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Microorganisms are found in nearly every surface and near-surface environment, where
they gain energy by catalyzing reactions among a wide variety of chemical compounds.
The discovery of new catabolic strategies and microbial habitats can therefore be
guided by determining which redox reactions can supply energy under environmentally-
relevant conditions. In this study, we have explored the thermodynamic potential of
redox reactions involving manganese, one of the most abundant transition metals in the
Earth’s crust. In particular, we have assessed the Gibbs energies of comproportionation
and disproportionation reactions involving Mn2+ and several Mn-bearing oxide and
oxyhydroxide minerals containing Mn in the +II, +III, and +IV oxidation states as
a function of temperature (0–100◦C) and pH (1–13). In addition, we also calculated
the energetic potential of Mn2+ oxidation coupled to O2, NO2

−, NO3
−, and FeOOH.

Results show that these reactions—none of which, except O2 + Mn2+, are known
catabolisms—can provide energy to microorganisms, particularly at higher pH values
and temperatures. Comproportionation between Mn2+ and pyrolusite, for example, can
yield 10 s of kJ (mol Mn)−1. Disproportionation of Mn3+ can yield more than 100 kJ (mol
Mn)−1 at conditions relevant to natural settings such as sediments, ferromanganese
nodules and crusts, bioreactors and suboxic portions of the water column. Of the
Mn2+ oxidation reactions, the one with nitrite as the electron acceptor is most energy
yielding under most combinations of pH and temperature. We posit that several Mn
redox reactions represent heretofore unknown microbial metabolisms.

Keywords: thermodynamics, bioenergetics, comproportionation, disproportionation, redox reactions

INTRODUCTION

Identifying the catabolic reactions that microorganisms catalyze in nature is critical to
understanding the flows of energy and matter in ecosystems. Quantifying the amount of energy
available from redox reactions among chemical species reveals which metabolisms could be
operating. Gibbs energy calculations have been used in this way to survey the catabolic potential
of a number of different ecosystems, such as terrestrial geothermal springs (Inskeep et al., 2005;
Shock et al., 2005, 2010; Spear et al., 2005a,b; Windman et al., 2007; Vick et al., 2010; Berenguer,
2011; Cardace et al., 2015), deep-sea hydrothermal systems (Shock et al., 1995; McCollom and
Shock, 1997; McCollom, 2000, 2007; Shock and Holland, 2004; Hentscher and Bach, 2012;
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Eecke et al., 2013; Dahle et al., 2015; Reed et al., 2015; McKay
et al., 2016; Shibuya et al., 2016; Sylvan et al., 2017), shallow-
sea hydrothermal systems (Amend et al., 2003, 2011; Rogers and
Amend, 2005, 2006; Akerman et al., 2011; Boettger et al., 2013;
LaRowe et al., 2014; Han and Perner, 2015; Price et al., 2015;
Lu et al., 2020), marine sediments (LaRowe and Regnier, 2008;
Schrum et al., 2009; Wang et al., 2010; LaRowe and Amend,
2014, 2015b; Teske et al., 2014; Kiel Reese et al., 2018), the
terrestrial subsurface (Osburn et al., 2014), and marine basement
rocks (Bach and Edwards, 2003; Edwards et al., 2005). These
studies have shown that the energetics of redox reactions are
fundamentally constrained by the nature of the compounds
and the physiochemical properties of the environment, such as
temperature, pressure, and chemical composition. In addition to
revealing which catabolic strategies are potentially being used
in an environment, Gibbs energy calculations reveal how much
energy can be obtained from these reactions and therefore how
many cells could be supported by them (Bach and Edwards, 2003;
McCollom and Amend, 2005; Amend et al., 2013; LaRowe and
Amend, 2014, 2015a,b, 2016; Bach, 2016; Bradley et al., 2018a,b,
2019, 2020).

Similar types of Gibbs energy calculations have been used
to predict the existence of novel catabolic strategies that were
later found in natural systems and built environments, such
as anaerobic ammonia oxidation (anammox) (Broda, 1977; van
de Graaf et al., 1995; Kuypers et al., 2003), the anaerobic
oxidation of methane (AOM) (Barnes and Goldberg, 1976;
Hinrichs et al., 1999; Boetius et al., 2000; Orphan et al.,
2001) and complete ammonia oxidation (comammox) (Costa
et al., 2006; Daims et al., 2015; van Kessel et al., 2015).
Motivated by these successful thermodynamic prognostications,
sulfur comproportionation, a heretofore undiscovered catabolic
pathway, has recently been predicted to exist in ecosystems
with acidic pH over a broad range of temperatures (Amend
et al., 2020). These examples show that reactions among
compounds formed from elements that have several oxidation
states, such as N an S, are candidates for discovering novel
catabolic strategies. Here, we have explored the energetic
potential of a variety of undiscovered manganese-based microbial
metabolisms including comproportionation, disproportionation,
and oxidation by several electron acceptors including O2, NO2

−,
NO3

−, and FeOOH, summarized schematically in Figure 1, as
a function of temperature and pH. Redox reactions involving
manganese-bearing compounds are likely candidates for novel
catabolic strategies due to the ubiquity of Mn in Earth’s crust
and the large number of microbial species that can enzymatically
reduce and oxidize compounds containing it, as reviewed below.
In this manuscript, we calculate the impact of temperature, pH
and other compositional variables on the Gibbs energy of Mn
redox reactions that could support microbial activities.

