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Similarity measures (SM) and correlation coefficients (CC) are used to solve many problems. ,ese problems include vague and
imprecise information, excluding the inability to deal with general vagueness and numerous information problems. ,e main
purpose of this research is to propose an m-polar interval-valued neutrosophic soft set (mPIVNSS) by merging the m-polar fuzzy
set and interval-valued neutrosophic soft set and then study various operations based on the proposed notion, such as AND
operator, OR operator, truth-favorite, and false-favorite operators with their properties. ,is research also puts forward the
concept of the necessity and possibility operations of mPIVNSS and also the m-polar interval-valued neutrosophic soft weighted
average operator (mPIVNSWA) with its desirable properties. Cosine and set-theoretic similarity measures have been proposed for
mPIVNSS using Bhattacharya distance and discussed their fundamental properties. Furthermore, we extend the concept of CC
and weighted correlation coefficient (WCC) for mPIVNSS and presented their necessary characteristics. Moreover, utilizing the
mPIVNSWA operator, CC, and SM developed three novel algorithms for mPIVNSS to solve the multicriteria decision-making
problem. Finally, the advantages, effectiveness, flexibility, and comparative analysis of the developed algorithms are given with the
prevailing techniques.

1. Introduction

Multicriteria decision-making (MCDM) is an essential
condition for decision scientific discipline. ,e decision-
maker should judge the choices stated by the diverse forms
of distinguishing perspectives. ,ough, in quite a lot of
situations, it is tough for someone to undertake it because of
numerous uncertainties in the data. One is due to lack of
expertise or ravishment of policies. ,us, to measure the
given disadvantages and thinking tools, a succession of
philosophies had been projected. Zadeh introduced the

notion of the fuzzy set (FS) [1] to resolve complex problems
that contain vagueness and uncertainty. But FS is unable to
handle the environment when any expert considers the
membership (Mem) grade of any object in the intervals
form. To overawed such states, Turksen [2] proposed the
idea of interval-valued fuzzy sets (IVFS). Sometimes, deci-
sion-makers consider the nonmembership (NMem) value of
the object which cannot be processed by FS nor by IVFS.
Atanassov [3] settled the concept of intuitionistic fuzzy sets
(IFS) to contract above declared complications. ,e idea
proposed by Atanassov involves only underconsidered data
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as well as Mem and Nmem values. However, the IFS theory
is unable to cope with overall incompatibility and inaccurate
data. To resolve the challenge of incompatibility and in-
correct data, Smarandache [4] planned the theory of NS.
Molodtsov [5] presented a universal accurate tool for
addressing uncertain environments renowned as soft set
(SS).

Maji et al. [6] expanded the concept of SS and proposed
fundamental operations with their desired properties. Maji
et al. [7] established a decision-making (DM) technique
utilizing their developed operations and used it for DM. Ali
et al. [8] extended the notion of SS and established some
novel operations with their fundamental properties. ,e
authors [9] extended the notion of SS and proved De
Morgan’s law. ,e concept of soft matrices has been de-
veloped by Cagman and Enginoglu [10]; they also famil-
iarized some basic operations for soft matrices and studied
their required possessions. Cagman and Enginoglu [11]
protracted the concept of SS with some fundamental op-
erations and discussed their characteristics. Furthermore, a
DM approach has been established to solve DM difficulties
employing their settled operations. In [12], the author
presented some novel operations with their properties. Maji
[13] presented the impression of a neutrosophic soft set
(NSS) along with necessary operations and possessions. Liu
et al. [14] discussed the class of uncertain fractional-order
neural networks with external disturbances using adaptive
fuzzy control. Broumi [15] extended the notion of NSS and
proposed the generalized form of NSS and discussed some
fundamental operations. Zulqarnain et al. [16] presented the
idea of multipolar neutrosophic soft sets and discussed their
desirable properties.

