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Abstract: The fluorescent dye BADAN (6-bromoacetyl-2-dimetylaminonaphtalene) is widely used
in various fields of life sciences, however, the photophysical properties of BADAN are not fully
understood. The study of the spectral properties of BADAN attached to a number of mutant forms of
GGBP, as well as changes in its spectral characteristics during structural changes in proteins, allowed
to shed light on the photophysical properties of BADAN. It was shown that spectral properties of
BADAN are determined by at least one non-fluorescent and two fluorescent isomers with overlapping
absorbing bands. It was found that BADAN fluorescence is determined by the unsolvated “PICT”
(planar intramolecular charge transfer state) and solvated “TICT” (twisted intramolecular charge
transfer state) excited states. While “TICT” state can be formed both as a result of the “PICT” state
solvation and as a result of light absorption by the solvated ground state of the dye. BADAN
fluorescence linked to GGBP/H152C apoform is quenched by Trp 183, but this effect is inhibited by
glucose intercalation. New details of the changes in the spectral characteristics of BADAN during the
unfolding of the protein apo and holoforms have been obtained.

Keywords: BADAN (6-bromoacetyl-2-dimetylaminonaphtalene) spectroscopy; apo- and holo-forms
of GGBP (D-glucose/D-galactose-binding protein); pathways of GGBP unfolding

1. Introduction

Thanks to high sensitivity, simplicity, low cost, and possibility to be used as an express
test, fluorescence methods are widely used in the study and analysis of living systems.
For different tasks, researchers have a wide range of fluorescent methods in their arsenal;
namely, intrinsic fluorescence, fluorescent proteins, external fluorescent probes, dyes,
and so on. The fluorescent thiol-reactive solvatochromic dyes BADAN (6-bromoacetyl-
2-dimetylaminonaphtalene), PRODAN (2-dimethylamino-6-propionylnaphthalene), and
LAURDAN (2-dimethylamino-6-lauroylnaphthalene) are widely used for the site-directed
protein labeling. PRODAN and LAURDAN are known to be used in several membrane
studies. Their photophysical properties have been extensively studied and the existence
of several states has been established, of PRODAN and its analogs, in both the ground
and excited states [1–18]. It was shown that the fluorescence characteristics of PRODAN in
1,4-dioxane are due to two forms of the dye in the ground and two forms of PRODAN in
the excited state, which differ in the magnitude of the dipole moment and the conformation
of the carbonyl group [19].

The transition of this dye molecule from the ground to the excited state is associated
with a significant redistribution of the electron density and an increase in the BADAN
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dipole moment due to charge transfer from the amino group to the carbonyl group of the
dye molecule. This determines the solvatochromism of BADAN and the dependence of the
fluorescence characteristics of this dye on the properties of its microenvironment [20–23].
The sensitivity of BADAN characteristics to the properties of its microenvironment and the
short linker region connecting the acetyl-dimethylnaphthalene part of BADAN [24] provide
information on protein structural changes in the region of dye localization. This allows
the use of BADAN fluorescence in a number of applications, in particular, as a signal of
biosensor systems for glucose when it is linked to D-glucose/D-galactose-binding protein
(GGBP) [25–30]. The active site of GGBP is located between two domains and is formed
by polar and aromatic amino acid residues [31,32]. The interaction of GGBP with glucose
and galactose is characterized by high binding affinity and a significant change in the
mutual arrangement of protein domains, causing a transition from a predominantly “open”
conformation of GGBP to a predominantly “closed” conformation [31,33–35]. Localization
of BADAN in the region of the active site of this protein, when it is linked to Cys 152 of the
mutant form GGBP/H152C, allows one to register structural changes in GGBP during its
interaction with glucose by changing the fluorescent characteristics of the dye [25,26,29].

Previously, we showed that the GGBP/H152C unfolding induced by chemical denatu-
rants guanidine hydrochloride (GdnHCl) and urea recorded by intrinsic fluorescence of
protein tryptophan residues and BADAN fluorescence differ significantly [36,37]. These
results may be due to the fact that the microenvironment of BADAN and GGBP tryptophan
residues reflects the conformational changes in different regions of the protein. BADAN
is localized between the GGBP domains in the active center of the protein, while four out
of five GGBP tryptophan residues are located in the C-terminal domain of GGBP [38–40].
However, there is still no exhaustive explanation of this effect. Perhaps, it is caused by
the lack of complete understanding of BADAN photophysical properties, despite its wide
application in various fields of life science [20,21,24,41–54]. Thus, the work aimed to clarify
BADAN photophysical characteristics and explain its spectral characteristics in different
structural states of GGBP.

2. Results and Discussion

In this work, we studied the spectral characteristics of BADAN linked to GGBP mu-
tants (GGBP/H152C, GGBP/W284C, GGBP/H152C/W183F, and GGBP/H152C/W183A)
in apo and holoform (Figure 1). In the mutant form GGBP/H152C, BADAN is located in
close proximity to the glucose binding site. This form was proposed earlier as a sensitive
element of a biosensor for glucose. In order to exclude the influence of tryptophan residue
183, also located in the glucose binding site, on the BADAN fluorescence, the variants
GGBP/H152C/W183F and GGBP/H152C/W183A were studied. Finally, we examined the
GGBP/W284C form, in which BADAN binds not to the glucose-binding center, but to the
periphery of the protein.

2.1. Spectral Characteristics of BADAN Associated with Various Structural States of
GGBP Variants
2.1.1. GGBP/H152C Apo- and Holoforms

The fluorescence spectrum of BADAN attached to the GGBP/H152C apoform
(λmax = 540 nm) is shifted towards longer wavelengths compared with the position of the
spectrum of the free dye in aqueous solutions (2% dimethylformamamide/98% water)
determined in [29]. As free BADAN is very poorly soluble in water [29], this result is not
surprising and only indicates a high polarity of the environment of the dye linked to the
protein. The relatively high fluorescence anisotropy of BADAN attached to GGBP/H152C
in the absence of a ligand (r = 0.19, Table S1) suggests that the dye microenvironment is
tightly packed. This is consistent with the spatial structure of the protein [55].

The position and shape of the BADAN fluorescence excitation spectrum do not match
those of the absorption spectrum of the dye and significantly depend on the fluorescence
recording wavelength (Figure 2). These indicate the heterogeneity of the ensemble of
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BADAN molecules in the ground state [56,57]. The shape of the excitation anisotropy
fluorescence spectrum of BADAN in the long-wavelength absorption band (Figure 2)
indicates the collinearity of the absorption and emission dipole moment, which confirms
the known data on the absence of reorientation of the dipole moment of the dye molecule
upon transition to the excited state [21].
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in blue; non-polar protein residues are in gray; GGBP tryptophan residues, four of five of which are 
located in the C-terminal domain of the protein, are shown in red; histidine residue 152 is shown in 
yellow (His152/Cys substitution provides linking of the fluorescent dye BADAN in the active center 
of GGBP); and the glucose molecule is shown in green. 

