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Classical phylogenetic methods such as neighbor-joining or maximum likelihood trees,

provide limited inferences about the evolution of important pathogens and ignore

important evolutionary parameters and uncertainties, which in turn limits decision making

related to surveillance, control, and prevention resources. Bayesian phylodynamic

models have recently been used to test research hypotheses related to evolution of

infectious agents. However, few studies have attempted to model the evolutionary

dynamics of porcine reproductive and respiratory syndrome virus (PRRSV) and, to the

authors’ knowledge, no attempt has been made to use large volumes of routinely

collected data, sometimes referred to as big data, in the context of animal disease

surveillance. The objective of this study was to explore and discuss the applications

of Bayesian phylodynamic methods for modeling the evolution and spread of a notable

1-7-4 RFLP-type PRRSV between 2014 and 2015. A convenience sample of 288 ORF5

sequences was collected from 5 swine production systems in the United States between

September 2003 and March 2015. Using coalescence and discrete trait phylodynamic

models, we were able to infer population growth and demographic history of the virus,

identified the most likely ancestral system (root state posterior probability = 0.95) and

revealed significant dispersal routes (Bayes factor > 6) of viral exchange among systems.

Results indicate that currently circulating viruses are evolving rapidly, and show a higher

level of relative genetic diversity over time, when compared to earlier relatives. Biological

soundness of model results is supported by the finding that sow farms were responsible

for PRRSV spread within the systems. Such results cannot be obtained by traditional

phylogenetic methods, and therefore, our results provide a methodological framework

for molecular epidemiological modeling of new PRRSV outbreaks and demonstrate the

prospects of phylodynamic models to inform decision-making processes for routine

surveillance and, ultimately, to support prevention and control of food animal disease

at local and regional scales.
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INTRODUCTION

Porcine Reproductive and Respiratory Syndrome (PRRS) is,
arguably, the most important swine disease in the United States
due to the continuous emergence of new outbreaks that cause
severe economic losses (Neumann et al., 2005; Holtkamp et al.,
2013). Type 2 PRRSV, which is endemic in North America, was
discovered in 1989 in the U.S., although the earliest serological
evidence was found in eastern Canada (Benfield et al., 1992;
Zimmerman, 2003; Murtaugh et al., 2010). PRRSV is a single-
stranded, enveloped RNA virus that belongs to the Arteriviridae
family (Benfield et al., 1992). Its genome consists of nine open
reading frames (ORF) that code seven structural proteins and 14
non-structural proteins (Dokland, 2010). ORF5 encodes a major
envelope surface glycoprotein (GP5) with high genetic diversity,
thus has been widely used in molecular epidemiology studies of
PRRSV (Kapur et al., 1996; Shi et al., 2010; Brar et al., 2015).

PRRSV transmission is rapid and can occur through direct
and indirect contact (Dea et al., 2000; Cho et al., 2007).
Emerging PRRSV strains are capable of spreading over long
distances, referred to as distance-independent dispersal, as a
result of aerosol transmission, animal movements, and use or
movement of contaminated semen, equipment, or trucks (Shi
et al., 2010, 2013). The combination of varied transmission
routes and absence of regulated control and prevention activities
makes virus control or elimination, at both local and regional
levels, extremely challenging (Corzo et al., 2010; Rowland and
Morrison, 2012). Hence, intensifying efforts toward designing
effective and efficient surveillance programs, with the long-term
goal of eliminating the disease, must be prioritized to minimize
the current impact of the PRRSV on the US swine industry (Perez
et al., 2015).

Since the 1980’s, the U.S. Department of Agriculture has
conducted extensive surveillance activities for swine diseases
using classical statistical sampling methods that can account
for imperfect diagnostic testing (Cameron and Baldock, 1998).
However, current disease surveillance activities do not fully
account for modern swine production systems in which pigs are
spatially separated by age or production stage, or for pathogens
that evolve rapidly (Rowland and Morrison, 2012; Perez et al.,
2015).