Correlation plays a significant part in statistics as well as
engineering science. ,e joint association of two variable
quantities can be utilized to appraise the interdependency of
the correlation qualitative analysis. In addition to using
probabilistic strategies for noticeably pragmatic engineering
science complications, you also can locate various bound-
aries to probabilistic methods. However, the bodily structure
has numerous exceptions, the improvement is challenging,
and it is difficult to obtain exact consequences. ,us, due to
the wide variety of incomprehensible info, the consequences
of probability theory are not able to provide professionals
with suitable information. In addition, in natural world
concerns, there is not any priggish reason out to deal along
with distinguished statistical information. Due to the pre-
liminary limitations, the outcomes of probability theory are
not conducive to specialists. So, probability theory is not
very adequate to resolve the insecurity explicit in the data.
Several assessors around the world have prearranged and
suggested different strategies to solve anxiety-related com-
plications. Wang et al. [17] developed a decision-making
(DM) technique utilizing CC for single valued neutrosophic
soft sets (SVNSs). Zulqarnain et al. [18] established the
generalized neutrosophic TOPSIS to solve MCDM issues.
Hashmi et al. [19] merged two existing theories such as
multipolar FS and neutrosophic set and proposed a mul-
tipolar neutrosophic set. Zulqarnain et al. [20] introduced
the CC for Pythagorean fuzzy soft set and developed the

TOPSIS method based on CC for supplier selection in green
supply chain management.

Gerstenkorn and Mańko [21] proposed a method for IFS
correlation, and they also presented the characteristic co-
efficients. Yu [22] proposed the CC for fuzzy numbers to
measure the relation among fuzzy numbers. Chiang and Lin
[23] have developed a way to test the CC of fuzzy data.
Zulqarnain et al. [24] proposed the TOPSIS technique to
resolve multiattribute decision-making complications con-
structed on CC for the interval-valued intuitionistic fuzzy
soft set (IVIFSS). Hung and Wu [25] intended a novel
technique to measure the center of gravity for IFS and gave
the presented method to interval-valued IFS. Bustince and
Burillo [26] presented the relationship between IVIFS and
CC, proving the decomposition theorem for IVIFS. Hong
[27] and Mitchell [28] developed the CC for IFS and IVIFS.
Zulqarnain et al. [29] protracted the AOs and CC foe
intuitionistic fuzzy hypersoft set, and they also constructed a
TOPSIS method utilizing their proposed CC. Zulqarnain
et al. [30] presented a DM technique based on CC for the
interval-valued neutrosophic hypersoft set. Samad et al. [31]
utilized the TOPSIS approach for the selection of the most
suitable hand sanitizer in this pandemic under the neu-
trosophic hypersoft scenario.

In the past few years, quite a lot of mathematicians have
progressed numerous methodologies such as similarity
measures, CC, and aggregation operators (AOs) along with
their applications in DM. Harish [32] offered the weighted
cosine SM of IFS. Additionally, they built the MCDM ap-
proach under his planned methodology and used the pro-
gressed strategies for information processing and diagnosis.
Garg and Kumar [33] recommended some novel SM to
evaluate the relative strength of IFS. Liu et al. [34] studied the
synchronization for a class of indeterminate fractional-order
neural networks focusing on peripheral instabilities and
distressed scheme parameters. Peng and Garg [35] proposed
a variety of Pythagorean fuzzy set (PFS) similarity measures
with multiple parameters. ,e notion of the m-polar neu-
trosophic soft set (mPNSS) was developed by Saeed et al.
[36]. Liu et al. [37] studied synchronization problematic of
fractional-order chaotic schemes through input capacity and
indefinite exterior trouble using adaptive fuzzy control.
Zulqarnain et al. [38] offered a DM technique based on a
score matrix to solve multiattribute decision-making
(MADM) problems for neutrosophic hypersoft matrices.
Riaz et al. [39] developed an MCDM method for soft
multiset, and they also presented the soft multiset topology
AOs. Zulqarnain et al. [40] proposed the integrated neu-
trosophic TOPSIS to resolve MCDM concerns.