Manganese in the Earth System
Mn oxides are found in ocean and lake sediments, ore deposits,
soils, hydrothermal vents (Villalobos et al., 2003; Yang et al.,
2018), interlayered with Fe-oxides that have recently become
aerobic (Tazaki, 2000), caves (Northup et al., 2003) streams, and
desert varnish (Tebo et al., 2004). Aqueous Mn(II), Mn2+, is

common in suboxic and anoxic settings such as sediment pore
water (Madison et al., 2013; Oldham et al., 2017b), stratified
water bodies (Trouwborst et al., 2006; Yakushev et al., 2007,
2009; Dellwig et al., 2012; Oldham et al., 2015), ground water
(Wasserman et al., 2006; de Meyer et al., 2017; McMahon et al.,
2019) and drinking water systems (Cerrato et al., 2010). Mn(II)
often coexists with birnessite (δ-MnO2) where redox conditions
fluctuate, such as in ocean and lake sediments (Yang et al.,
2018). The presence of aqueous Mn(III) in natural systems
has recently become more appreciated, e.g., (Trouwborst et al.,
2006; Madison et al., 2011, 2013; Oldham et al., 2015, 2017a,b),
and in some settings, aqueous Mn(III) can constitute all or
nearly all of the aqueous pool of dissolved Mn (Madison
et al., 2011; Oldham et al., 2015, 2017b). Since aqueous Mn3+

rapidly disproportionates (Davison, 1993), aqueous Mn(III) is
thought to be complexed to ligands that stabilize it, likely
organic compounds (Heintze and Mann, 1947; Klewicki and
Morgan, 1998; Parker et al., 2004; Duckworth and Sposito, 2005).
Furthermore, trivalent Mn can also be stabilized in solid phase
such as MnOOH through comproportionation reactions (Tu
et al., 1994; Mandernack et al., 1995; Bargar et al., 2005; Elzinga,
2011, 2016; Elzinga and Kustka, 2015; Hinkle et al., 2016; Zhao
et al., 2016; Wang et al., 2018), including during bacterial Mn(IV)
reduction (Johnson et al., 2016). Finally, it is noteworthy, that
unlike Fe in many settings, dissolved Mn passes through a 0.02
micron filter, indicating that it is actually an aqueous species, not
part of a colloid (Oldham et al., 2017b). See Table 1 for a selection
of environments in which Mn concentrations in natural settings
have been reported.

Microbial Processing of Manganese
Microorganisms can reduce and oxidize Mn compounds to
gain energy. Though no obligate Mn-reducers are known, the
biological reduction of Mn-oxides to Mn2+ has been shown to
occur in a number of environments (Burdige and Nealson, 1985;
Lovley and Phillips, 1988; Myers and Nealson, 1988; Tebo et al.,
1991; Burdige et al., 1992; Burdige, 1993; Gounot, 1994; Henkel
et al., 2019). Microbial Mn(II) oxidation is phylogenetically
widespread, occurring in bacteria, archaea, and eukarya (Hansel,
2017), and the enzymes associated with this process are diverse
(Wright et al., 2018). A community of microorganisms has even
been shown to photooxidize Mn2+ under anoxic conditions
(Daye et al., 2019). Taken together, Mn2+ oxidation is thought
to be responsible—directly or by environmental modification—
for the formation of the majority of Mn oxides in nature (Tebo
et al., 2004). Although this process has been well-studied, e.g.,
(Nealson et al., 1988; Tebo et al., 2004; Hansel, 2017), it was
only recently shown that a microorganism can catalyze Mn2+

oxidation to gain energy (Yu and Leadbetter, 2020). It has also
been demonstrated that microorganisms can reduce aqueous
ligand-bound Mn(III) (Kostka et al., 1995; Szeinbaum et al., 2014,
2017, 2020) and solid-phase Mn(III), in the form of manganite
(MnOOH) (Larsen et al., 1998; Fredrickson et al., 2002), to
provide energy for microorganisms.

Mn oxidation and reduction are known to take place
simultaneously in the same system, and there are isolates
known that can both reduce and oxidize Mn, e.g., Lysinibacillus
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FIGURE 1 | Schematic illustrating how the oxidation state of manganese changes for the comproportionation, disproportionation and Mn2+ oxidation reactions
considered in this study. The reactions numbers at the bottom of the figure correspond to the reactions in Table 3. The oxidation state of hausmannite, Mn3O4, is
shown as 2.67, the average for Mn in this phase: MnII(MnIII)2O4.

fusiformis, Bacillus pumilus, and B. cereus (Cerrato et al.,
2010). Phylogenetic studies of iron-manganese nodules on the
seafloor have shown that the associated microbial communities
are significantly distinct from those in surrounding sediments
and that the interior communities are different from the
exteriors of these nodules, suggesting that more diversity on
the interior could indicate Mn cycling (Tully and Heidelberg,
2013). A metagenomic study on ferromanganese crusts on
Takuyo-Daigo Seamount found putative genes for dissolution
and precipitation of Mn, including protein-coding DNA
sequences similar to outer-membrane c-type cytochromes that
Shewanella spp. use to reduce Mn(IV) and protein-coding
DNA sequences similar to Mn oxidases such as MopA
and multicopper oxidase sequences (Kato et al., 2019). In
shallower ocean settings, Mn2+ can be found with layered
Mn-oxides when Mn2+ diffuses upward in sediments into
oxic zones (Yang et al., 2018). Microfossil evidence in
ferromanganese nodules and crusts support the notion that
microbial activity is responsible for concentrating Mn in
nodules and crusts from seawater (Jiang et al., 2019), where
Mn concentration is typically 0.1–0.15 nm (van Hulten
et al., 2017). Similarly, nodules from the NE Equatorial
Pacific were revealed to have connected pore space and
molecular data showed that the microbial community was
dominated by nodule-specific Mn(IV)-reducing and Mn(II)-
oxidizing bacteria that were not found in the surrounding
environment (Blöthe et al., 2015).