In the past few decades, many studies investigated the
molecular epidemiology of PRRSV, due to its high potential
for mutation and recombination (Martín-Valls et al., 2014).
Some studies focused on establishing associations between
the evolutionary features of PRRSV and epidemiological
characteristics of outbreaks in different geographical levels
(Goldberg et al., 2000; Shi et al., 2010, 2013; Yoon et al., 2013;
Nguyen et al., 2014; Rosendal et al., 2014). Others discriminated
between novel and preexisting strains to model viral spread and
maintenance within affected populations (Larochelle et al., 2003;
Tun et al., 2011; Alonso et al., 2013; Brito et al., 2014; Chen
et al., 2015). Whether the studies used classical phylogenetic
methods to either genotype newly emerging PRRSV strains
on the basis of restriction fragment length polymorphism
(RFLP) patterns, or assessed correlations between the similarities
of nucleotide sequences and other epidemiologic features,

they typically ignored uncertainties associated with estimates
of phylogenetic relationships, temporal factors, and spatial
factors (Suchard et al., 2001). Furthermore, they examined the
temporal and spatial dynamics of the virus isolates in separate
methodological settings, and attempted to draw conclusions from
the outputs of both epidemiological and evolutionary analytical
methods (Suchard et al., 2001). Therefore, many methodological
approaches previously used to study PRRSV have ignored that
evolutionary and epidemiological dynamics of rapidly evolving
pathogens like PRRSV occur on approximately the same time-
scale, and thus, they must be studied in a unified methodological
setting in order to be properly understood and to prevent biased
conclusions, subsequently improving the related decisionmaking
processes (Pybus et al., 2013). The field of phylodynamics aims to
model, in a Bayesian statistical framework, the joint evolutionary,
and epidemiological characteristics of rapidly evolving pathogens
using analytical methods from the well-established field of
phylogenetics (Grenfell et al., 2004). This approach uses
important evolutionary parameters of rapidly evolving pathogens
as random variables, and assigns a specified prior probability
distribution for each parameter to infer their corresponding
posterior probability distribution (Lemey et al., 2009). Thus, such
Bayesian framework provides powerful analytical tools capable
of accounting for uncertainties in the evolutionary parameters,
including the pathogen phylogeny, population demographics,
size, and history of dispersal between geographical regions and
hosts (Lemey et al., 2009).

Bayesian phylodynamic models have recently become well-
established tools for studying the evolution of many infectious
viral diseases. However, only a few studies have modeled the
evolutionary dynamics of PRRSV (Tun et al., 2011; Shi et al.,
2013; Brito et al., 2014; Nguyen et al., 2014; Chaikhumwang
et al., 2015). Such studies revealed the potential of phylodynamic
methods in answering many long-standing questions on the
molecular epidemiology and evolution of PRRSV. Furthermore,
the method has previously been applied in a research context,
rather than for routine surveillance of field data intended to
support disease prevention and control. Such implementation is
challenging because of the complexity and size of the data being
analyzed. Data with these features, sometimes referred to as big
data, requires special procedures for preparation and analysis.

The objective of this study was to demonstrate the application
of Bayesian phylodynamic models to data routinely collected
by swine production systems to support a near real-time early
warning surveillance system for PRRSV and, potentially, other
food animal viruses. The method was applied to the spread of
a virulent RFLP 1-7-4 type PRRSV between 2014 and 2015 in
the U.S. A discrete-trait phylodynamic model was adopted to
estimate both the geographical history of viral migration and the
movement of the virus among age groups of pigs. Our study
provides quantitative estimates of mechanisms that lead to the
emergence, spread and maintenance of the RFLP 1-7-4 PRRSV
family throughout the U.S. It further illustrates the prospects
of the Bayesian approach in improving the decision making
process related to reducing the impact of PRRS on the national
swine industry with the long-term goal of successful control and
prevention.
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MATERIALS AND METHODS

Sequence Data
Complete PRRS ORF5 nucleotide sequences (n = 6774) from
field isolates obtained between January 1998 and April 2015 were
provided by five independent swine production systems in the
U.S. with metadata on the date of isolation, system code (A,
B, C, D, and E) and type of farm (farrow to wean or farrow
to feeder sow farms and growing pig farms) from which the
sequences were isolated (Table S1). Sequences were deposited
in Genbank with accession numbers KT902023–KT905410 and
KU501407–KU504248. The data were shared under agreement
that identity and location of participants and their respective
farms was confidential. Sequencing was performed according to
the procedures in use at the time in various veterinary diagnostic
laboratories or in private laboratories on a fee-for-service basis.