In this epoch, specialists believe that real life is touching
the track of multipolarization. ,erefore, there is no distrust
that the multipolarization of information has played a sig-
nificant part in the prosperity of many arenas of science and
technology. In neurobiology, multipolar neurons in the
brain accumulate a lot of info from other neurons. In the
whole manuscript, the motivation for expanding and mixing
this research work is gradually given. We prove that under
any appropriate circumstances, different hybrid structures
comprehending FS will be transformed into distinct
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privileges of mPIVNSS. ,is study will be the utmost ver-
satile form that can be used to merge data in daily life
complications. ,e organization of the current research is
such as follows: some basic concepts are presented in Section
2, which helps us to construct the structure of the following
study. In Section 3, we propose a novel idea of mPIVNSS by
combining them-polar fuzzy set (mPFS) and interval-valued
neutrosophic soft set, its properties, and operations. In
Section 4, the concepts and properties of CC and WCC are
presented, and the decision-making method is established
based on CC. In Section 5, the multipolar interval-valued
neutrosophic soft weighted aggregation (mPIVNSWA)
operator and two different types of similarity measures with
their decision-making methods are developed. In Section 6,
we use the developed techniques for DM and present a
numerical example. In Section 7, a brief comparison between
our developed approach and existing techniques is provided.
Also, superiority, practicality, and flexibility have been in-
troduced in the same section.

2. Preliminaries

In the following section, we recalled some fundamental
concepts which help us to construct the structure of the
following study.

Definition 1 (See [4]).
Let U be a universe, and A be an NS on U defined as

A � < u, uA(u), vA(u), wA(u)> : u ∈ U􏼈 􏼉, where u, v, w:
U⟶ ]0− , 1+[ and 0− ≤ uA(u) + vA(u) + wA(u)≤ 3+.

Definition 2 (See [19]).
Let U be the universal set and ℘R is said to be the

multipolar neutrosophic set if ℘R � (u, uα(u) , vα(u) ,􏼈

wα(u)): u ∈ U, α � 1, 2, 3, . . . , m }, where uα(u), vα(u),
and wα(u) represent the truthiness, indeterminacy, and
falsity, respectively, uα(u), vα(u), wα(u)⊆ [0, 1] and
0≤ uα(u) + vα(u) + wα(u)≤ 3, for all α � 1, 2, . . . , m; and
u ∈ U.

Definition 3 (See [5]).

Let U be the universal set and E be the set of attributes
concerningU. LetP(U) be the power set ofU andA⊆E. A
pair (F,A) is called an SS overU and its mapping is given as

F: A⟶ P(U). (1)

It is also defined as

(F,A) � F(e) ∈ P(U): e ∈ E,F(e) � ∅ if e≠A{ }.

(2)

Definition 4 (See [13]).
Let U be the universal set and E be the set of attributes

concerningU. LetP(U) be the set of neutrosophic sets over
U and A⊆E. A pair (F,A) is called an NSS overU, and its
mapping is given as

F: A⟶ P(U). (3)

Definition 5 (See [41]).
Let U be a universal set; then, the interval-valued

neutrosophic set can be expressed by the set
A � u, (uA(u), vA(u), wA(u)): u ∈ U􏼈 􏼉, where uA, vA, and
wA are truth, indeterminacy, and falsity membership
functions for A, respectively, uA, vA, and wA ⊆ [0, 1] for
each u ∈ U, where

uA(u) � u
L
A (u), u

U
A (u)􏽨 􏽩,

vA(u) � v
L
A (u), v

U
A(u)􏽨 􏽩,

wA(u) � w
L
A (u), w

U
A(u)􏽨 􏽩.

(4)

For each point, u ∈ U, 0≤ uA(u) + vA(u) + wA(u)≤ 3,
and IVN (U) represent the family of all interval-valued
neutrosophic sets on U.