MATERIALS AND METHODS

Values of overall Gibbs energies at the conditions of interest, 1Gr ,
are calculated using:

1Gr = 1G0
r + RTlnQr (1)

where 1G0
r and Qr refer to the standard molal Gibbs energy and

the reaction quotient of the indicated reaction, respectively, R
represents the gas constant, and T denotes temperature in Kelvin.
Values of 1G0

r were calculated using the revised-HKF equations
of state (Helgeson et al., 1981; Tanger and Helgeson, 1988;
Shock et al., 1992), the SUPCRT92 software package (Johnson
et al., 1992), and thermodynamic data taken from a number of
sources (Robie and Bethke, 1963; Bricker, 1965; Helgeson et al.,
1978; Hem et al., 1982; Robie and Hemingway, 1985; Shock and
Helgeson, 1988; Shock et al., 1997; Chase, 1998; Senoh et al., 1998;
Schulte et al., 2001; Snow et al., 2013; LaRowe and Amend, 2014;
see Table 2). Values of Qr are calculated using:

Qr =
∏
i

aνi
i , (2)

where ai stands for the activity of the ith species and vi
corresponds to the stoichiometric coefficient of the ith species in
the reaction of interest. Negative values of 1Gr are said to be
exergonic and positive values are endergonic; 1Gr = 0 defines
equilibrium. Because standard states in thermodynamics specify

Frontiers in Microbiology | www.frontiersin.org 3 June 2021 | Volume 12 | Article 636145

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-636145 June 7, 2021 Time: 13:29 # 4

LaRowe et al. Potential Manganese Catabolisms in Nature

TABLE 1 | Concentration of Mn in selected environmental settings.

Environment Species or phase Concentration References

Black Sea water column (various depths) Dissolved Mn 0.49–2.15 µmol L−1 Clement et al., 2009

Particulate Mn-oxides 0.01–1.4 µmol L−1

Chesapeake Bay water column Particulate Mn-oxide 0–4.89 µmol L−1 Oldham et al., 2015

Mn(II),aq 0.59–8.04 µmol L−1

Mn(III),aq 0–6.98 µmol L−1

North Atlantic Water Column Particulate Mn oxides 0.19–3.5 nmol L−1 Jones et al., 2020

Mn(III)-ligand, aq 0.01–0.83 nmol L−1

Mn(II), aq 0.5–25 nmol L−1

Oneida Lake bottom water Mn(II), aq 0.48–3.3 µmol L−1 Chapnick et al., 1982

Mouth/Lower St. Lawrence Estuary sediment Mn Oxide 0 –130 µmol g−1 Madison et al., 2013

Mn(II), aq 0–200 µmol L−1

Mn(III), aq 0–70 µmol L−1

Amazon fan sediment Mn(II) 3.2 g Mn (kg sediment)−1 Kasten et al., 1998

Fe-Mn nodule-rich marine sediment pore water Mn(II) 0–38 µmol L−1 de Lange et al., 1992

Various Fe-Mn Nodules Mn 15.9–34.2 weight % Hein, 2013

Swiss lake sediment porewater Shallow water Mn, aq 10–30 µmol L−1 Schaller and Wehrli, 1996

Deep water Mn, aq 110–350 µmol L−1

Groundwater in China Mn, aq 0–62.1 µmol L−1 Hou et al., 2020

Groundwater in Scotland Mn, aq 0–35 µmol L−1 Homoncik et al., 2010

Groundwater in the United States Mn,aq 0–20,630 µmol L−1 McMahon et al., 2019

Drinking water, rural Bangladesh Mn, aq 2-100 µmol L−1 Akter et al., 2016

Hydrothermal vent plumes, Juan de Fuca Ridge Dissolved Mn 0–∼600 nmol L−1 Chin et al., 1994

Hydrothermal plume and surrounding bottom water, Galapagos Rift Total dissolvable Mn 0.41–24 µg per kg Klinkhammer et al., 1977

San Clemente Basin sediment (near cold seep) Dissolved Mn 0–∼600 µmol L−1 McQuay et al., 2008

Atlantic pelagic sediment pore water Mn(II) 0–100 µmol L−1 Froelich et al., 1979

River Leie sediment pore water, Menen Belgium Total Dissolved Mn 3.77–39.1 µmol L−1 Gao et al., 2007

Zambezi fan sediment Mn(II) ∼2–12 µmol L−1 März et al., 2008

Solid Mn ∼0.3–∼0.4 g/kg

German tidal wetlands (median) Dissolved Mn 8.4 µmol L−1 Hamer et al., 2020

a composition and state of aggregation (Amend and LaRowe,
2019; LaRowe and Amend, 2020) values of Qr must be calculated
to take into account how environmental conditions impact Gibbs
energy calculations. In this study we use the classical chemical-
thermodynamic standard state in which the activities of pure
liquids and solids are taken to be 1 as are those for aqueous species
in a hypothetical 1 molal solution referenced to infinite dilution
at any temperature or pressure. Additional information detailing
how the Gibbs energy calculations were carried out can be seen
in the Supplementary Materials.