2.1. Spectral Characteristics of BADAN Associated with Various Structural States of GGBP 
Variants 
2.1.1. GGBP/H152C Apo- and Holoforms 

The fluorescence spectrum of BADAN attached to the GGBP/H152C apoform (λmax 
= 540 nm) is shifted towards longer wavelengths compared with the position of the spec-
trum of the free dye in aqueous solutions (2% dimethylformamamide/ 98%water) deter-
mined in [29]. As free BADAN is very poorly soluble in water [29], this result is not sur-
prising and only indicates a high polarity of the environment of the dye linked to the 
protein. The relatively high fluorescence anisotropy of BADAN attached to GGBP/H152C 
in the absence of a ligand (r = 0.19, Table S1) suggests that the dye microenvironment is 
tightly packed. This is consistent with the spatial structure of the protein [55]. 

The position and shape of the BADAN fluorescence excitation spectrum do not match 
those of the absorption spectrum of the dye and significantly depend on the fluorescence 
recording wavelength (Figure 2). These indicate the heterogeneity of the ensemble of BA-
DAN molecules in the ground state [56,57]. The shape of the excitation anisotropy fluo-
rescence spectrum of BADAN in the long-wavelength absorption band (Figure 2) indi-
cates the collinearity of the absorption and emission dipole moment, which confirms the 
known data on the absence of reorientation of the dipole moment of the dye molecule 
upon transition to the excited state [21]. 

 

Figure 1. Spatial structure of D-glucose/D-galactose-binding protein (GGBP) in apoform panel
(A) and holoform panel (B) according to X-ray structural analysis [33]. Polar GGBP residues are
shown in blue; non-polar protein residues are in gray; GGBP tryptophan residues, four of five of
which are located in the C-terminal domain of the protein, are shown in red; histidine residue 152 is
shown in yellow (His152/Cys substitution provides linking of the fluorescent dye BADAN in the
active center of GGBP); and the glucose molecule is shown in green.
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Figure 2. Spectral characteristics of BADAN bound to GGBP/H152C in apo panel (A) and holoform panel (B). The
absorption and fluorescence spectra of BADAN are shown by solid blue and red curves, respectively. The absorption
spectra are normalized to the signal intensity at the maximum of the long-wavelength band. The dye fluorescence spectra
were measured at an excitation wavelength of 387 nm and normalized to the fluorescence intensity of BADAN attached to
the GGBP/H152C apoform. The BADAN excitation spectra measured at fluorescence recording wavelengths of 475 and
530 nm and normalized to the intensity at the maximum of the spectrum are shown by blue dashed curves. The anisotropy
spectra of BADAN fluorescence were measured at an excitation wavelength of 387 nm and are represented by red symbols.
The excitation anisotropy spectra of BADAN were measured at a fluorescence recording wavelength of 530 nm and are
represented by blue symbols.
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The fluorescence decay of BADAN linked to apoform of GGBP/H152C (Figure 3)
in the framework of the three-exponential model is characterized by decay times of
3.59 ns, 1.13 ns, and 0.32 ns and the rms lifetime of the excited state, <τ>, equal to 1.35 ns
(τ = 1.01 ns) (Table S1).
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The time-resolved fluorescence characteristics of BADAN are indicative of shortwave
emission from the longest-lived component of the dye under these conditions (Figure 4A).
Previously, the deactivation of the excited state of BADAN under these conditions was
defined as biexponential with decay times of 0.5 and 1.3 ns and <τ> = 0.8 ns [29].

The multi-exponential decay of the dye fluorescence, as well as the dependence of
the position and shape of the dye excitation spectrum, suggest that the population of
BADAN molecules in the excited state is heterogeneous. Analyzing the shape of the
fluorescence spectra of BADAN attached to GGBP/H152C in solutions with different
contents of GdnHCl, we noted the coincidence of the long-wavelength part of the spectrum
of the dye linked to the GGBP/H152C apoform with the shape of the long-wavelength
part of the GGBP/H152C-BADAN spectrum in 3 M GdnCl (Figure 4B). We assumed that
some part of the dye molecules linked to the GGBP/H152C apoform in the absence of
denaturants fluoresces from the same state as BADAN molecules attached to the unfolded
protein molecules in 3 M GdnHCl. Based on this assumption, we divided the fluorescence
spectrum of BADAN linked to the GGBP/H152C apoform into two components: a long-
wavelength one with a maximum at about 540 nm, which coincides in shape with the
GGBP/H152C-BADAN spectrum in 3 M GdnHCl, and a short-wavelength one with a
maximum at about 475 nm (Figure 4B). The short-wavelength component of BADAN
fluorescence was determined as shown in Figure 4B. This approach for the separation of
the fluorescence spectra of BADAN attached to different GGBP mutants into red and blue
components was used in all studied conditions.

Previously, spectral characteristics of BADAN, localized in various regions of the
lipid-water interface, were analyzed using the addition of a dye to various mutant forms of
the membrane protein M13 [20,21]. In the fluorescence spectrum of BADAN in a polar envi-
ronment, the PICT and TICT states are responsible for short-wavelength (λmax = 476 nm)
and long-wavelength (λmax = 544 nm) components, respectively [20]. The authors of
this work assume that the PICT state of the dye is formed almost immediately after the
absorption of a light quantum by the BADAN molecule, i.e., the lifetime of the locally
excited (LE) state is negligible and the LE state of BADAN does not participate in the
fluorescence of this dye. While the TICT state is an equilibrium excited state of the dye that
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appears upon relaxation of the PICT state of the dye in a polar environment, or from the
solvated ground state [20].
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Our results obtained for the GGBP/H152C apoform are close to the characteristics
of the BADAN fluorescence components obtained in [20]. Within the framework of this
model, it can be assumed that the long-wavelength component of BADAN fluorescence
attached to the GGBP/H152C apoform is determined by emission from the solvated TICT
state of the dye, and the short-wavelength component of BADAN fluorescence is due
to emission from the unsolvated PICT state. Analysis of the time-resolved spectrum of
BADAN indicates that the state responsible for the emission of the short-wavelength
component of BADAN fluorescence has the longest decay time of all dye fluorescence
components under these conditions (Figure 4A). Accordingly, the long decay time of
the short-wavelength component of BADAN fluorescence may be due to the absence of
solvation of dye molecules that fluoresce from the PICT state. In this case, the dependence
of the position and shape of the fluorescence excitation spectrum of BADAN attached
to the GGBP/H152C apoform on the fluorescence recording wavelength suggests that
the heterogeneity of the ensemble of fluorescent dye molecules is caused not only by the
existence of several excited states of BADAN, which are formed as a result of relaxation of
the PICT state of the dye after absorption, but also by the presence of BADAN fluorescent
isomers in the solution.