Definition 6 (See [42]).
Let U be a universe of discourse and E be a set of at-

tributes, and an m-polar neutrosophic soft set (mPNSS) ℘R
over U defined as

℘R � e, u, uα(u), vα(u), wα(u)( 􏼁: u ∈ U, α � 1, 2, 3, . . . , m􏼈 􏼉( 􏼁: e ∈ E􏼈 􏼉, (5)

where uα(u), vα(u), and wα(u) represent the truthiness,
indeterminacy, and falsity, respectively, uα(u), vα(u),

wα(u)⊆ [0, 1] and 0 0≤ uα(u) + vα(u) + wα(u) ≤ 3, for all
α � 1, 2, 3, . . . , m; e ∈ E and u ∈ U. Simply an m-polar
neutrosophic number (mPNSN) can be expressed as

℘ � uα, vα, wα􏼊 􏼋􏼈 􏼉, where 0≤ uα + vα + wα ≤ 3 and
α � 1, 2, 3, . . . , m.

Definition 7 (See [43]).
Let U be a universe of discourse and E be a set of at-

tributes, and IVNSS ℘R over U defined as

℘R � e, u, uR(u), vR(u), wR(u)( 􏼁: u ∈ U, α � 1, 2, 3, . . . , m􏼈 􏼉( 􏼁: e ∈ E􏼈 􏼉, (6)
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where uR(u) � [uℓ
R(u), uu

R(u)], vR(u) � [vℓR(u), vuR(u)],
and wR(u) � [wℓ

R(u), wu
R(u)] represents the interval tru-

thiness, indeterminacy, and falsity, respectively,
uR(u), vR(u), wR(u)⊆ [0, 1] and 0≤ uu

R(u) + vuR(u) +

wu
R(u)≤ 3, for each e ∈ E and u ∈ U.

3. Multipolar Interval-Valued Neutrosophic
Soft Set with Aggregate Operators
and Properties

,e idea of the m-polar fuzzy set (mPFS) was developed by
Chen et al. [44] in 2014, capable of addressing data with
ambiguity along with vagueness multipolar information.
Smarandache [45] presented the tripolar, multipolar neu-
trosophic sets as well as their graph in 2016.,emembership
degree range of mPFS is in the interval [0, 1]m, representing
m criteria of the object, but mPFS cannot handle

indeterminacy and falsity objects. NS bargains with truth,
falsity, one any choice specifications containing indeter-
minacy, but are not able to deal with multicriteria, multiple
sources, and multiple polarities information fusion of
possible choices. To conquer this question, Deli et al. [42]
combined the concept of the m-polar neutrosophic set and
SS and introduced a new model of mPNSS. ,e developed
mPNSS can deal with m criteria for each alternative. mPNSS
is an extension of the bipolar NSS which was introduced by
Ali et al. [46]. Deli [43] established the IVNSS which was the
combination of IVNS [41] and SS [5]. We build some basic
concepts of mPNSS and extend the mPNSS to mPIVNSS
with various operations and properties.

Definition 8. LetU be a universe of discourse andE be a set
of attributes, an m-polar interval-valued neutrosophic soft
set (mPIVNSS) ℘R over U defined as

℘R � e, u, uα(u), vα(u), wα(u)( 􏼁: u ∈ U, α � 1, 2, 3, . . . , m􏼈 􏼉( 􏼁: e ∈ E􏼈 􏼉, (7)

where uα(u) � [uℓ
α(u), uu

α(u)], vα(u) � [vℓα(u), vuα(u)], and
wα(u) � [wℓ

α(u), wu
α(u)] represent the interval truthiness,

indeterminacy, and falsity, respectively; uα(u), vα(u),

wα(u)⊆ [0, 1] and 0≤ uu
α(u) + vuα(u) + wu

α(u)≤ 3 for all
α � 1, 2, 3, . . . , m; e ∈ E and u ∈ U. Simply, an m-polar
interval-valued neutrosophic soft number (mPIVNSN) can
be expressed as ℘ � [u

ℓ
α(u), u

u
α(u)], [v

ℓ
α(u), v

u
α(u)],􏽮

[w
ℓ
α(u), w

u
α(u)]}, where 0≤ uu

α(u) + vuα(u) + wu
α(u)≤ 3 and

α � 1, 2, 3, . . . , m.