Activities are related to concentration, C, by

ai = γi

(
Ci

C2
i

)
(3)

where γi and Ci stand for the individual activity coefficient and
concentration of the ith species, respectively, and Ci

θ refers to the
concentration of the ith species under standard state conditions,
which is taken to be equal to one molal referenced to infinite
dilution. Values of γi can be computed using an extended version
of the Debye–Hückel equation (Helgeson, 1969). Values of γi
vary, mostly, as a function of temperature, ionic strength and
charge. For reference, γi for Mn2+ in seawater at 25◦C and 1 bar
is 0.16. Therefore, aMn

2+ = 10−6 corresponds to a concentration

of 6.25 µmol (kg H2O)−1 under these conditions. For other
temperatures, charge states and ionic strengths, see Amend and
LaRowe (2019) for values of γi.

The calculations summarized in the figures discussed below
have been carried out over a range of plausible natural conditions
(see Table 1). We have focused on pH, – log aH+ , because it
tends to be a master variable in natural settings and it can vary
by many orders of magnitude, thereby significantly altering the
energetic potential of a reaction that has hydrogen ions in it.
The activities of the other aqueous species, O2, NO2

−, NO3
−,

N2, NH4
+, Mn2+, and Mn3+, tend to vary less than H+. Their

activities are meant to be representative of common natural
settings. To illustrate the impact of variable Mn2+ activities, we
have also calculated the Gibbs energies of two reactions, those
with the largest and smallest stoichiometric numbers for Mn2+,
as a function of aMn

2+. The Gibbs energies of Mn2+ oxidation
by O2 is included in this analysis as a basis of comparison
for the other Mn2+ oxidation reactions as well as because it
has only recently been shown to support the energetic needs
of an organism under one set of compositional conditions
(Yu and Leadbetter, 2020).

Although the thermodynamic data required to calculate the
Gibbs energies of Mn-oxides as a function of temperature have
been available for decades, they have not been presented in a
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TABLE 2 | Summary of the standard molar thermodynamic properties at 25◦C and 1 bar and heat capacity power function coefficients (a, b, and c ) for selected
Mn-bearing minerals.

Compound Formula 1Gf
0a 1Hf

0a S0b V0c ad be cf Tmax/Trange (K)

Pyrolusite MnO2 −465,000g
−520,000h 52.75h 16.61i 51.47j 42.78j

−8.368j 1,000

Bixbyite Mn2O3 −882,100g
−959,000h 113.7h 31.38i

−67.51j 521.7j 19.36j 240–300

217.2j
−355j 0j 300–325

101.4j 36.59j
−11j 325–1,400

Hausmannite Mn3O4 −1,279,000g
−1,384,500h 165.60h 46.96i 149.5j 52.75j

−20.02j 270–1,100

Feitknechtite β-MnOOH −543,100k

Nsutite γ-MnO2 −456,500l

Manganite γ-MnOOH −557,700l

Birnessite δ-MnO2 −453,100l

Pyrochroite Mn(OH)2 −615,630l

Amorphous Mn(OH)2 Mn(OH)2 −615,000m

aJ mol−1; bJ K−1 mol−1; ccm3 mol−1; dJ mol−1; e103 J K−2 mol−1; f 10−5 J K mol−1; gcalculated from 1H0 and S0 and S0 of the elements taken from Chase (1998);
hRobie and Hemingway (1985); iRobie and Bethke (1963); jcalculated by regressing isobaric heat capacity data as a function of temperature from h using the Maier–Kelly
equation (see section “Materials and Methods”); kHem et al. (1982); lBricker (1965); mSenoh et al. (1998). Tmax/Trange refers to, respectively, the maximum temperature
and temperature range to which the thermodynamic data are valid.

TABLE 3 | Manganese catabolic reactions considered in this study.

Comproportionation reactions

1 MnO2 + Mn2+
+ H2O→ Mn2O3 + 2H+

2 MnO2 + 2Mn2+
+ 2H2O→ Mn3O4 + 4H+

3 MnO2 + Mn2+
+ 2H2O→ 2MnOOH + 2H+

Disproportionation reaction

4 2Mn3+
+ 2H2O→ MnO2 + Mn2+

+ 4H+

Mn oxidation reactions

5 2Mn2+
+ O2(aq) +2H2O→ 2MnO2 + 4H+

6 3Mn2+
+ 2NO−2 +2H2O→ 3MnO2 +N2(aq) + 4H+

7 4Mn2+
+ NO−3 +5H2O→ 4MnO2 + NH+4 + 6H+

8 5Mn2+
+ 2NO−3 +4H2O→ 5MnO2 + N2(aq) + 8H+

9 Mn2+
+ 6FeOOH→ MnO2 + 2Fe3O4 + 2H2O + 2H+

The following chemical formulas refer to the indicated crystalline Mn phases:
MnO2 (pyrolusite), Mn2O3 (bixbyite), Mn3O4 (hausmannite), MnOOH (manganite
and feitknechtite), FeOOH (2-line ferrihydrite), and Fe3O4 (magnetite).

format amenable to commonly used thermodynamic software
such as SUPCRT, OBIGT, EQ3/6, and CHNOSZ [see Dick (2019)
and chnosz.net for a discussion of thermodynamic databases].
Consequently, these data are presented along with the parameters
used to calculate thermodynamic variables as a function of
temperature, as regressed using the Maier–Kelly equation (Maier
and Kelley, 1932), in Table 2 (i.e., the a, b, and c parameters).
The thermodynamic properties of pyrolusite (MnO2) are used in
the Gibbs energy calculations in place of the more commonly
abundant birnessite (δ-MnO2) because the thermodynamic
properties for pyrolusite are known as a function of temperature
and those for birnessite are not. As can be seen in Table 2, there
is a 2.6% difference in the Gibbs energies of formation for these
two phases at 25◦C and 1 bar.