The interaction of GGBP/H152C with glucose causes a threefold increase in the
BADAN fluorescence intensity, makes the dye’s fluorescence spectrum narrower, and
causes its short-wavelength shift by 4–5 nm (Figure 2). The complexation of the protein
with the ligand is also accompanied by a significant increase in the anisotropy of the dye
fluorescence and the lifetime of the excited state of BADAN. Deactivation of the excited
state of BADAN attached to the GGBP/H152C holoform obeys the biexponential law with
<τ> = 3.09 ns (τ= 2.78 ns) and decay times of 3.39 ns and 1.33 ns (Table S1). Our results
agree with the earlier one obtained in the framework of the monoexponential model with
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=3.1 ns [29]. Analysis of the time dependences of the fluorescence anisotropy of BADAN
attached to GGBP/H152C showed that the complex formation of GGBP/H152C with
glucose leads to a decrease in the amplitude of high-frequency torsional vibrations of the
dye molecule (Table S2).

The comparison of the fluorescence spectra of BADAN linked to holoform of GGBP/
H152C in native and denaturing conditions (3 M GdnHCl) conditions showed that they
have the same shape, but the spectrum recorded in the native condition is blue-shifted
(3–4 nm) in comparison with that in 3 M GdnHCl (Figure 4B). This suggested that the
dye linked to the GGBP/H152C holoform emits from the TICT solvated state. However,
the stationary and time-resolved fluorescence characteristics of BADAN indicate that the
disappearance of the short-wavelength component of fluorescence from the fluorescence
spectrum of BADAN upon the transition of GGBP/H152C from apo to the holoform
is accompanied by an increase in the atomic packing density and a slight decrease in
the polarity of the BADAN microenvironment, i.e., not due to dye solvation (Figure 2,
Table S1). As already mentioned, the active center of GGBP contains a large number of
polar residues; therefore, when glucose is inserted into the active center of the protein, the
BADAN microenvironment can remain polar, but, owing to the displacement of water
molecules by the ligand, it is unsolvated. Considering that the fluorescence decay times of
BADAN linked to the GGBP/H152C holoform and the short-wavelength component of
the fluorescence of the dye linked to the protein apoform are close, the assumption that the
fluorescence of BADAN linked to the GGBP/H152C complex with glucose originates from
non-solvated PICT state in the polar environment is more plausible. Within the framework
of this hypothesis, dye desolvation may be one of the possible reasons for a threefold
increase in the BADAN fluorescence intensity upon the interaction of GGBP/H152C
with glucose.

2.1.2. GGBP/W284C Apo- and Holoforms

In order to show the effect of the high polarity of the BADAN environment on its
fluorescence properties, we examined the fluorescence characteristics of the dye linked
to the mutant form GGBP/W284C. BADAN linked to GGBP/W284C is localized in the
N-terminal domain of GGBP and is much more accessible to the solvent as compared
with the dye linked to GGBP/H152C [55]. It was shown that the fluorescence spectrum of
BADAN linked to the GGBP/W284C apoform is 20 nm blue-shifted and its fluorescence
intensity is 1.2 times higher than that of BADAN linked to GGBP/H152C (Figure 5A). The
rate of deactivation of the excited state of BADAN linked to GGBP/W284C is <τ> = 2.4 ns,
while that for GGBP/H152C-BADAN is 1.35 ns (Table S1). In this case, the interaction of
the GGBP/W284C apoform with glucose, accompanied by the inclusion of the nitrogen
atom of Lys 263 in the nearest environment of the residue 284 [55], causes a significant
decrease in the BADAN fluorescence intensity and a long-wavelength shift of the dye
spectrum (Figure 5B). These data indicate that, firstly, the fluorescence characteristics of
BADAN linked to the GGBP/H152C apoform are primarily determined by the proper-
ties of the amino acid residues included in the dye environment. Second, the introduc-
tion of an electron acceptor into the BADAN microenvironment causes quenching of the
dye fluorescence.

2.1.3. GGBP/H152C/W183F and GGBP/H152C/W183A Apo- and Holoforms

In addition to BADAN solvation, a possible reason for the low fluorescence intensity
of the dye attached to the GGBP/H152C apoform may be the quenching of its fluorescence
by the tryptophan residue at position 183. It is known that tryptophan can act as a quencher
of BADAN fluorescence in polar solvents owing to electron transfer from the excited state
of BADAN to the tryptophan molecule [44]. The distance between the dye linked to
native GGBP/H152C apoform and Trp 183 of this protein is less than 10 Å [55], which
provides conditions for BADAN fluorescence quenching by this Trp 183 [44]. To check
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this assumption, we examined the fluorescence of BADAN linked to created mutant forms
GGBP/H152C/W183F and GGBP/H152C/W183A.
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Figure 5. Influence of microenvironmental properties on the fluorescence characteristics of BADAN coupled to various
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green curves correspond to the spectra of the dye attached to GGBP/H152C, GGBP/W284C, GGBP/H152C/W183F, and
GGBP/H152C/W183A, respectively. The BADAN fluorescence intensity is normalized to the fluorescence intensity of the
dye attached to the GGBP/H152C apoform. The excitation wavelength was 387 nm.

Substitution of W183F in the active site of GGBP/H152C apoform causes an almost
twofold increase in BADAN fluorescence intensity (Figure 5B), while the position and shape
of its spectrum practically do not differ from those of BADAN linked to GGBP/H152C.
These data indicate that the W183F substitution reduces the quenching of BADAN fluores-
cence and practically unchanged polarity of the dye environment.

Interestingly, BADAN fluorescence linked to holoforms of GGBP/H152C/W183F and
GGBP/H152C is practically the same (Figure 5B). Taking into account that the mutual
position and orientation of the 183 and 152 residues practically does not change upon
glucose interaction to GGBP [55], these data indicate the suppression of electron transfer
from the excited BADAN molecule to Trp 183 in holoprotein owing to stacking interactions
between glucose and tryptophan 183.

The introduction of a nonaromatic nonpolar residue into the immediate environ-
ment of BADAN by the change W183A leads to a blue shift of the BADAN fluores-
cence spectrum by 30 nm relative to the fluorescence spectrum of the dye attached to
the GGBP/H152C apoform and an increase in the fluorescence intensity of BADAN linked
to GGBP/H152C/W183A by 2.5 times compared with the fluorescence intensity of the
dye in GGBP/H152C-BADAN (Figure 5B). Simultaneously (in parallel), the root-mean-
square lifetime of the excited state of the dye increases more than twofold and amounts
to <τ> = 2.93 ns (Figure 6). These results also confirm the high polarity of the BADAN
environment linked to the GGBP/H152C apoform and the quenching effect of Trp 183 on
the dye fluorescence.

