows larger than the P(BCz-co-EDOT)/double-layer PEDOT-PSS ECD. The τb
of ECDs (a), (b), (c), (c3), (c4), and (d) are smaller than those of the polymer films in 0.2 M
LiClO4/(PC + ACN) solution, indicating the ECDs changed their color faster from the doped to
the dedoped state than the polymer films did in 0.2 M LiClO4/(PC + ACN) solution.
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Table 3. Optical and electrochemical properties investigated at selected applied wavelength
for the ECDs.

Electrodes λ (nm) a Tox Tred ∆T ∆OD Qd (mC·cm−2) η (cm2·C−1) τc (s) τb (s)

ECD (a) 639 14.5 41.5 27.0 −0.467 −1.45 322.1 3.0 3.0
ECD (b) 630 32.5 58.0 25.5 −0.252 −0.80 315.0 3.5 3.1
ECD (c) 642 21.5 52.5 31.0 −0.388 −0.75 517.3 3.4 2.6
ECD (c3) 642 10.0 51.0 41.0 −0.708 −1.70 416.5 3.0 3.0
ECD (c4) 642 6.1 41.1 35.0 −0.826 −2.45 337.1 3.5 2.9
ECD (d) 631 23.0 43.0 20.0 −0.272 −0.75 362.7 3.0 3.0

a The selected applied wavelength for the ECDs.

The comparison of ∆Tmax and η with reported ECDs is shown in Table 4. The
P(BCz-co-ProDOT)/triple-layer PEDOT-PSS ECD shows a higher ∆Tmax than was reported for
poly(4,4′-di (N-carbazoyl)biphenyl-co-2,2′-bithiophene)/PEDOT [27], poly(9H-carbazol-9-ylpyrene)/
PEDOT [28], poly(4,4′-di(N-carbazolyl)biphenyl)/PEDOT [29], poly(4,4′-di(N-carbazoyl)biphenyl-
co-4H-cyclopenta[2,1-b:3,4-b′]dithiophene)/PEDOT [30], poly(3,6-bis(2-(3,4-ethylenedioxy)thienyl)-N
-methylcarbazole)/PEDOT [31], poly(2,5-bis(9-methyl-9H-carbazol-3-yl)-1,3,4-oxadiazole)/PEDOT [32],
and poly(carbazole-co-indole-6-carboxylic acid)/PProDOT-Me2 ECDs [33]. In another aspect,
the P(BCz-co-ProDOT)/double-layer PEDOT-PSS and the P(BCz-co-ProDOT)/triple-layer PEDOT-PSS
ECDs show higher η at 642 nm than was reported for poly(4,4′-di(N-carbazoyl)biphenyl-co-2,2′-
bithiophene)/PEDOT [27], poly(9H-carbazol-9-ylpyrene)/PEDOT [28], poly(4,4′-di(N-carbazoyl)
biphenyl-co-4H-cyclopenta[2,1-b:3,4-b′]dithiophene)/PEDOT [30], and poly(carbazole-co-indole-6-
carboxylic acid)/PProDOT-Me2 ECDs [33]. The high coloration efficiency of the P(BCz-co-ProDOT)/
double-layer PEDOT-PSS and the P(BCz-co-ProDOT)/triple-layer PEDOT-PSS ECDs made
P(BCz-co-ProDOT) attractive for ECD’s applications.
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Table 4. Electrochemical optical contrast and coloration efficiencies of carbazole-group ECDs.

ECD configuration ∆Tmax (%) ηmax (cm2·C−1) Reference

poly(4,4′-di(N-carbazoyl)biphenyl-co-2,2′-bithiophene)/PEDOT 28.6 (700 nm) 234 (700 nm) [27]

poly(9H-carbazol-9-ylpyrene)/PEDOT 23 (623 nm) 290 (623 nm) [28]

poly(4,4′-di(N-carbazolyl)biphenyl)/PEDOT 19 (550 nm) - [29]

poly(4,4′-di(N-carbazoyl)biphenyl-co-
4H-cyclopenta[2,1-b:3,4-b′]dithiophene)/PEDOT 39.8 (628 nm) 319.98 (628 nm) [30]

poly(3,6-bis(2-(3,4-ethylenedioxy)thienyl)-N-methylcarbazole)/PEDOT ca. 30 - [31]

poly(2,5-bis(9-methyl-9H-carbazol-3-yl)-1,3,4-oxadiazole)/PEDOT 35 (620 nm) - [32]

poly(carbazole-co-indole-6-carboxylic acid)/PProDOT-Me2 32 (575 nm) 372.7 [33]

P(BCz-co-ProDOT)/double-layer PEDOT-PSS 31 (642 nm) 517 (642 nm) This work
P(BCz-co-ProDOT)/triple-layer PEDOT-PSS 41 (642 nm) 417 (642 nm) This work

3.4. Open Circuit Memory of ECDs

The ability to retain a colored (or bleached) state for an open circuit of the ECDs was monitored at
specific wavelength as a function of time in neutral and oxidation states by applying the potential for
1 s for each 200 s time interval. As seen in Figure 10, the P(BCz-co-ProDOT)/triple-layer PEDOT-PSS
ECD showed good optical memories in a reduced state of P(BCz-co-ProDOT) film, but almost no
transmittance change in a reduced state. In the oxidized state of P(BCz-co-ProDOT) film, the ECD is
rather less stable than the reduced state of P(BCz-co-ProDOT) film, but the transmittance change is less
than 5% in an oxidized state of P(BCz-co-ProDOT) film, implying the P(BCz-co-ProDOT)/triple-layer
PEDOT-PSS ECD has a reasonable optical memory under open circuit conditions.
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3.5. Stability of Electrochromic Device (ECD)