RESULTS

Values of the overall Gibbs energies, 1Gr , of the reactions listed
in Table 3, hereafter referred to by the reaction numbers in this

table only, are shown as a function of pH in Figures 2–4 from 0
to 100◦C with the exception of the comproportionation reactions
involving both MnOOH phases (Figure 2C, Reaction 3), which
are shown only at 25◦C, the extent of the thermodynamic
data for these phases. Since the hydrogen ion is on the right
side of all of the reactions considered in this communication,
values of 1Gr become more negative and thus more favorable
as pH increases. In general, Mn reactions are more exergonic
at higher temperatures than lower ones, particularly as pH
values increase. The activities of several species are fixed
at the values noted in each figure caption to reduce the
number of figures to a comprehensible total. The impact
of varying these activities on Gibbs energies of reactions is
proportional to the stoichiometric coefficients in front of them,
as per Equation 2. Values of 1Gr for the Mn2+ oxidation
reactions are reported in units of kJ (mol e−)−1 to facilitate
comparison amongst these reactions as well as other such
reactions reported in the literature that also use these units
(see section “Introduction”). It is clear how many electrons are
transferred between reactants and products in these reactions
[e.g., Mn2+ oxidation to MnO2 represents a two electron transfer;
Mn(II) becomes Mn(IV)]. However, units of kJ (mol Mn)−1

are used for the comproportionation and disproportionation
reactions because the average oxidation state of Mn is the
same on both sides of these reactions, obfuscating how the
number of electrons transferred in the process should be
counted. This follows how the Gibbs energies were reported
for a number of fermentation (i.e., disproportionation) reactions
(LaRowe and Amend, 2019).

The impact of Mn2+ activities on the Gibbs energies of
Reactions 8 and 9 are plotted in Figures 5A,C from 0 to 100◦C
at pH 7. Since Mn2+ is on the left-hand side of these reactions,
increasing activities of Mn2+ results in lower values of 1Gr for
all temperatures. In the case of nitrate reduction, Reaction 8,
Gibbs energies at 25◦C decrease from −1.8 kJ (mol e−)−1 at
aMn

2+ = 10−9 to −18.9 kJ (mol e−)−1 at aMn
2+ = 10−3. By

comparison, 1Gr for Reaction 9, ferrihydrite reduction, drops
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FIGURE 2 | Overall Gibbs energies, 1Gr , of the comproportionation reactions listed in Table 3 (Reactions 1–3) as a function of pH from 0 to 100◦C for (A) bixbyite
and (B) hausmannite formation and (C) at 25◦C for MnOOH, manganite and feitknechtite, formation. For all three reactions, the activity of Mn2+ = 10−6. Activities of
H2O and all solid phases are taken to be 1. The horizontal line in each panel designates where 1Gr = 0; Gibbs energies below this line are exergonic.

from 11.6 to −5.5 kJ (mol e−)−1 over the same aMn
2+ range

at 25◦C. The impact of Mn activities is only shown for two
reactions to illustrate the relative impact of this variable on
reaction energetics. The particular reactions chosen are those that
have the largest and smallest stoichiometric numbers for Mn2+,
and therefore values of 1Gr that are the most and least sensitive
to Mn2+ activities (see Equations 1, 2).

The Gibbs energies of three comproportionation reactions
among pyrolusite and Mn2+, forming bixbyite (Mn2O3),
hausmannite (Mn3O4) and two manganese oxyhydroxide
phases (MnOOH–manganite and feitknechtite), were considered
in this study (see Reactions 1–3; Figure 2A) along with
one disproportionation reaction (Reaction 4; Figure 3).
The results are normalized to units of kJ (mol Mn)−1.
The comproportionation reactions forming bixbyite and
hausmannite are exergonic at ∼pH > 6 at 100◦C. Higher
pHs are necessary at lower temperatures for these reactions
to be favored: pH ∼7 at 50◦C and pH ∼8 at 0◦C. The
comproportionation reactions forming manganite and

feitknechtite, shown in Figure 2C, are exergonic above
pH 8 and 10, respectively, at 25◦C. In contrast to these
comproportionation reactions, the disproportionation of Mn3+

to Mn2+ and pyrolusite (Reaction 4; Figure 3), is exergonic
from 0–100◦C throughout the pH range considered. At all pH
values, Gibbs energies are lower (more favorable) for Reaction
4 as temperatures increase. In addition, the values of 1Gr for
this reaction are three to six times more exergonic than the
disproportionation reactions.