Definition 9. Let ℘R and ℘L be two mPIVNSSs over U.
,en, ℘R is called an m-polar interval-valued neutrosophic
soft subset of ℘L, if

u
ℓR
α (u)≥ u

ℓL
α (u),

u
uR
α (u)≥ u

uL
α (u),

v
ℓR
α (u)≥ v

ℓL
α (u),

v
uR
α (u)≥ v

uL
α (u),

w
ℓR
α (u)≥w

ℓL
α (u),

w
uR
α (u)≥w

uL
α (u),

(8)

for all α � 1, 2, 3, . . . , m; e ∈ E and u ∈ U.

Definition 10. Let ℘R and ℘L be two mPIVNSSs over U.
,en, ℘R � ℘L, if

u
ℓR
α (u)≤ u

ℓL
α (u),

u
ℓL
α (u)≤ u

ℓR
α (u),

u
uR
α (u)≤ u

uL
α (u),

u
uL
α (u)≤ u

uR
α (u),

v
ℓR
α (u)≥ v

ℓL
α (u),

v
ℓL
α (u)≥ v

ℓR
α (u),

v
uR
α (u)≥ v

uL
α (u),

v
uL
α (u)≥ v

uR
α (u),

w
ℓR
α (u)≥w

ℓL
α (u),

w
ℓL
α (u)≥w

ℓR
α (u),

w
uR
α (u)≥w

uL
α (u),

w
uL
α (u)≥w

uR
α (u),

(9)

for all α � 1, 2, 3, . . . , m; e ∈ E and u ∈ U.

Definition 11. Let ℘R be an mPIVNSS overU. ,en, empty
mPIVNSS can be represented as ℘�0 and defined as follows:

℘�0 � (e, (u, ([0, 0], [1, 1], [1, 1]), ([0, 0], [1, 1], [1, 1]), . . . , ([0, 0], [1, 1], [1, 1])): u ∈ U{ }): e ∈ E{ }. (10)

Definition 12. Let ℘R be an mPIVNSS over U. ,en, uni-
versal mPIVNSS can be represented as ℘�

E
and defined as

follows:
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℘�
E

� (e, (u, ([1, 1], [0, 0], [0, 0]), ([1, 1], [0, 0], [0, 0]), . . . , ([1, 1], [0, 0], [0, 0])): u ∈ U{ }): e ∈ E{ }. (11)

Definition 13. Let ℘R be an mPIVNSS over U. ,en, the
complement of mPIVNSS is defined as follows:

℘cR � e, u, w
ℓ
α(u), w

u
α(u)􏽨 􏽩, 1 − u

u
α(u), 1 − u

ℓ
α(u)􏽨 􏽩, v

ℓ
α(u), v

u
α(u)􏽨 􏽩􏼐 􏼑: u ∈ U, α � 1, 2, 3, . . . , m􏽮 􏽯􏼐 􏼑: e ∈ E􏽮 􏽯. (12)

Proposition 1. If ℘R be an mPIVNSS over U, then

℘cR( 􏼁
c

� ℘R,

℘�0( 􏼁
c

� ℘�
E
,

℘�
E

􏼐 􏼑
c

� ℘�0.

(13)

Proof. Let

℘R � e, u, u
ℓ
α(u), u

u
α(u)􏽨 􏽩, v

ℓ
α(u), v

u
α(u)􏽨 􏽩, w

ℓ
α(u), w

u
α(u)􏽨 􏽩􏼐 􏼑: u ∈ U, α � 1, 2, 3, . . . , m􏽮 􏽯􏼐 􏼑: e ∈ E􏽮 􏽯. (14)