Preliminary Phylogenetic Analysis
The complete sequence database was manually validated for
presence of a complete ORF5 and absence of ambiguous
nucleotides then aligned using MUSCLE version 3.8 (Edgar,
2004). A maximum likelihood (ML) phylogenetic analysis was
performed in MEGA6, resulting in identification of a cluster of
288 sequences that were further studied. The sequence file was
re-aligned using MUSCLE, and adjusted manually using amino-
acid translation method implemented in Mesquite version 3.01
(Maddison and Maddison, 2011), to ensure that the protein-
coding region of ORF5 remained in frame. Sequences with 100%
nucleotide identity were removed (34%) from the subsequent
analyses.While using Recombination Detection Program version
3 (RDP3), no homologous recombination was detected in the
remaining sequences (Martin et al., 2010). For this analytical
approach, it is important to select the substitutionmodel that best
describes the specific virus. For example, it was found that for
some Dengue viruses, the mixed substitution model best fit the
data (Drummond and Rambaut, 2007). That may, however, not
be true for PRRSV. Thus, the best fitting partitioning scheme and
nucleotide substitution model were selected using the Bayesian
Information Criterion (BIC) implemented in PartitionFinder V
1.1 (Lanfear et al., 2012). Finally, maximum-likelihood estimates
of the phylogeny under the selected mixed-substitution model
were used to assess the degree of topological (in)congruence,
in which 100 non-parametric bootstrap replicate searches were
performed using RAxML version 8 (Stamatakis, 2014).

Divergence-Time, Growth Rate, and
Population Size Estimation
Divergence time was estimated using the relaxed molecular-clock
model with GTR+Ŵ4 mixed-substitution, which was selected
based on the results of PartitionFinder analysis mentioned above,
implemented in BEAST v 1.8 (Drummond and Rambaut, 2007).
To estimate divergence time and viral growth rate within each
production system, we assessed the fit of the sequence data to
five node-age coalescent priors, namely, (1) constant population
size assuming that the population growth rate is zero (Griffiths
and Tavare, 1994); (2) exponential growth assuming that the
population growth rate is fixed over time (Griffiths and Tavare,

1994); (3) expansion growth assuming that the population
growth rate increases over time (Griffiths and Tavare, 1994);
(4) logistic growth assuming that the population growth rate
decreases over time (Griffiths and Tavare, 1994); and (5) piece-
wise-constant Bayesian skyline coalescent model (BS) assuming
effective population size is experiencing episodic stepwise change
over time (Drummond et al., 2005). For each node-age model,
we compared the uncorrelated exponential (UCED) and the
log-normal (UCLN) relaxed clock branch-rate prior models, to
assess whether our sequence data had a substitution rate on
adjacent branches that sampled from either shared exponential
or log-normal distributions, respectively. Isolation dates of the
sequences were used to calibrate divergence-time estimates.
We first estimated the marginal likelihood for each of the 10
candidate phylodynamic models from the resulting posterior
samples using the posterior simulation-based analog of Akaike’s
information criterion (AICM; Raftery et al., 2007), which were
estimated using Tracer version 1.6 (Suchard et al., 2001; Rambaut
et al., 2014). The AICMs and their Monte Carlo standard
errors (SE) were calculated using 1000 replicates. Bayes factor
(BF) comparisons indicated that the sequence data followed
a population expansion growth with a UCED branch-rate
model, which provided the best fit for ORF5 (BF > 25 for
the log marginal likelihood) among parametric models (Table
S2). However, the BF comparison was not significant when the
expansion model was compared against the BS coalescent tree
prior (Table S2). Hence, the BS coalescent tree prior model with a
UCED branch-rate was used to estimate changes in the effective
population size through time (File S2; Minin et al., 2008).

We used theMarkov ChainMonte Carlo (MCMC) algorithms
implemented in BEAST to estimate the joint posterior probability
distributions of the model parameters. For each MCMC
simulation, we run 3 × 108 cycles, which was thinned by
sampling every 10,000 cycles. Two replicate MCMC simulations
were carried out to aid in assessing simulation performance.
We used Tracer to evaluate convergence of each candidate
model by estimating effective sample sizes (ESS) for each
posterior parameter. Hence, our ESS evaluations suggested that
the MCMC algorithms requires the removal of the first 10% of
the samples (the “burn-in”) to provide reliable approximations of
the posterior probability densities for each estimated parameter.
We used Tree Annotator to summarize the posterior results in
form of maximum clade credibility (MCC) trees. A BS plot was
generated to infer effective population size (EPS) of the virus
between 2001 and 2015, in which the EPS is defined as the relative
genetic diversity (NeT), where Ne is the effective population size
and T is the generation time (Minin et al., 2008).