The energetic potentials of Mn2+ oxidation by O2(aq),
NO2

−, NO3
− and 2-line ferrihydrite (FeOOH) (Reactions 5–

9) are shown in the panels in Figure 4 as a function of
temperature and pH for the indicated activities of the aqueous
species in each reaction. Slightly different from Reactions (1–
4) in Figures 2, 3, the results of these reactions are shown
per mole of electron transferred. The reduction of oxygen
(Reaction 5, Figure 4A) is exergonic at all temperatures for
pH values above ∼3.7, varying slightly with temperature. Values
of 1Gr for Reaction 6, in which nitrite is the oxidant, are

Frontiers in Microbiology | www.frontiersin.org 6 June 2021 | Volume 12 | Article 636145

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-636145 June 7, 2021 Time: 13:29 # 7

LaRowe et al. Potential Manganese Catabolisms in Nature

FIGURE 3 | Overall Gibbs energies, 1Gr , of the disproportionation reaction
given in Table 3 (Reaction 4) as a function of pH from 0 to 100◦C for
pyrolusite formation. The activities of Mn2+ and Mn3+ are set to 10−6.
Activities of H2O and all solid phases are taken to be 1. The horizontal line
designates where 1Gr = 0; Gibbs energies below this line are exergonic.

exergonic throughout nearly the entire pH and temperature
range considered, with the only exceptions being at 75 and
100◦C below pH 2 (Figure 4B). Figures 4C,D both show the
Gibbs energies of Mn2+ oxidation with nitrate (Reactions 7 and
8), but differ in the oxidation state of the nitrogen product
species (NH4

+ and N2, respectively). The major difference
between these reactions is that the complete reduction of NO3

−

to NH4
+ is less exergonic per electron transferred than the

partial reduction to N2. Reaction 8 (N2 formation) becomes
exergonic from about pH 6–7, depending on temperature, while
Reaction 7 (NH4

+ formation) does not become favorable until
about pH 9.5–12, from 100 to 0◦C. Finally, values of 1Gr for
the oxidation of Mn2+ coupled to the reduction of FeOOH
(Reaction 9; Figure 4E) become exergonic over a pH range of 6–8,
depending on temperature.

The standard state Gibbs energies, 1G0
r , of Reactions 1,

2, 3, 7, 8, and 9 are shown as a function of temperature
in Figure 6. This subset of reactions is illustrated because
1G0

r > 0 for all of them at all temperatures except above
95◦C for Reaction 8. In fact, values of the standard state
Gibbs energies for each of these reactions, except Reaction 8,
are greater than 20 kJ (mol e−)−1 or (mol Mn)−1. Both sets
of units appear on the y-axis since the comproportionation
and disproportionation reactions are normalized per mole of
Mn and the oxidation reactions are normalized per mole of
electron transferred.

Four other oxidants were also considered in possible oxidation
reactions of Mn2+ to pyrolusite (CO to CH4; NO3

− to NO2
−;

magnetite to Fe2+; ferrihydrite to Fe2+), but none of these
reactions was exergonic over a broad range of temperature, pH,
and other compositional conditions (not shown).

DISCUSSION

The calculations presented above demonstrate that
comproportionation and disproportion reactions involving
Mn species, as well as Mn2+ oxidation with various electron
acceptors, could provide energy for microorganisms. However,
these reactions can only be catalyzed by organisms in
environments where the composition and temperature
allow it. The impact of taking into account non-standard
state activities of reactants and products on energy yields is
clearly shown in Figures 2–6, where standard state and overall
Gibbs energies of reactions are compared. Note that values
of 1G0

r are positive throughout nearly the entire range of
temperatures considered, but those of 1Gr , which take into
account non-standard state compositions, can be negative
(i.e., exergonic). Our results illustrate the importance of pH
in determining the exergonicity of reactions involving Mn:
with the exception of the Mn3+ disproportionation reaction
(Reaction 4), all of the reactions considered in this study are
not thermodynamically favored at low pH. It should be noted
that just because a given reaction is exergonic under a particular
set of environmental conditions, this does not necessarily mean
that organisms will catalyze it. The thermodynamic favorability
of reactions indicated by Gibbs energy is a statement of the
possible—it quantifies the tendency of a chemical reaction to
proceed in a particular direction. Gibbs energy calculations
do not reveal the path of a process or information about
intermediate species or reactions that might be occurring.
However, 1Gr can still quantify the potential for complex,
multi-organism processes such as AOM. The microbial coupling
of methane oxidation to sulfate reduction was predicted
to exist thermodynamically before it was demonstrated to
occur in nature. A large body of research has since shown
that AOM is catalyzed by a consortia of microorganisms
through a rather complex series of steps that are yet to be fully
understood [see Knittel et al. (2019) for a review]. However,
because the overall process can be represented by a chemical
reaction that accurately describes how chemical species are
transformed, the Gibbs energy of the AOM reaction can
be used to quantify the amount of energy associated with
the overall change. In a similar manner, the Mn reactions
considered in this study might not capture the complexity of
how organisms in nature might take advantage of them for
energy, but as long as the overall process corresponds to the
observed mass transfer associated with this reaction, then the
Gibbs energies reported in this study are a valid prediction
of possible catabolisms and provide a theoretical basis for
future research.

Values of Gibbs energies for the reactions shown in Table 3 are
more sensitive to pH than the activity of Mn2+. This is because
the stoichiometric numbers in front of H+ are larger than those in
front of Mn2+ for any given reaction. The quantitative difference
of pH vs. Mn2+ activity, aMn

2+, on values of 1Gr are shown in
Figure 5. As noted above, Figures 5A,C show 1Gr for Reactions
8 and 9 as a function of aMn

2+ at pH 7. Figures 5B,D are rescaled
versions of Figures 4D–E, illustrating Gibbs energies of Reactions
8 and 9 as a function of pH at a aMn

2+ = 106. It can be seen in
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FIGURE 4 | Overall Gibbs energies, 1Gr , of the Mn2+ oxidation reactions listed in Table 3 [Reactions 5–9 in panels (A–E), respectively] as a function of pH from 0 to
100◦C. Activities of H2O and all solid phases are taken to be 1 and the activity of Mn2+ = 10−6. The activities of the other species are (A) O2 = 10−4;
(B) NO2

− = 10−7 and N2 = 10−4; (C) NO3
− = 10−5 and NH4

+ = 10−5; (D) NO3
− = 10−5 and N2 = 10−4. The horizontal line in each panel designates where

1Gr = 0; Gibbs energies below this line are exergonic.