Complex formation of GGBP/H152C/W183A with glucose is accompanied by a
decrease in the BADAN fluorescence intensity compared with that of apoform and the
appearance of two maxima in the fluorescence spectrum: approximately 475 and 530 nm
(Figure 6A). To explain this effect, we analyzed the excitation spectra of the dye recorded at
different wavelengths of fluorescence. The fluorescence excitation spectrum of BADAN
linked to GGBP/H152C/W183A apoform and recorded at 540 nm (red edge of fluorescence
spectrum) coincides with the red band of the BADAN absorption spectrum (Figure 6B),
while the fluorescence excitation spectrum recorded at 475 nm (blue edge of fluorescence
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spectrum) does not coincide with the long-wavelength band of the absorption spectrum of
the dye and is narrower (Figure 6B).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 8 of 21 
 

 

at different wavelengths of fluorescence. The fluorescence excitation spectrum of BADAN 
linked to GGBP/H152C/W183A apoform and recorded at 540 nm (red edge of fluorescence 
spectrum) coincides with the red band of the BADAN absorption spectrum (Figure 6B), 
while the fluorescence excitation spectrum recorded at 475 nm (blue edge of fluorescence 
spectrum) does not coincide with the long-wavelength band of the absorption spectrum 
of the dye and is narrower (Figure 6B). 

 
Figure 6. Characteristics of BADAN linked to GGBP/H152C/W183A in apo (red curves) and holo 
(blue curves) form. Panel (A) The fluorescence spectra of BADAN linked to GGBP/H152C/W183A 
(solid curves) and their decomposition into components (dashed curves); the excitation wavelength 
was 387 nm. Panels (B,C) The excitation spectra of fluorescence recorded at 475 nm (dashed curves) 
and 540 nm (solid curves). The result of subtraction of the excitation spectrum recorded at 475 nm 
from that recorded at 540 nm is shown by the green curve panel (C). Absorption spectrum of BA-
DAN linked to GGBP/H152C/W183A is presented by the black curve. 

Thus, for BADAN linked to the GGBP/H152C/W183A holoform, the excitation spec-
trum recorded at 540 nm is a broad band, including that recorded at 475 nm (Figure 6C). 
This means that BADAN molecules linked to the GGBP/H152C/W183A glucose complex 
and emitting in the short-wavelength part of the spectrum can also fluoresce in the long-
wavelength region. In turn, this indicates a decrease in the energy of the excited state of 
such dye molecules owing to their relaxation under these conditions, i.e., about the trans-
formation of the PICT state of BADAN into TICT. 

The comparison of the excitation fluorescence spectra of BADAN linked to the holo-
form and apoform of GGBP/H152C/W183A recorded at 475 and 540 nm revealed a spec-
tral band with a maximum at about 350 nm, corresponding to the absorption of BADAN 

Figure 6. Characteristics of BADAN linked to GGBP/H152C/W183A in apo (red curves) and holo
(blue curves) form. Panel (A) The fluorescence spectra of BADAN linked to GGBP/H152C/W183A
(solid curves) and their decomposition into components (dashed curves); the excitation wavelength
was 387 nm. Panels (B,C) The excitation spectra of fluorescence recorded at 475 nm (dashed curves)
and 540 nm (solid curves). The result of subtraction of the excitation spectrum recorded at 475 nm
from that recorded at 540 nm is shown by the green curve panel (C). Absorption spectrum of BADAN
linked to GGBP/H152C/W183A is presented by the black curve.

Thus, for BADAN linked to the GGBP/H152C/W183A holoform, the excitation
spectrum recorded at 540 nm is a broad band, including that recorded at 475 nm (Figure 6C).
This means that BADAN molecules linked to the GGBP/H152C/W183A glucose complex
and emitting in the short-wavelength part of the spectrum can also fluoresce in the long-
wavelength region. In turn, this indicates a decrease in the energy of the excited state
of such dye molecules owing to their relaxation under these conditions, i.e., about the
transformation of the PICT state of BADAN into TICT.
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The comparison of the excitation fluorescence spectra of BADAN linked to the holo-
form and apoform of GGBP/H152C/W183A recorded at 475 and 540 nm revealed a spectral
band with a maximum at about 350 nm, corresponding to the absorption of BADAN linked
to holoform of molecules. We have previously shown the existence of a mechanism for
non-radiative deactivation of the excited state of BADAN, which is associated with the
rotation of the fragments of the dye molecule relative to each other [36]. Apparently, during
the transition of GGBP/H152C/W183A from apo to the holoform, alanine 183 and some
BADAN molecules are oriented in such a way that this causes deformation of the BADAN
structure and restriction of the mobility of fragments of the dye molecule relative to each
other. In turn, this causes the transformation of the non-radiative deactivation channel of
the excited state of such BADAN molecules into a radiative one.

Complex formation of GGBP/H152C/W183A with glucose is accompanied by a short-
wavelength shift of both BADAN fluorescence components, an increase in the contribution
of the long-wavelength component to the total dye fluorescence intensity, and a slight
decrease in the total BADAN fluorescence intensity (Figure 5A). The data obtained indicate
an increase in the fraction of relaxed BADAN molecules emitting from the TICT state, with
a simultaneous decrease in the polarity of the solution. Apparently, some dye molecules
that were non-emitting, being bound to GGBP/H152C/W183A in apoform, contribute to
fluorescence in the long-wavelength region of the spectrum when bound to holoform of
protein. An insignificant change in the BADAN fluorescence intensity during the complex
formation of GGBP/H152C/W183A with glucose indicates the absence of a significant
effect of the interaction of GGBP-like proteins with glucose on the fluorescence intensity
of BADAN, localized in the active center of such proteins, in the absence of aromatic
residues in the immediate environment of the dye, which confirms our hypothesis about
the violation of the conditions for quenching BADAN fluorescence by tryptophan residue
183 during stacking interactions between this residue and the glucose molecule.

The time-resolved characteristics of BADAN attached to the GGBP/H152C/W183A
complex with glucose, obtained by recording fluorescence in the blue and red regions of
the spectrum, differ significantly. The BADAN fluorescence decay curve at 475 nm obeys
a biexponential law with <τ> = 3.57 ns and decay times of 3.8 and 0.6 ns, respectively
(Figure 6A). The dye fluorescence decay at 540 nm is characterized by <τ> = 2.71 ns and
decay times of 3.56, 1.52, and 0.33 ns (Figure 6A). The data obtained indicate that dye
molecules with decay times of 3.5–3.8 ns and 0.3–0.6 ns can fluoresce both in the blue and
red parts of the spectrum, which is in agreement with the data obtained by analyzing
the stationary fluorescence characteristics of BADAN. The red component of BADAN
fluorescence with a decay time of 1.52 ns, also observed upon deactivation of the dye
attached to the GGBP/H152C/W183A apoform, can apparently be related to the relaxed
TICT state of BADAN.