Estimation of Viral Dispersal History
between Regional Systems
Geographical location was incorporated as described elsewhere
(Lemey et al., 2009). Briefly, We reconstructed the phylogeny
of the virus by incorporating discrete traits (i.e., systems), to
describe the dispersal evolution of PRRSV epidemic among
those selected systems. We used the continuous-time Markov
model implemented in BEAST to model the dispersal history
among systems as discrete states, which comprised a number

Frontiers in Microbiology | www.frontiersin.org 3 February 2016 | Volume 7 | Article 67

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Alkhamis et al. Phylodynamics of PRRSV RFLP Type 1-7-4

of non-zero transition rates identified by a Bayesian stochastic
search variable selection (BSSVS) approach (Lemey et al., 2009).
Furthermore, we investigated directionality of the geographical
dispersal of the virus among systems by assessing the fit of the
data to two candidate discrete trait models (Table S2), including
both symmetric and asymmetric models with irreversible and
reversible transitions, respectively. Here, the symmetric model
with irreversible transitions indicate that the directional spread
of the virus between two systems (A → B or/and B → A)
is insignificant, while the asymmetric model with reversible
transition indicate that the directional spread between two
systems (A → B or/and B → A) is significant. To reconstruct
the history of viral migration between discrete system areas, we
used the coalescent Gaussian Markov Random field (GMRF)
Bayesian Skyride model as a prior on the node times in the
tree and a mean-one exponential prior for the rate parameters
of the candidate models, while we used the same remaining
parameters described in the above analyses (e.g., substitution
model, UCLN, and UCED branch-rate models). Similarly, we
estimated the marginal-likelihoods in order to compute the BFs
to select among the candidate models (e.g., UCLN symmetric vs.
UCED Asymmetric; Table S2; File S3). We used FigTree version
1.4 (Rambaut, 2012) to plot the summarized MCC consensus
tree with the root state posterior probabilities (RSPP) of systems
areas. Here, the RSPP is defined as the posterior probability
of transition from one discrete trait to another mapped onto
the interior nodes of the phylogeny of the virus, in which a
discrete trait with a high RSPP indicate that trait as the likely
ancestral trait of the given phylogeny. Finally, we used SPREAD
version 1.0.6 (Bielejec et al., 2011) to identify non-zero transition
rates between discrete traits (i.e., significant dispersal routes
among systems). We used a BF cutoff = 6 to assess the strength
and significance of transition rates between discrete geographic
system areas. Because actual centroids of the site locations
were confidential, relationally correct, anonymous latitude and
longitude locations were placed in Alaska and a keyhole markup
language (KML) file was generated to visualize regionalmigration
of the virus.

Modeling Viral Transmission in a System
Evolutionary movement between farm types (a proxy for
production type), in which farm type were classified as sow herd
(e.g., farrow to wean and farrow to feeder sow), and all other
farms (e.g., finisher and nursery). A discrete-trait model was
used for farm type (sow herd, other farms) to infer the history
of PRRSV migration between farm types through time. The
number of non-zero transition rates in the model was estimated
using BSSVS. The relative strength of transition rates (e.g., sow
farms → all other farms) was estimated using Bayes factors
(BFs). We estimated the ancestral states (farm type) at internal
nodes of the tree under a composite phylogenetic model that
included the above detailed analyses. We used FigTree to plot
the MCC consensus tree with the RSPP of the discrete trait
and we assessed the strength of transition rates between states
(farm types) using the BF comparisons implemented in SPREAD
similar to the above analyses. Similarly, the use of the asymmetric
or symmetric discrete trait models allowed us to assess the

strength and significance of directionality between farm types
(e.g., sow farms → other farms, or/and farms → sow farms;
File S4).

Uncertainty and Statistical Analysis of
Discrete-Trait Mappings
We used the Kullback–Leibler divergence (KL) statistic to
quantify the magnitude of phylogenetic uncertainty in the
discrete-trait estimates of the RSPP (for regional systems and
farm type; Kullback and Leibler, 1951). KL statistics were
calculated for each selected tree using the Razavi function
(Razavi, 2008) implemented in Matlab v 2013a (MathWorks,
2012) to measure the departure between prior and the
corresponding posterior probability distributions for a given
phylodynamic parameter (i.e., in this case the RSPPs). A large
KL-value (KL > 1) indicates that the prior provided sufficient
information for estimating the posterior parameters. Finally, we
calculated the parsimony score (PS) and the association index
(AI) statistics to assess the hypothesis that a taxon with a given
trait (farm type or regional system) is more likely to share
that trait with adjoining taxa in the MCC tree than would be
expected by chance. The AI and PS statistics were calculated
using Bayesian Tip-Significance Testing (BaTS) software version
1.0 (Parker, 2008). Significant AI and PS statistics indicate that
our selected trait did have a significant role in shaping the
posterior phylogeny of the sequence data.