The stability of ECD for multiple switching cycles was tested using cyclic voltammetry at the
applied potentials between their oxidized and neutral states with 500 mV·s−1 (Figure 11). From the
observation of switching ability between oxidized and neutral states of the PBCz/double-layer
PEDOT-PSS (ECD (a), Figure 11a), the P(BCz-co-ProDOT)/double-layer PEDOT-PSS (ECD (c),
Figure 11b), and the P(BCz-co-ProDOT)/triple-layer PEDOT-PSS (ECD(c3), Figure 11c), 87%, 92%,
and 92%, respectively, of electroactivity was retained after 500 cycles, and 81%, 82%, and 87%,
respectively, of electroactivity was retained after 1000 cycles for ECD (a), ECD (c), and ECD (c3).
ECD (c), which employed P(BCz-co-ProDOT) copolymer as an anodic layer, showed a better multiple
switching stability than the PBCz homopolymer (ECD (a)), and ECD (c3), which employed a triple-layer
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PEDOT-PSS as a cathodic layer, showed a better multiple switching stability than the double layer
PEDOT-PSS (ECD (c)).Polymers 2016, 8, 368 13 of 15 
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4. Conclusions

Four anodic polymer films (PBCz, P(BCz-co-EDOT), P(BCz-co-ProDOT), and P(BCz-co-EDTT))
were prepared by electrochemical polymerization. The spectroelectrochemical characterizations of
the anodic polymer films revealed that the P(BCz-co-EDOT) film was transparent in the neutral state,
yellow in the intermediate state, grayish blue in the oxidized state, and grayish green in highly oxidized
states. The P(BCz-co-ProDOT) film was transparent in the neutral state, light yellowish brown in
the intermediate state, yellowish brown in the oxidized state, and green in highly oxidized states.
However, the P(BCz-co-EDTT) film showed less multiple color variations than the P(BCz-co-EDOT)
and P(BCz-co-ProDOT) films did. Electrochromic switching studies of anodic polymer films display
high ∆Tmax for P(BCz-co-ProDOT) (52.5% at 748 nm) and P(BCz-co-EDTT) (50.0% at 749 nm) films.
Six dual type ECDs based on anodic polymer films (PBCz, P(BCz-co-EDOT), P(BCz-co-ProDOT),
and P(BCz-co-EDTT)) and a cathodic polymer film (PEDOT-PSS) were constructed and their
electrochromic behaviors were characterized. The P(BCz-co-ProDOT)/triple-layer PEDOT-PSS ECD
revealed a light yellow color at 0.0 V, yellowish-blue color at 1.0 V, and dark blue color at 2.0 V.
The P(BCz-co-ProDOT)/triple-layer PEDOT-PSS ECD had the highest ∆Tmax (41% at 642 nm) and the
P(BCz-co-ProDOT)/double-layer PEDOT-PSS ECD had the highest coloration efficiency (517.3 cm2·C−1

at 642 nm). Moreover, the P(BCz-co-ProDOT)/triple-layer PEDOT-PSS ECD displayed a satisfactory
optical memory property and redox stability.
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32. Udum, Y.A.; Gündoğdu Hızlıateş, C.; Ergün, Y.; Toppare, L. Electrosynthesis and characterization of
an electrochromic material containing biscarbazole–oxadiazole units and its application in an electrochromic
device. Thin Solid Films 2015, 595, 61–67. [CrossRef]

33. Kuo, C.W.; Hsieh, T.H.; Hsieh, C.K.; Liao, J.W.; Wu, T.Y. Electrosynthesis and characterization of four
electrochromic polymers based on carbazole and indole-6-carboxylic acid and their applications in
high-contrast electrochromic devices. J. Electrochem. Soc. 2014, 161, D782–D790. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jelechem.2013.04.007
http://dx.doi.org/10.1002/jccs.201300479
http://dx.doi.org/10.1039/C4TC02685C
http://dx.doi.org/10.1016/j.reactfunctpolym.2009.12.006
http://dx.doi.org/10.1002/(SICI)1521-4095(199911)11:16&lt;1379::AID-ADMA1379&gt;3.0.CO;2-Q
http://dx.doi.org/10.1016/j.dyepig.2014.08.003
http://dx.doi.org/10.1016/j.jelechem.2014.07.005
http://dx.doi.org/10.1016/j.synthmet.2013.11.018
http://dx.doi.org/10.1149/2.009310eel
http://dx.doi.org/10.1016/j.solmat.2011.02.009
http://dx.doi.org/10.1016/j.electacta.2009.05.014
http://dx.doi.org/10.1016/j.orgel.2007.01.004
http://dx.doi.org/10.1016/j.tsf.2015.10.055
http://dx.doi.org/10.1149/2.0711414jes
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	Electrochemical Polymerization of PBCz, P(BCz-co-EDOT), P(BCz-co-ProDOT), and P(BCz-co-EDTT) Films 
	Construction of Electrochromic Devices 
	Electrochemical and Spectroelectrochemical Characterization 

	Results and Discussion 
	Electrochemical Polymerization 
	Electrochromic Characterizations of Polymer Films 
	Spectroelectrochemistry of Electrochromic Devices (ECDs) 
	Open Circuit Memory of ECDs 
	Stability of Electrochromic Device (ECD) 

	Conclusions 