2.2. C. Hanging of BADAN Fluorescent Characteristics with Unfolding of GGBP Mutants
2.2.1. Unfolding of GGBP/H152C in Ligand-Free and Ligand-Bound States

In the range of pre-denaturation concentrations of GdnHCl (from 0 to 0.2 M) and urea
(from 0 to 0.5 M), in which, according to intrinsic UV fluorescence data, the protein retains
its native structure, the fluorescent characteristics of BADAN attached to GGBP/H152C
apoform are practically the same (Figures S1 and S2). In the concentration range from 0.2 M
to 0.5 M GdnHCl and from 0.5 M to 1.5 M urea, a redistribution of the contribution of the
blue and red components to the total fluorescence intensity of BADAN, the increase in the
fluorescence intensity, the lifetime of the excited state, and the contribution of the long-lived
component to the total BADAN fluorescence are observed (Figures 7 and S1–S4, Table S1).
An increase in the total fluorescence intensity indicates a decrease in the dye fluorescence
quenching due to a violation of the conditions for effective BADAN fluorescence quenching
by Trp 183. It should be noted that the redistribution of the contribution of the blue and
red components to the total fluorescence intensity of the dye in these ranges of denaturant
concentrations is not associated with a violation of the conditions of BADAN fluorescence
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quenching by Trp 183, as it is known that electron transfer from BADAN and tryptophan
molecules is not accompanied by a change in the shape of the dye spectrum [44]. The
steady state and time-resolved characteristics of the anisotropy of the dye fluorescence
indicate the absence of a significant change in the packing density of the atoms in the
microenvironment of BADAN linked to the GGBP/H152C apoform in this denaturant
concentrations (Figure 7, Table S2). The steady state and time-resolved fluorescence char-
acteristics of BADAN linked to the GGBP/H152C apoform are close to those of the dye
linked to the GGBP/H152C/W183A apoform (Figure 8). This means that the dye linked
to the GGBP/H152C apoform in solutions with about 0.5 M GdnHCl is in a substantially
non-polar environment and emits predominantly from the PICT state.
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Figure 7. GdnHCl-induced changes in the spectral characteristics of BADAN linked to GGBP/H152C apo- (left panels)
and holoform (right panels). The characteristics of the dye linked to the native protein. The characteristics of the dye linked
to the native protein (Panels (A,B)), partially folded state of apo-protein in 0.5 M GdnHCl (Panel (C)), partially folded
state of holo-protein in 1.5 M GdnHCl (Panel (D)), and unfolded protein in 3M GdnHCl (Panels (E,F))are presented. The
BADAN fluorescence spectra, components of the fluorescence spectra, and fluorescence anisotropy spectra at λex = 387 nm
are indicated by red solid and dashed curves and red symbols, respectively. The BADAN absorption spectra, excitation
spectra recorded at 475 and 530 nm, and excitation anisotropy spectra recorded at 530 nm are shown by blue solid curves
and dashed curves and blue symbols, respectively.
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Figure 8. Fluorescence spectra of BADAN linked to mutant forms of GGBP in apo (left panels) and holoform (right panels)
in GdnHCl solutions. Panels (A–H) Spectra of GGBP/H152C, GGBP/W284C, GGBP/H152C, GGBP/H152C/W183F, and
GGBP/H152C/W183A. Black, red, blue, green, pink, blue, dark red, dark green, dark yellow, dark blue, and violet curves
characterize the BADAN fluorescence spectra in solutions containing 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.2, 1.5, 2, 3, and 4 M GdnHCl,
respectively. The fluorescence intensity of BADAN under all experimental conditions was normalized to the fluorescence
intensity of the dye attached to the GGBP/H152C apoform. The excitation wavelength was 387 nm.
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Correlation of the BADAN fluorescence linked to GGBP/H152C with the intrinsic UV
fluorescence of GGBP/H152C, indicating the loss of the structure of the C-terminal domain
of the protein at 0.2–0.5 M GdnHCl and at 0.5–1.5 M urea, argues for the appearance of a
partially unfolded state at this concentration of denaturants (Figure S1). Apparently, the
formation of this state is due to the unfolding of the C-terminal domain of GGBP/H152C,
while the N-terminal domain of the protein retains its structure.

A further increase in the concentration of GdnHCl and urea is accompanied by a
decrease in the total intensity of BADAN fluorescence and the contribution of the long-
lived component to the total fluorescence intensity of the dye, a red shift and narrowing
of the fluorescence spectrum, a decrease in the average lifetime of the excited state, and
anisotropy of the fluorescence of BADAN (Figures 7 and S2–S4, Table S1). Such changes
in the fluorescence characteristics of the dye indicate the quenching of its fluorescence
due to the increased BADAN accessibility to the solvent during protein unfolding. At
a concentration of GdnHCl (urea) above 2.5 M (4 M) urea, the fluorescence spectrum of
BADAN linked to the GGBP/H152C apoform lacks a short-wavelength component, and the
dye emits only from the “TICT” state (Figure 8). This suggests that, under these conditions,
all BADAN molecules are solvated. At the same time, the fluorescence intensity of the
dye linked to unfolded GGBP/H152C is slightly higher than the fluorescence intensity
of BADAN linked to the native protein, and the characteristics of the deactivation of the
excited state of the dye linked to the protein in the absence of denaturants and at high
concentrations of GdnHCl and urea are similar (Figure 7, Table S1). Consequently, the
solvation of BADAN exerts a lower quenching effect on its fluorescence than tryptophan
residue 183.

2.2.2. Unfolding of GGBP/H152C in Ligand-Free and Ligand-Bound States

At 0–0.8 M GdnHCl, where, according to UV fluorescence, the GGBP/H152C complex
with glucose retains its structure, there is a slight increase in fluorescence intensity and
anisotropy, a decrease in the amplitude of high-frequency torsional vibrations, and a slight
blue shift of fluorescence spectrum of BADAN linked to the holoform of this protein
(Figures 7 and 8, Tables S1 and S2). This indicates the compaction of the microenvironment
of BADAN linked to the GGBP/H152C holoform in this denaturant concentration range.