RESULTS AND DISCUSSION

Preliminary Phylogenetic Analysis
The ML analysis was performed to screen-out unrelated strains
and because, although RFLP nomenclature is typically used to
refer to PRRSV strains, the RFLP method is not an accurate
discriminator of phylogenetic relations. As a result of the ML
analysis, a total of 288 sequences, with isolation dates between
September 2003 and March 2015, formed a phylogenetic branch
shown in Figure 1. Within the branch a single, monophyletic
clade of 241 sequences obtained in 15 months, between January
2014 and March 2015, stood out (Figure 1, Table S1). Those 241
were identified by the dominant RFLP-type, 1-7-4, whereas the
other 45 genetically related strains belonged to a number of other
RFLP types. Two nearest neighbor 1-7-4 RFLP types (depicted as
green dots in Figure 1, Table S1) were collected in August 2012
and March 2007, whereas the two red dots indicated a 1-7-4 type
isolated in January 2004 and a 1-4-4 type isolated in October 2006
(Figure 1, Table S1).

Divergence-Time, Growth Rate, and
Population Size
For the PRRSV ORF5 sequence dataset isolated between
September 2003 and March 2015, the BF comparisons
significantly favored the parametric expansion node-age
coalescent model, indicating that the population size of the
current 1-7-4 type PRRSVs was under rapid increase with an
estimated mean growth rate of 1.02 (95% highest posterior
density, HPD, from 0.59 to 1.46) and mean evolutionary
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FIGURE 1 | PRRSV RFLP 1-7-4 cluster filtering. (A) Maximum likelihood tree of complete PRRSV sequence dataset (N = 6774) with the 1-7-4 cluster expanded.

(B) The ML tree of extracted sequences containing the 1-7-4 cluster. Two nearest neighbor 1-7-4 RFLP types (green dots) were collected in August 2012 and March

2007. Two red dots indicated a 1-7-4 type isolated in January 2004 and a 1-4-4 type isolated in October 2006. The figure was generated from File S1.

rate of 3.27 × 10−3/site/year (95% HPD from 2.37 × 10−3

to 4.27 × 10−3), which lays within the range of previously
estimated evolutionary rates for PRRSVs isolated from different
geographical locations and period of times (Forsberg, 2005;
Nguyen et al., 2014; Chaikhumwang et al., 2015). However,
analysis of the virus population dynamics revealed a distinct
continuous increase in the genetic diversity of the virus in March
2015, with no signs of population decline. This corresponds
to the current increase of PRRSV incidence throughout the
regional production systems in the U.S. (Figure 2). Our findings
suggest the rate, or speed, at which the number of PRRSVs in
the population increased, sometimes referred to as growth rate,
was higher, compared to earlier phylogenetic relatives. This
higher growth rate may suggest expanding diversity, and an
unusual continuous increase in the relative genetic diversity
over time, compared to those earlier phylogenetic relatives.
That finding may be attributed to an evolutionary drift that
resulted from either continuous circulation or maintenance
within the production region, or recombination events with
field viruses migrated from other production regions (Wang
et al., 2015). An earlier study also suggested that this expanding
diversity behavior of newly emerging strains is attributed to
environmental factors associated with the continuous changes in
swine husbandry practices rather than intrinsic factors within the
host species (Murtaugh et al., 2010). The estimated divergence
time for this sequence dataset was September 1996 (95% HPD,
July 1986–December 2001), which completely overlaps with the
TMRCA of sequences isolated from system C (Table 1). The
youngest divergence time estimated for the viruses isolated from
system A was August 2009 (95% HPD, December 2007–August
2011; Table 1).

Viral Dispersal History between Regional
Systems
The asymmetric variants of the discrete-trait model did not
achieve full convergence, even after increasing the number of

FIGURE 2 | Bayesian Skyline plots (BSP) illustrating temporal changes

in the relative genetic diversity of Porcine Reproductive and

Respiratory Syndrome Virus RFLP type 1-7-4 isolated between

September 2003 and March 2015 in the United States estimated from

the ORF5 gene sequences. Line plots summarize estimates of the effective

population size (NeT ), a measure of genetic diversity, for ORF5 gene segment;

the shaded regions correspond to the 95% HPD (Upper, Red; Median, Blue;

Lower, Green).