,en, by using Definition 13, we get

℘cR � e, u, w
ℓ
α(u), w

u
α(u)􏽨 􏽩, 1 − v

u
α(u), 1 − v

ℓ
α(u)􏽨 􏽩, u

ℓ
α(u), u

u
α(u)􏽨 􏽩􏼐 􏼑: u ∈ U, α � 1, 2, 3, . . . , m􏽮 􏽯􏼐 􏼑: e ∈ E􏽮 􏽯, (15)

again, by using Definition 13,

℘cR( 􏼁
c

� e, u, u
ℓ
α(u), u

u
α(u)􏽨 􏽩, 1 − 1 + v

ℓ
α(u), 1 − 1 + v

u
α(u)􏽨 􏽩, w

ℓ
α(u), w

u
α(u)􏽨 􏽩􏼐 􏼑: u ∈ U, α � 1, 2, 3, . . . , m􏽮 􏽯􏼐 􏼑: e ∈ E􏽮 􏽯,

℘cR( 􏼁
c

� e, u, u
ℓ
α(u), u

u
α(u)􏽨 􏽩, v

ℓ
α(u), v

u
α(u)􏽨 􏽩, w

ℓ
α(u), w

u
α(u)􏽨 􏽩􏼐 􏼑: u ∈ U, α � 1, 2, 3, . . . , m􏽮 􏽯􏼐 􏼑: e ∈ E􏽮 􏽯,

℘cR( 􏼁
c

� ℘R.

(16)

Similarly, we can prove 2 and 3. Definition 14. Let ℘R and ℘L be two mPIVNSSs over U.
,en,

℘R ∪℘L � e,

u, max u
ℓR
α (u), u

ℓL
α (u)􏽮 􏽯, max u

uR
α (u), u

uL
α (u)􏽮 􏽯􏽨 􏽩,

min v
ℓR
α (u), v

ℓL
α (u)􏽮 􏽯, min v

uR
α (u), v

uL
α (u)􏽮 􏽯􏽨 􏽩,

min w
ℓR
α (u), w

ℓL
α (u)􏽮 􏽯, min w

uR
α (u), w

uL
α (u)􏽮 􏽯􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, α � 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: e ∈ E

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (17)

Definition 15. Let ℘R and ℘L be two mPIVNSSs over U.
,en,
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℘R ∩℘L � e,

u, min u
ℓR
α (u), u

ℓL
α (u)􏽮 􏽯, min u

uR
α (u), u

uL
α (u)􏽮 􏽯􏽨 􏽩,

max v
ℓR
α (u), v

ℓL
α (u)􏽮 􏽯, max v

uR
α (u), v

uL
α (u)􏽮 􏽯􏽨 􏽩,

max w
ℓR
α (u), w

ℓL
α (u)􏽮 􏽯, max w

uR
α (u), w

uL
α (u)􏽮 􏽯􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, α � 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: e ∈ E

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (18)

Proposition 2. Let ℘R and ℘L be two mPIVNSSs over U.
)en,

℘R ∪℘L( 􏼁
C

� ℘CR ∩℘
C
L,

℘R ∩℘L( 􏼁
C

� ℘CR ∪℘
C
L.

(19)

Proof. As we know,

℘R � e, u, u
ℓR
α (u), u

uR
α (u)􏽨 􏽩, v

ℓR
α (u), v

uR
α (u)􏽨 􏽩, w

ℓR
α (u), w

uR
α (u)􏽨 􏽩􏼐 􏼑: u ∈ U, α � 1, 2, 3, . . . , m􏽮 􏽯􏼐 􏼑: e ∈ E􏽮 􏽯,

℘L � e, u, u
ℓL
α (u), u

uL
α (u)􏽨 􏽩, v

ℓL
α (u), v

uL
α (u)􏽨 􏽩, w

ℓL
α (u), w

uL
α (u)􏽨 􏽩􏼐 􏼑: u ∈ U, α � 1, 2, 3, . . . , m􏽮 􏽯􏼐 􏼑: e ∈ E􏽮 􏽯.