The unfolding of the GGBP/H152C holoform is accompanied by a significant decrease
in anisotropy, excited state lifetime, and fluorescence intensity, as well as the red shift
in the BADAN fluorescence spectrum, which indicates an increase in the accessibility of
BADAN to the solvent (Figures 7 and 8, Table S1). In the entire range of used GdnHCl
concentrations with GGBP/H152C holoform unfolding, the blue component of BADAN
fluorescence was not detected. The dependencies of the fluorescence characteristics of
BADAN linked to the GGBP/H152C-Glc complex on the denaturant concentration are a
sigmoidal curve and generally correspond to the denaturation curves of the GGBP/H152C
holoform obtained based on intrinsic UV fluorescence data. This indicates a one-step
unfolding of the GGBP/H152C complex with glucose, which is consistent with the literature
data on the preferential stabilization of the C-terminal domain of the protein during the
interaction of GGBP with glucose [39,58–61].

2.2.3. Unfolding of GGBP/W284C in Ligand-Free and Ligand-Bound States

As it is not possible to perform a control experiment to determine the effect of the
concentration dependences of GdnHCl and urea on the characteristics of free BADAN
because of the significantly different solubility of the dye in the test solutions (BADAN is
practically insoluble in water and soluble in GdnHCl and urea), the fluorescence charac-
teristics of BADAN localized on the surface of the N-terminal domain of GGBP/W284C
in solutions with different concentrations of denaturants were studied. An increase in the
denaturant concentration in the range of GdnHCl from 0 to 2 M (urea from 0 to 2.5 M)
causes quenching of the dye fluorescence owing to the increased accessibility of BADAN to
the solvent as the protein unfolds. A further increase in the concentration of denaturants in
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solutions containing unfolded protein leads to a slight increase in the fluorescence intensity
of the dye and a long-wavelength shift of its spectrum (Figure 8C). The position and shape
of the GGBP/W284C-BADAN fluorescence spectrum at high denaturant concentrations
coincide with the position and shape of the GGBP/H152C-BADAN spectrum under similar
conditions. The increase in the fluorescence intensity of BADAN linked to GGBP/W284C
at high denaturant concentrations may be due to several reasons. First, it is known that the
aqueous environment has a significant quenching effect on BADAN fluorescence, probably
owing to the formation of a hydrogen bond between the BADAN oxygen atom and a water
molecule (solvent deprotonation) [29]. GdnHCl and urea can contribute to the structuring
of water and a change in the network of hydrogen bonds in the near-surface region of the
protein, which in turn can cause a change in the solvation shell of the dye [62–64]. Sec-
ondly, under these conditions, various amino acid residues may appear in the immediate
environment of the dye, as proteins retain structural elements even in solutions with high
concentrations of denaturants [65–67]. Considering that an increase in the concentration of
GdnHCl in solutions containing unfolded GGBP/H152C is also accompanied by a slight
increase in the fluorescence intensity of the dye covalently linked to the protein, the first
assumption looks more plausible.

As the fluorescence of BADAN linked to the GGBP/W284C complex with glucose
is significantly quenched, an increase in the concentration of denaturants in solutions
containing the holoform of this protein does not cause significant changes in the fluorescent
characteristics of the dye. In the concentration range of GdnHCl from 0 to 0.7 M, there is a
slight increase in the fluorescence intensity of BADAN linked to the GGBP/W284C holo-
form (Figure 8D). Apparently, this is caused by the stabilizing effect of low concentrations
of denaturant on the structure of the GGBP/W284C complex with glucose (Figure S5) [37].

The unfolding of the GGBP/W284C complex with glucose is accompanied by quench-
ing of the dye fluorescence. In the range of GdnHCl concentrations above 2 M, the fluores-
cence characteristics of BADAN linked to the GGBP/W284C holoform change similarly to
the characteristics of the dye linked to the apoform of this protein.

The data obtained allow us to conclude that an increase in the accessibility of the
dye to solvent molecules as the protein is denatured promotes quenching of BADAN
fluorescence until the GdnHCl/urea content in the solution changes the properties and
structure of the solvent.

2.2.4. Unfolding of GGBP/H152C/W183F and GGBP/H152C/W183A Mutant Forms in
Ligand-Free and Ligand-Bound States

The change in the fluorescence characteristics of the dye linked to the GGBP/H152C/
W183F apo and holoform in solutions with different concentrations of GdnHCl is gener-
ally consistent with the change in the fluorescence characteristics of BADAN linked to
GGBP/H152C under the corresponding conditions (corrected for the lower stability of
GGBP/H152C/W183F compared with GGBP/H152C) (Figures 8 and S5).

An increase in the GdnHCl concentration up to 0.3 M leads to spectrum broadening,
an increase in fluorescence intensity, and a blue shift of the fluorescence spectrum of
BADAN linked to GGBP/H152C/W183F apoform (Figure 8E). A further increase in the
GdnHCl concentration causes a decrease in the BADAN fluorescence intensity and red
shift of the fluorescence spectrum of BADAN linked to the protein (Figure 8E). Moreover,
in contrast to GGBP/H152C, the fluorescence intensity of the dye linked to unfolded
GGBP/H152C/W183F is lower than the fluorescence intensity of BADAN linked to the
native protein. This is another indirect evidence of the strong fluorescence quenching of
BADAN linked to the GGBP/H152C apoform by the Trp 183 tryptophan residue.

A slight increase in the fluorescence intensity of BADAN linked to holoform of
GGBP/H152C/W183F is observed in the region of pre-denaturation GdnHCl concen-
trations (Figure 8F). Denaturation of the GGBP/H152C/W183F holoform is accompanied
by a sharp decrease in the fluorescence intensity of the dye, which indicates a cooperative
one-step unfolding of the GGBP/H152C/W183F holoform. At the same time, at the concen-
tration range of GdnHCl about 0.5 M, an insignificant blue shift of the BADAN fluorescence
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spectrum is observed (Figure 8F). The spectral characteristics of BADAN linked to holo
and apoform of GGBP/H152C/W183F in concentrated solutions of GdnHCl are practically
the same. The data obtained indicate that the substitution of Trp 183 with Phe in the active
center of GGBP/H152C does not affect significantly the unfolding pathway of the apo and
holoforms of the protein.

The change in the fluorescence characteristics of BADAN linked to the GGBP/H152C/
W183A apoform induced by GdnHCl in general resembles that of the dye linked to the
GGBP/H152C apoform (Figure 8G). However, a slight increase in the fluorescence in-
tensity and a slight blue shift of the fluorescence spectrum of BADAN linked to the
GGBP/H152C/W183A apoform at 0–0.3 M GdnHCl, corresponding to the unfolding re-
gion of the C-terminal domain of this protein, contrasts with a significant increase in the
fluorescence intensity and a significant blue shift of the fluorescence spectrum of BADAN
linked to the GGBP/H152C at the same conditions (Figure 8G). These differences are due
to the amino acid substituttion W183A, which makes the microenvironment of the dye non-
polar and eliminates quenching of BADAN fluorescence. A further increase in the GdnHCl
concentration causes a decrease in the BADAN fluorescence intensity and a red shift of the
dye fluorescence spectrum, which indicates a sharp increase in the dye’s accessibility to the
solvent upon denaturation of its N-terminal domain. The fluorescence characteristics of
BADAN linked to unfolded GGBP/H152C/W183A are identical to those of the dye linked
to the GGBP/H152C/W183F and GGBP/H152C mutants in the denatured state.