MCMCs to 1 × 1010 cycles; and therefore were discarded
from the subsequent analyses. Our BF comparisons suggested
that the symmetric UCED branch-rate model had the largest
log-marginal likelihood (BF > 25), and hence, was chosen as
the best fitting phylodynamic model for ORF5 gene regions
(Table S2). This result suggested that unidirectional spread
of the virus between systems, when designated as origin and
destination, had no significant role in the evolution of the
currently circulating PRRSV. Figure 3 shows the ORF5 RSPP
along with the time-scaled MCC tree (Figure S1). We also
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TABLE 1 | Estimated TMRCAs for the PRRSV ORF5 gene sequences

isolated within each system.

System Mean TMRCA* Lower 95% HPD Upper 95% HPD

A Aug-2009 Dec-2007 Aug-2011

B Aug-2006 Nov-2003 Aug-2009

C Sep-1996 Jul-1989 Dec-2001

D Jul-2009 Jan-2007 Aug-2011

E Jul-2009 Jan-2007 Aug-2011

Overall Sep-1996 Jul-1989 Dec-2001

*Time to the most recent common ancestor (TMRCA).

FIGURE 3 | Maximum clade credibility (MCC) phylogenies of ORF5

gene of Porcine Reproductive and Respiratory Syndrome Virus RFLP

type 1-7-4 cluster in the United States. The color of the branches

represents the most probable system type of their descendent nodes. The

color-coding corresponds to the upper left figure, which represents the

regional system root state posterior probability (RSPP) distributions. The figure

was generated from File S6.

generated a KML file to demonstrate the temporal dynamics
and spatial diffusion of the virus between systems (File S5).
System C was strongly supported as the most likely regional
system of origin for the currently circulating RFLP type 1-
7-4 with a substantially large RSPP of 0.95. Divergence-time
estimates under the discrete trait model indicated that the viral
dispersal event from system C was initiated in September of
2000 (95% HPD, July 1999–December 2002). Significant (BF
> 6) nonzero rates for the dispersal routes between systems
are summarized in Table 2. Our results suggest that the most
significant routes of virus exchange were estimated exclusively
between system C and all other remaining systems. Interestingly,
no significant routes of viral exchange were estimated between

TABLE 2 | Bayes factor (BF) tests for non-zero transition rates between

system type states.

BF Between

30529 C E

30529 C D

1695 C A

9 C B

BF-values >6 indicate significant rates of directional exchange between systems.

systems other than C (Figure 4). Uncertainty and statistical
analyses for validating the fit of the sequence data to the
selected discrete-trait phylodynamic models are summarized in
Table 3. The KL-value suggests that the data under the selected
discrete phylodynamic model was able to generate RSPPs that
are substantially different from the underlying priors and thus
the posterior tree is statistically robust. Furthermore, the AI
and PS tests rejected the null hypothesis of no association
between sampled system and the structure of the phylogeny
(P < 0.05). This strongly suggests that the geographical
distribution of swine systems are indeed having a significant role
in shaping the phylogeny of endemic and newly emerging PRRSV
in the US. This role mainly relies on the characteristics of the
hog transportation network between systems (Shi et al., 2013;
Thanapongtharm et al., 2014; Brar et al., 2015).

Virus Transmission Patterns in a System
There were two reasons for exploring the role of farm type in
viral transmission, (1) to demonstrate how discrete traits may
be incorporated in the analysis, and (2) to test the biological
soundness of the model results, given that one would expect
PRRSV spread to occur mostly from sow farms into other types
of farms, following the natural flow of animals. BF comparisons
indicated that the Asymmetric UCED branch-rate model with
reversible transitions provided the best fit for ORF5 gene regions
(Bayes factor > 25 for the log marginal likelihood; Table S2). Sow
farms were the most likely ancestral farm type for the currently
circulating type 1-7-4 PRRSV (RSPP = 0.95; Figure 5; Figure
S2). Our divergence-time estimates suggest PRRSV originated
in sow farms approximately in September of 1999 (95% HPD,
July 1997–December 2001), and that it was maintained and
circulated in sow farms until now. Only one significant nonzero
rate transmission route was observed exclusively (BF > 6) from
sow farms to all other farms. However, most branches of the
MCC tree under the farm type phylodynamic model were weakly
supported (Branch rate posterior probability < 0.6). In addition,
the low KL-value under the farm type model was substantially
less robust, when compared to the systems model (Table 3).
This is because, small KL divergence statistic values between any
prior and posterior probability distributions indicate that the
data contain little information regarding the value of the selected
parameter, and therefore, its posterior probability distribution
will be similar to the corresponding prior probability distribution
(Lemey et al., 2009). Furthermore, the AI and PS test failed to
reject the null hypothesis of no association between farm type
and the structure of the phylogeny (P > 0.05). This is expected
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FIGURE 4 | Bayes factor (BF) test for significant non-zero rates in