(20)

By using Definition 14, we get

℘R ∪℘L � e,

u, max u
ℓR
α (u), u

ℓL
α (u)􏽮 􏽯, max u

uR
α (u), u

uL
α (u)􏽮 􏽯􏽨 􏽩,

min v
ℓR
α (u), v

ℓL
α (u)􏽮 􏽯, min v

uR
α (u), v

uL
α (u)􏽮 􏽯􏽨 􏽩,

min w
ℓR
α (u), w

ℓL
α (u)􏽮 􏽯, min w

uR
α (u), w

uL
α (u)􏽮 􏽯􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, α � 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: e ∈ E

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(21)

Now, by using Definition 13, we get

℘R ∪℘L( 􏼁
c

� e,

u, min w
ℓR
α (u), w

ℓL
α (u)􏽮 􏽯, min w

uR
α (u), w

uL
α (u)􏽮 􏽯􏽨 􏽩,

1 − min v
uR
α (u), v

uL
α (u)􏽮 􏽯, 1 − min v

ℓR
α (u), v

ℓL
α (u)􏽮 􏽯􏽨 􏽩,

max u
ℓR
α (u), u

ℓL
α (u)􏽮 􏽯, max u

uR
α (u), u

uL
α (u)􏽮 􏽯􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, α � 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: e ∈ E

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(22)

Now,

℘CR � e, u, w
ℓR
α (u), w

uR
α (u)􏽨 􏽩, 1 − v

ℓR
α (u), 1 − v

uR
α (u)􏽨 􏽩, u

ℓR
α (u), u

uR
α (u)􏽨 􏽩􏼐 􏼑: u ∈ U, α � 1, 2, 3, . . . , m􏽮 􏽯􏼐 􏼑: e ∈ E􏽮 􏽯,

℘CL � e, u, w
ℓL
α (u), w

uL
α (u)􏽨 􏽩, 1 − v

ℓL
α (u), 1 − v

uL
α (u)􏽨 􏽩, u

ℓL
α (u), u

uL
α (u)􏽨 􏽩􏼐 􏼑: u ∈ U, α � 1, 2, 3, . . . , m􏽮 􏽯􏼐 􏼑: e ∈ E􏽮 􏽯.

(23)

By using Definition 15,
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℘CR ∩℘
C
L � e,

u, min w
ℓR
α (u), w

ℓL
α (u)􏽮 􏽯, min w

uR
α (u), w

uL
α (u)􏽮 􏽯􏽨 􏽩,

min 1 − v
uR
α (u), 1 − v

uL
α (u)􏽮 􏽯, min 1 − v

ℓR
α (u), 1 − v

ℓL
α (u)􏽮 􏽯􏽨 􏽩,

max u
ℓR
α (u), u

ℓL
α (u)􏽮 􏽯, max u

uR
α (u), u

uL
α (u)􏽮 􏽯􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, α � 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: e ∈ E

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

℘CR ∩℘
C
L � e,

u, min w
ℓR
α (u), w

ℓL
α (u)􏽮 􏽯, min w

uR
α (u), w

uL
α (u)􏽮 􏽯􏽨 􏽩,

1 − min v
uR
α (u), v

uL
α (u)􏽮 􏽯, 1 − min v

ℓR
α (u), v

ℓL
α (u)􏽮 􏽯􏽨 􏽩,

max u
ℓR
α (u), u

ℓL
α (u)􏽮 􏽯, max u

uR
α (u), u

uL
α (u)􏽮 􏽯􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, α � 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: e ∈ E

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(24)

Hence,

℘R ∪℘L( 􏼁
c

� ℘CR ∩℘
C
L. (25)

Proof. Similar to assertion 1.

Proposition 3. Let ℘R, ℘L, and ℘H be three mPIVNSSs over
U. )en,

℘R ∪ ℘L ∩℘H( 􏼁 � ℘R ∪℘L( 􏼁∩ ℘R ∪℘H( 􏼁,

℘R ∩ ℘L ∪℘H( 􏼁 � ℘R ∩℘L( 􏼁∪ ℘R ∩℘H( 􏼁,

℘R ∪ ℘R ∩℘L( 􏼁 � ℘R,

℘R ∩ ℘R ∪℘L( 􏼁 � ℘R.