The fluorescence characteristics of BADAN bound to holoform of GGBP/H152C/W183A
with glucose and the fluorescence characteristics of the dye bound to the GGBP/H152C
holoform undergo completely different changes in GdnHCl solutions. In the range
of 0–0.3 M GdnHCl, the fluorescence spectrum of BADAN linked to the complex of
GGBP/H152C/W183A with glucose becomes narrower and undergoes a blue shift, as a
result of which the fluorescence characteristics of the dye become close to those of BADAN
linked to the protein apoform (Figure 8H). This indicates a significant change in the prop-
erties of the dye microenvironment, which results in the loss of fluorescence of the band
with an absorption maximum at about 350 nm. A further increase in the denaturant con-
centration causes a decrease in the fluorescence intensity of BADAN and a red shift in
its fluorescence spectrum, similar to that of BADAN linked to the GGBP/H152C/W183A
apoform (Figure 8H). The data obtained support a two-stage unfolding of the complex of
GGBP/H152C/W183A with glucose in contrast to the holoforms of other studied mutant
forms of GGBP. This is consistent with UV fluorescence data, indicating an almost complete
absence of the GGBP/H152C/W183A structure stabilization by glucose (Figure S5).

3. Conclusions

Analysis of the fluorescence characteristics of BADAN linked to the mutant forms
GGBP/H152C, GGBP/H152C/W183F, GGBP/H152C/W183A, and GGBP/W284C during
their unfolding in the absence and in the presence of glucose shed light on the photophysical
features of BADAN and allowed to propose a scheme of BADAN photoprocesses that
occur during conformational changes in GGBP/H152C (Figure 9). It was found that the
fluorescence characteristics of BADAN are determined by the existence of three isomers
of the dye in the ground state and two in the excited state. Non-fluorescent BADAN
isomers absorb in the short-wavelength part of the long-wavelength band of the spectrum
(absorption maximum at 350 nm). The absorption band with a maximum at 385–390 nm is
responsible for the absorption of dye isomers, which fluoresce in both the short-wavelength
and long-wavelength regions of the BADAN fluorescence spectrum. Dye molecules that
absorb light in this band and emit in the short-wavelength part of the fluorescence spectrum
are characterized by long decay times (about 3 ns) and a maximum of the fluorescence
spectrum in the range 475–530 nm (depending on the polarity of the dye environment).
Presumably, these molecules have a plane conformation and emit from the PICT state.
Relaxation of such BADAN molecules in an excited state upon their interaction with polar
molecules of the dye microenvironment causes the transition to a nonplanar “TICT” state.
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This causes a significant decrease in the decay times of the dye fluorescence from 3 ns
to values of 0.3–1 ns and a red shift of the fluorescence spectrum to the region of about
540 nm. The relaxation of the PICT state of the dye upon its solvation is accompanied
by a significant quenching of the dye fluorescence and the formation of a hydrogen bond
between the solvent molecules and BADAN. The transition to the TICT state also occurs
directly from the solvated ground state bypassing the PICT state.
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Figure 9. Diagram illustrating BADAN photoprocesses during conformational changes in GGBP/H152C during the
interaction of this protein with glucose and the unfolding of the GGBP/H152C apo and holoform induced by GdnHCl.
The energy levels of the dye are indicated by horizontal lines, vertical purple arrows illustrate the transition of BADAN
molecules from the ground to an excited state, blue and green arrows illustrate the radiative transitions of BADAN from
PICT (planar intramolecular charge transfer state) and TICT (twisted intramolecular charge transfer state) to the ground
state, and wavy arrows indicate nonradiative BADAN transitions. The relaxation of the excited and ground state of the dye
under the action of the solvent is indicated by the abbreviation SR and is represented by dashed arrows.

It was shown that, in addition to solvation, aromatic amino acid residues have a
significant quenching effect on BADAN fluorescence. This effect is based on the transfer
of an electron from an excited dye molecule to an aromatic amino acid molecule. It was
found that stacking interactions between aromatic amino acids and glucose inhibit their
quenching of BADAN fluorescence.

BADAN fluorescence is sensitive to the accumulation of partially folded state of the
GGBP/H152C apoform, which accumulates with an increase in the GdnHCl concentration
in the range of 0–0.5 M because, in this state, the BADAN microenvironment became sub-
stantially non-polar and emits from the PICT state. A further increase in the concentration
of denaturants in the solutions leads to unfolding of the protein, solvation of dye molecules,
and emission of BADAN from the TICT state. The unfolding of the protein holoform,



Int. J. Mol. Sci. 2021, 22, 11113 16 of 21

proceeding as an all-or-nothing transition, is accompanied by the solvation of BADAN
molecules and the emission of the dye from the TICT state.

4. Materials and Methods
4.1. Materials

D-glucose, guanidine hydrochloride (GdnHCl) (Sigma, St.Louis, MO, USA), urea,
tris(2-carboxyethylphosphine (TCEP) (Sigma, St.Louis, MO, USA), and fluorescent dye
BADAN (AnaSpec, Fremont, CA, USA) were used without further purification. To deter-
mine the GdnHCl and urea concentrations, we relied on the measurement of the refraction
coefficient using Abbe refractometer (LOMO, St. Petersburg, Russia).

E. coli strain K-12 (F+ mgl503 lacZ lacY + recA1) carrying an mglB gene deletion [68,69]
transformed with a pTz18u-mglB vector was primary used for obtaining GGBP wild type.
Upon induction with D-fructose [70], the expression efficiency of the GGBP protein was
rather low. The recombinant protein yield in this system does not exceed 5–8 mg/L of
culture. Therefore, for expression, increasing the nucleotide sequence of mglB gene was
optimized and the gene was recloned into a pET-11d plasmid with the T7 promoter (Strata-
gene, La Jolla, CA, USA) using Nco I-BamH I and Bgl II restriction sites. Specific forward
and reverse primers were used to insert new restriction sites and a polyhistidine tag at the
C-terminal of the gene. Site-directed mutagenesis was performed with the Quik-Change
mutagenesis kit (Stratagene, La Jolla, CA, USA) using primers encoding corresponding to
amino acid substitutions. Plasmids were isolated from bacterial cells using plasmid DNA
isolation kits (Omnix, St. Petersburg, Russia). Primer purification was performed using
either reverse-phase chromatography or electrophoresis in a polyacrylamide gel.

pET-11d plasmids encoding for GGBP/H152C, GGBP/W284C, GGBP/H152C/W183A,
and GGBP/H152C/W183F mutants were used to transform E. coli BL21(DE3) cells. The
expression of the proteins was then induced by adding 0.5 mM isopropyl-beta-D-1-thiogala-
ctopyranoside (IPTG; Nacalai Tesque, Kyoto, Japan). Bacterial cells were cultured for 24 h
at 37 ◦C. Recombinant proteins were purified using Ni++-agarose packed in His-GraviTrap
columns (GE Healthcare, Chicago, IL, USA). Protein purification was controlled using
denaturing SDS-electrophoresis in 15% polyacrylamide gel [71].