Figure 5 that the slopes of the lines depicting 1Gr as a function
of pH are steeper and cover a broader range of values than those
plotted as a function of aMn

2+ for the same reaction. For example,
Gibbs energies at 25◦C for nitrate reduction, Reaction 8, change

from −1.8 kJ (mol e−)−1 at aMn
2+ = 10−9 to −18.9 kJ (mol

e−)−1 at aMn
2+ = 10−3 (Figure 5A). For the same order of

magnitude change in pH, values of 1Gr for the same reaction
change from 3.4 kJ (mol e−)−1 at pH 4 to −24.0 kJ (mol e−)−1
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FIGURE 5 | Overall Gibbs energies, 1Gr , of Reactions (A,B) 8 and (C,D) 9 as a function of (A,C)log aMn
2+ at pH = 7 and (B,D) pH for aMn

2+ = 10−6 from 0 to
100◦C. Activities of H2O and all solid phases are taken to be 1. The activities of N2 and NO3

− are 10−4 and 10−5, respectively. The horizontal line in each panel
designates where 1Gr = 0; Gibbs energies below this line are exergonic.

at pH 10 (Figure 5C). Similarly, 1Gr for Reaction 9, ferrihydrite
reduction, drops from 11.6 kJ (mol e−)−1 to −5.5 (mol e−)−1

over the same six-order of magnitude Mn2+ range at 25◦C, and
from 20.2 kJ (mol e−)−1 to −14.1 kJ (mol e−)−1 from pH 4–
10.

The results presented above also illustrate that substantial
differences in reaction energetics can correspond to seemingly
subtle differences in the identity of reaction products. For
example, values of 1Gr for Reaction 3 differ by ∼15 kJ (mol
Mn)−1 depending on whether manganite or feitknechtite (both
MnOOH) are the reaction product, a point that has been made
for analogous Fe-oxyhydroxide species (LaRowe and Amend,
2014). Similarly, we show that the energetics of oxidation
of Mn2+ by NO3

−, Reactions 7 and 8, depend dramatically
on the identity of the product species formed. As shown
in Figures 4C,D, when N2 is the product N species rather
than NH4

+, the values of 1Gr are far more favorable for
the incomplete reduction of NO3

−, over 30 kJ (mol e−)−1 at
all temperatures.

Natural settings that could host the manganese redox
reactions noted in this study are widespread. Sediments in
general serve as plausible locations for comproportionation,
disproportionation and Mn2+ oxidation reactions since they
can contain coexisting Mn-oxides in particle form and aqueous
Mn2+ (Luther et al., 1997) and ligand-bound Mn3+ in pore
fluids (Madison et al., 2011, 2013; see Table 1), in addition to
multiple oxidants such as oxygen, nitrate (see below), nitrite, and
iron hydroxides (Schulz and Zabel, 2006). Disproportionation
of Mn3+ could also occur in the redox-stratified water bodies
where it has been found, such as the Chesapeake Bay (Oldham
et al., 2015), the St. Lawrence Estuary (Oldham et al., 2017b),
the Black Sea (Trouwborst et al., 2006) and even in oxic
portions of the water column (Oldham et al., 2017a). It
should be noted that the energetics of reactions involving
aqueous ligand-bound Mn(III) species will vary depending on
the bond strength between Mn and the ligand, and therefore
the identity of the ligand. Comproportionation reactions could
occur in nearly any setting where Mn-oxides and appreciable
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FIGURE 6 | Standard state Gibbs energies, 1G0
r , of Reactions 1–3 and 7–9

in Table 3 as a function of temperature. Units of kJ (mol Mn)−1 are given for
Reactions 1–3 and kJ (mol e−)−1 for Reactions 7–9. The solid circles labeled
3a and 3b refer to values of 1G0

r for Reaction 4 at 25◦C where manganite and
feitknechtite, respectively, are the phases of MnOOH.

aqueous Mn2+ coexist at neutral to high pH. As noted in the
introduction, iron-manganese nodules on the seafloor, which
are ubiquitous (Orcutt et al., 2020) could be one such location,
especially according to the model described by Kato et al.
(2019).

In addition to the seafloor and sediments, all of the
Mn-based metabolisms considered in this study could be
supported in aquifers throughout the world given their
relatively large concentrations of aqueous Mn (see Table 1)
and varying oxidation states. For instance, less than half
of groundwater in the United States is considered to be
oxic (DeSimone et al., 2015). Add in the fact that roughly
one-third of United States ground water has a pH > 7.5
(DeSimone et al., 2015), and the thermodynamic stage is
set for Mn-based catabolisms. It is especially enlightening
to note that the inoculum used to demonstrate the first
and only example of a microorganism catalyzing the
oxidation of Mn2+ with O2 to gain energy was unsterilized
municipal drinking water from Pasadena, California, which
is typically a mixture of aquifer and surface water sources
(Yu and Leadbetter, 2020).