ORF5 gene of Porcine Reproductive and Respiratory Syndrome Virus

RFLP type 1-7-4 cluster in the United States. Only rates supported by a

BF greater than six are indicated. The color of lines correspond to the

probability of the inferred transmission rates. Blue and red line gradients

indicate relatively weak to strong support, respectively. Site locations for the

five systems (A–E) were anonymous and therefore latitude and longitude

locations were placed in Alaska.

because the typical structure of swine farms in the US is farrow-
to-weaning, which in turn segregates breeding pigs from growing
pigs, and thus, makes sow farms more likely as sources of virus
spread through pig movement than growing pigs sites from
which most pigs go to market (Jeong et al., 2014). Therefore,
and as suggested elsewhere, sow farms are more likely sources
of transmission and maintenance of newly emerging PRRSVs
(Kwong et al., 2013).

Value to Participants, the Swine Industry,
and Society
The veterinarians and pork producers who voluntarily share the
disease status and location of their farms are vanguards in food
production. By doing so, the individual participant or a particular
farm risks being identified, either correctly, or incorrectly, as
being a source of virus evolution and spread to other farms.
And yet, the nature and structure of the swine industry is much
more responsible for pathogen movement than any individual
farm. That is, weaned pigs are transported away from the sow
farm to allow pathogens such as PRRSV to be more effectively
eliminated from the sow herd. This means that growing pigs
must be transported to nursery and finishing sites and by doing
so, pathogens are also conveniently moved around the country.
Secondly, health is difficult to maintain if growing pig sites
become too large. Therefore, we have a distributed system of
growing pig sites which also lends to pathogens being moved
around the country. Finally, farms might be using live virus
vaccination in the short term to reduce clinical impact and aid
in the elimination of field virus in the long term. So it is a bold
decision to share data for a study such as this. There is a greater

good being pursued by these industry leaders. They voluntarily
share their premises identities and pathogen status in the interests
of national disease control such that we might detect emerging
pathogens earlier than otherwise and take actions accordingly.
Work such as reported in this paper is on the cusp of a new era of
disease control.

Considerations and Future Applications of
the Method
The methodological approach presented here entailed several
compromises, including: (1) imprecise epidemiological
information related to the discrete traits investigated, and
(2) incomplete and biased sampling of PRRSV ORF5 sequences.
For the first, we demonstrate the impact of the accuracy and
availability of epidemiological information on the MCC trees
(Figures 3, 5) and their posterior inferences. This impact on
the performance of phylodynamic models has been discussed
elsewhere (Chaikhumwang et al., 2015). However, this issue is
chronic in the context of surveillance data and almost impossible
to avoid in practical reality of animal disease surveillance
(Perez et al., 2011). Therefore, rigorous analysis of a selected
Bayesian phylodynamic model (i.e., assessing fit and uncertainty)
is essential before deriving conclusions from their posterior
inferences. For the second, inferences under the phylodynamic
models assume that we have either a complete or random
sample of sequence data. In the present case, this requires that
the PRRSV sequences were collected randomly with respect
to time (between 1999 and 2015) with their corresponding
epidemiological information. Like most phylogenetic studies,
our data were from a convenience sample and might suffer
from strongly biased samples. The impact of these departures
from random sampling on the estimates is difficult to quantify
(Alkhamis et al., 2015). However, our study is based on all
available sequence data from our participants for the ORF5
gene associated with the currently circulating RFLP type 1-7-4
epidemic in the US, and therefore reflects our best understanding
based of the available data. It is worth noting that despite the
unequal number of sequences obtained from different systems
(Table S1), our posterior inferences for dispersal of the virus
between system was not biased toward systems with more
included sequences, such as E (n = 120) and D (n = 55),
when compared to C (n = 52). This constitutes an example
for the utility and robustness of such methods in the context of
molecular surveillance of swine diseases.

Bayesian phylodynamic models have not yet been widely
accepted as a resource by veterinary agencies to support disease
surveillance, control and prevention strategies. This is attributed
by part to the intensive computational requirements of the
methods presented here. For example, we were unable to assess
the topology of 6774 sequences using BEAST due to the lack
of sufficient computational resources. Instead, we used the
traditional ML method to help in identifying the key cluster of
interest, while reducing the computational requirements of the
Bayesian analyses used to address our main hypotheses. That
said, computational resources are in continuous improvement
in terms of speed and cost, and therefore, in the near future
the presented analytical pipeline can be completely transformed
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TABLE 3 | Uncertainty and statistical analyses for assessing the fit of the viral data to the discrete phylodynamic models.