The labeling of GGBP/H152C and GGBP/W284C with the fluorescent dye BADAN
was performed as described by Khan [26] with slight modification. To label proteins with
BADAN, 100-fold excess of TCEP was added in solution and then, in the obtained mixture,
10-fold excess of dye was added. Then, the obtained mixture was incubated overnight
at 4 ◦C. Unbound dye was removed by filtration and extensive dialysis against a sodium
phosphate buffer.

The experiments were performed in solutions with a protein concentration of 0.2 mg/mL.
For the formation of the protein–ligand complex, 20 mM of D-glucose was added to the
protein solution. All measurements were made in sodium phosphate buffer solution at
pH 7.4. All experiments were performed at 23 ◦C.

4.2. Methods
4.2.1. Steady-State Fluorescence Spectroscopy

The fluorescence experiments were carried out using Cary Eclipse (Agilent, Santa
Clara, CA, USA) spectrofluorimeter. The measurements were made at 23 ◦C with cells
10 × 10 mm (Starna, Atascadero, CA, USA). The fluorescence intensity of BADAN and
tryptophan residues was corrected to the primary inner filter effect, as Equation (1) [56]:

F0(λex) = F(λex)/W (1)

where W is a factor that corrects the measured total fluorescence intensity for the so-called
primary inner filter effect.
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Because the fluorescence measurements were performed using the Cary Eclipse spec-
trofluorimeter with horizontal slits, the value of the correction factor W was calculated
based on the following ratio, as Equation (2):

W =

(
1 − 10−AΣ

)
AΣ

(2)

where AΣ is the total absorbance of exciting light in the solution. Absorption spectra were
registered using U-3900H (Hitachi, Tokyo, Japan) spectrophotometer. In [56], it was shown
that, corrected in such a manner, the value of the total fluorescence intensity is proportional
to the product of the absorbance AFL to the quantum yield of fluorescence q when there is
one fluorescent substance in solution.

The excitation wavelength for the intrinsic protein fluorescence was 297 nm. The emis-
sion wavelengths for the intrinsic protein fluorescence were 320, 340, and 365 nm. The dye
fluorescence was excited at 387 nm. The emission wavelength for the BADAN fluorescence
ranged from 400 to 650 nm. The position and form of the UV fluorescence spectra were
characterized by the parameter A = F320/F365, where F320 and F365 are the fluorescence
intensities measured at emission wavelengths of 320 and 365 nm, respectively [72]. The
position and form of the BADAN fluorescence spectra were characterized by the parameter
B = F498/F587, where F498 and F587 are the fluorescence intensities measured at emission
wavelengths of 498 and 587 nm, respectively. The values of parameters A, B, and the
fluorescence spectra were corrected using the instrument’s spectral sensitivity.

The excitation fluorescence spectra of GGBP/H152C-BADAN were recorded at an
emission wavelength of 530 nm. The excitation wavelength for the BADAN fluorescence
ranged from 250 to 500 nm. The excitation spectra were corrected for the spectral sensitivity
of the instrument and the primary inner filter effect.

Fluorescence anisotropy was determined as follows Equation (3):

r =
(

IV
V − GIV

H
)(

IV
V + 2GIV

H
) (3)

where IV
V and IV

H are vertical and horizontal components of fluorescence intensity excited by

vertically polarized light, and G = IV
V /IH

H is a coefficient that determines the different sensi-
tivity of registering system for vertical and horizontal components of fluorescence intensity.

4.2.2. Time-Resolved Fluorescence Spectroscopy

Time-resolved fluorescence measurements were carried out by time-correlated single-
photon counting approach using spectrometer Fluotime 300 (PicoQuant, Berlin, Germany)
with Laser Diode Head LDH-375 (λex = 375 nm). Measured fluorescence intensity decays
were fit to a multi-exponential model, as Equation (4):

F(t) =
∫ t

−∞
IRF(t)

n

∑
i=1

αi · exp
(
− t − t

τi

)
dt (4)

where αi is the amplitude and τi is the lifetime of ith decay component, and IRF is the
instrument response function. The convolution of the model exponential function with the
IRF was compared to the experimental data until a satisfactory fit was obtained. The IRF
was measured using cross-correlation of the excitation and fundamental gate pulse. The
FluoFit software (Pico Quant, Berlin, Germany) was used for analysis of decay curves.

To characterize BADAN fluorescence, we used two different average lifetimes; that is,
amplitude average lifetime as Equation (5)

τ = ∑
i=1

αi · τi (5)
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and intensity average lifetime as Equation (6)

< τ >= ∑
i=1

Si · τi

where

Si =

αi ·
∞∫
0

exp
(
− t

τi

)
dt

∑
i=1

αi ·
∞∫
0

exp
(
− t

τi

)
dt

=
αi · τi

∑
i=1

αi · τi
= αi ·

τi
τ

(6)

As he intensity average lifetime is the average lifetime of a collection of different
excited state populations, where the lifetime of each population is weighted by the rel-
ative contribution of that population to the total fluorescence [73], this parameter is
more preferable for the characterization of multicomponent fluorescence than amplitude
average lifetime.

The fluorescence anisotropy decay was obtained as Equation (3) using recording IV
V (t)

and IV
H(t) at magic angle conditions. G coefficient for Fluotime 300 is equal to 1. The

anisotropy decays were fit as a two-time approximation as Equation (7):

r(t) =
2

∑
i

ri · e−t/ϕi (7)

where ri is the anisotropy of ith component, and ϕi is the rotation correlation time of the ith
component. According to this approximation, a decrease in the fluorescence anisotropy of
BADAN linked to GGBP/H152C is a sum of “slow” and “fast” motions of this dye [74]. The
“slow” motion corresponds to the rotation of protein as a whole with rotation relaxation
time τslow = 3 ϕslow, and “fast” motion corresponds to the rotation of dye with rotation
relaxation time τfast = 3 ϕfast. The anisotropy profiles allow for the calculation of the mean
amplitude of dye motions θ as follows Equation (8) [75,76]:

r f ast

r0
= 1 − cos2 θ(1 + cos θ)2

4
(8)

where r0 = r(t = 0) = r f ast + rslow.
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