If microorganisms are to gain energy from the manganese
reactions considered in this study, they must be able to catalyze
these reactions before abiotic processes consume the reactants,
even though this is no guarantee that they will reap the energetic
rewards. For instance, microorganisms have been shown to
oxidize Mn2+ up to five orders of magnitude faster than abiotic
oxidation (Tebo et al., 2004) and they are thought to dominate
Mn2+ oxidation in most aquatic settings (Tebo et al., 2004,
2005). Despite the ubiquity of microbial Mn2+ oxidation, and
the fact that Reaction 5 (O2 reduction) is exergonic above pH∼4
(Figure 4A), it was only recently shown that a microorganism

was able to use the energy liberated by this process (Yu and
Leadbetter, 2020). The calculations summarized in Figures 4B–
E show that it is thermodynamically possible that other electron
acceptors are capable of oxidizing Mn2+, particularly NO2

−

and NO3
−, over a broad range of conditions that can be

found in marine settings. In fact, laboratory incubations have
demonstrated the oxidation of Mn2+ by NO3

− (forming N2,
Reaction 8) in sediments taken from continental margins
(Luther et al., 1997) and Long Island Sound (Hulth et al.,
1999), a process that had been previously proposed to occur
(Aller et al., 1990; Schulz et al., 1994; Murray et al., 1995).
Hulth et al. (1999) report a Gibbs energy for this reaction
of −6.11 kJ (mol e−)−1 at pH 7 and −8.93 kJ (mol e−)−1

at pH 8. By comparison, we determined values of −10.3 kJ
(mol e−)−1 and −14.9 kJ (mol e−)−1 at these values of
pH. The differences are due to the differing activities of the
aqueous species, particularly the concentration of N2 used in
the reactions quotient, Equation 2: Hulth et al. (1999) used
atmospheric N2 partial pressure (0.781 atm) and we used an
activity of 10−4).

A number of studies have reported abiotic manganese
disproportionation and comproportionation reactions in
laboratory experiments. Typically, these experiments involve
exposing an Mn-oxide to Mn2+, and analyzing the resulting
material for particular Mn phases. For instance, several authors
report that comproportionation reactions, like Reaction 3,
are responsible for the formation of MnOOH when Mn2+ is
added to birnessite (δ-MnO2) (Tu et al., 1994; Elzinga, 2011;
Zhao et al., 2016). Under similar experimental conditions,
both Mn disproportionation and comproportionation have
been reported (Elzinga and Kustka, 2015; Elzinga, 2016; Hinkle
et al., 2016). The addition of complex organic substances
to Mn2+ and Mn-oxide can lead to the formation of
MnOOH and Mn3O4 phases (Wang et al., 2018), while the
addition of bacterial spore coatings are thought to drive
both comproportionation and disproportionation reactions
(Bargar et al., 2005). Bacillus spores have also been shown
to be associated with the formation of mixed (i.e., III/IV)
Mn-oxides over a broad range of temperatures (0–80◦C)
and Mn2+ concentrations (<1 nM to >25 mM), using
a variety of ionic strengths (1 M HEPES and seawater)
(Mandernack et al., 1995). Spore coats from marine Bacillus
species at pH 7.5 have been shown to oxidize Mn2+ to
amorphous Mn-oxide that later recrystallized to hausmannite
(Mann et al., 1988).

The rates of the comproportionation and disproportionation
reactions noted above are difficult to discern because these
reactions are typically inferred based on an analysis of the
Mn phases at the conclusion of the experiments. However,
most of the experiments took place over days or weeks,
so microorganisms would likely be able to catalyze the
inferred reactions faster than the abiotic reactions occur.
This is certainly the case with abiotic Mn2+ oxidation,
which is kinetically slow (Hinkle et al., 2016 and references
therein). On the other side of the catalytic spectrum,
Mn3+ disproportionates rapidly abiotically, though when it
complexes with organics and pyrophosphate, it remains stable

Frontiers in Microbiology | www.frontiersin.org 10 June 2021 | Volume 12 | Article 636145

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-636145 June 7, 2021 Time: 13:29 # 11

LaRowe et al. Potential Manganese Catabolisms in Nature

(Kostka et al., 1995; Klewicki and Morgan, 1998; Luther et al.,
1999; Parker et al., 2004) for an undetermined amount of time.
Mn-oxides have been shown to catalyze the disproportionation
of Mn(III)-phosphate complexes at high and low pH (Qian
et al., 2019). It should also be noted that bacteriogenic MnO2,
which is riddled with crystallographic defects filled with other
cations, is quickly reduced to Mn2+ in the presence of ligands
or sunlight (Spiro et al., 2010). Furthermore, as the amount of
energy available from these redox reactions decreases, the rate
of microbial catalysis can drop below detection levels (Jin and
Bethke, 2003; LaRowe et al., 2012), perhaps even fading to 0
despite a remaining energetic drive (i.e., 1Gr < 0) (Schink, 1997;
Curtis, 2003; Jin and Bethke, 2003; Hoehler, 2004; LaRowe and
Van Cappellen, 2011). Consequently, any search for novel Mn-
based metabolisms should be focused on the combinations of
temperature and composition that yield the most negative value
of 1Gr : neutral to basic pH for comproportionation reactions
as well as Mn2+ oxidation by NO2

−, NO3
−, and FeOOH; and

nearly any conditions for Mn(III) disproportionation.
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