Model KL-valuea Mean values AIb 95% CI P-values PSc 95% CI P-values

Systems 2.9 Observed 14.54 (13.28, 15.66) 0.02* 124.8 (117.0, 132.0) 0.01*

Null 16.32 (15.09, 17.45) 132.75 (127.70, 136.83)

Production Type 0.83 Observed 9.9 (8.76, 11.04) 0.61 73.9 (68.0, 80.0) 0.69

Null 9.63 (8.53, 10.84) 72.7 (68.80, 75.94)

aKullback–Leibler (KL) divergence.
bAssociation index (AI).
cParsimony score (PS).

*Statistically significant (p-value < 0.05).

FIGURE 5 | Maximum clade credibility (MCC) phylogenies of ORF5

gene of Porcine Reproductive and Respiratory Syndrome Virus RFLP

type 1-7-4 cluster in the United States. The color of the branches

represents the most probable farm type of their descendent nodes. The

color-coding corresponds to the upper left figure, which represents the

production type root state posterior probability (RSPP) distributions. Black

branches in the tree indicate posterior probability < 0.60. The figure was

generated from File S7.

to Bayesian statistical framework. However, previous use of
such methods on avian influenza and the Ebola epidemics
demonstrated the ability of phylodynamic methods to shed novel
insights into the evolutionary epidemiology of infectious diseases
and provide support for decisions regarding animal and public
health (Lam et al., 2012; Pybus et al., 2013; Alizon et al., 2014).
Our phylodynamic analyses of a PRRSV ORF5 sequence dataset
and associated epidemiological information, in an endemic
country like the U.S., were in agreement with previous inferences
about the demographic histories and population growth patterns
of viral lineages and sub-lineages of the virus in the U.S. (Shi et al.,
2010). Bayesian phylodynamic models show one remarkable
improvement compared to traditional methods, namely, they
make use of associated epidemiological information, such as time

and place of isolation, to infer genetic relations. The inclusion of
information on nucleotide substitution schemes obtained from
the data, allowing for different model assumptions to assess the
degree of genetic relatedness under time-scaled phylogenies, has
provided a robust strategy, for example, to distinguish between
potentially related PRRSV strains detected in air samples and
swine farms in high and low swine density regions (Brito et al.,
2014). In the analysis here, we incorporated time of prior
isolation to reconstruct the phylogenetic dendogram, hence,
making use of temporal distances to infer genetic relations. This
approach can help to shed further light on several evolutionary
and epidemiological characters of endemic PRRSV. Furthermore,
extended phylodynamic models can provide insights on the
ancestral origins of the outbreak between swine systems
(e.g., the ancestral system or herd type) and spatio-temporal
progression of an epidemic. These inferences could be used, for
example, to identify viral dispersion routes that correspond with
transportation patterns involving high PRRSV risk.

CONCLUSION

Classical phylogenetic methods such as neighbor-joining or
maximum likelihood trees, provide limited inferences about
the evolution of important pathogens and ignore important
evolutionary parameters and uncertainties, which in turn limits
decision making related to surveillance, control, and prevention
resources. However, in this study, we illustrated the applications
and potential of phylodynamic methods as tools for molecular
surveillance of food animal viruses by assessing the evolution
of newly emerging PRRSVs in the U.S. We analyzed different
epidemiological and evolutionary aspects of a recently collected
ORF5 gene sequence dataset. Using coalescence and discrete trait
phylodynamic models, we obtained a phylogeny adjusted for
many important epidemiological parameters such as space, time,
and host type. Furthermore, we were able to (1) infer population
growth and demographic history of the virus, which aids in
assessing the magnitude of epidemic progression; (2) identified
the most likely ancestral system, which aids in guiding risk-
based surveillance activities; and (3) modeled viral transmission
patterns between systems and farm types, which sheds important
insights about viral transmission dynamics between and within
swine herds. Accordingly, incorporating phylodynamic analyses
as a standard tool for the molecular surveillance of swine
diseases might support the development of more effective
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economically rational policy decisions for the control of PRRSV
in high-risk systems. However, investments must be mobilized
toward improving genomic databases and building efficient
bioinformatics and computational infrastructures, which are the
base requirements for the field of applied phylodynamics (Scotch
et al., 2011; Scotch and Mei, 2013).
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