(26)

Proof. As we know,

℘L ∩℘H � e,

u, min u
ℓL
α (u), u

ℓH
α (u)􏽮 􏽯, min u

uL
α (u), u

uH
α (u)􏽮 􏽯􏽨 􏽩,

max v
ℓL
α (u), v

ℓH
α (u)􏽮 􏽯, max v

uL
α (u), v

uH
α (u)􏽮 􏽯􏽨 􏽩,

max w
ℓL
α (u), w

ℓH
α (u)􏽮 􏽯, max w

uL
α (u), w

uH
α (u)􏽮 􏽯􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

: u ∈ U, α � 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

: e ∈ E

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

℘R ∪ ℘L ∩℘H( 􏼁 � e,

u, max u
ℓR
α (u), min min u

ℓL
α (u), u

ℓH
α (u)􏽮 􏽯􏽮 􏽯􏽮 􏽯, max u

uR
α (u), min u

uL
α (u), u

uH
α (u)􏽮 􏽯􏽮 􏽯􏽨 􏽩,

min v
ℓR
α (u), max v

ℓL
α (u), v

ℓH
α (u)􏽮 􏽯􏽮 􏽯, min v

uR
α (u), max v

uL
α (u), v

uH
α (u)􏽮 􏽯􏽮 􏽯􏽨 􏽩,

min w
ℓR
α (u), max w

ℓL
α (u), w

ℓH
α (u)􏽮 􏽯􏽮 􏽯, min w

uR
α (u), max w

uL
α (u), w

uH
α (u)􏽮 􏽯􏽮 􏽯􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

: u ∈ U, α � 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

: e ∈ E

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

℘R ∩℘L � e,

u, min u
ℓR
α (u), u

ℓL
α (u)􏽮 􏽯, min u

uR
α (u), u

uL
α (u)􏽮 􏽯􏽨 􏽩,

max v
ℓR
α (u), v

ℓL
α (u)􏽮 􏽯, max v

uR
α (u), v

uL
α (u)􏽮 􏽯􏽨 􏽩,

max w
ℓR
α (u), w

ℓL
α (u)􏽮 􏽯, max w

uR
α (u), w

uL
α (u)􏽮 􏽯􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

: u ∈ U, α � 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

: e ∈ E

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

℘R ∩℘H � e,

u, min u
ℓR
α (u), u

ℓH
α (u)􏽮 􏽯, min u

uR
α (u), u

uH
α (u)􏽮 􏽯􏽨 􏽩,

max v
ℓR
α (u), v

ℓH
α (u)􏽮 􏽯, max v

uR
α (u), v

uH
α (u)􏽮 􏽯􏽨 􏽩,

max w
ℓR
α (u), w

ℓH
α (u)􏽮 􏽯, max w

uR
α (u), w

uH
α (u)􏽮 􏽯􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

: u ∈ U, α � 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

: e ∈ E

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

℘R ∩℘L( 􏼁∪ ℘R ∩℘H( 􏼁 � e,

u, max min u
ℓR
α (u), u

ℓL
α (u)􏽮 􏽯, min u

ℓR
α (u), u

ℓH
α (u)􏽮 􏽯􏽮 􏽯, max min u

uR
α (u), u

uL
α (u)􏽮 􏽯, min u

uR
α (u), u

uH
α (u)􏽮 􏽯􏽮 􏽯􏽨 􏽩,

min max v
ℓR
α (u), v

ℓL
α (u)􏽮 􏽯, max v

ℓR
α (u), v

ℓH
α (u)􏽮 􏽯􏽮 􏽯, min max v

uR
α (u), v

uL
α (u)􏽮 􏽯, max v

uR
α (u), v

uH
α (u)􏽮 􏽯􏽮 􏽯􏽨 􏽩,

min max w
ℓR
α (u), w

ℓL
α (u)􏽮 􏽯, max w

ℓR
α (u), w

ℓH
α (u)􏽮 􏽯􏽮 􏽯, min max w

uR
α (u), w

uL
α (u)􏽮 􏽯, max w

uR
α (u), w

uH
α (u)􏽮 􏽯􏽮 􏽯􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

: u ∈ U, α � 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

: e ∈ E

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

℘R ∩℘L( 􏼁∪ ℘R ∩℘H( 􏼁 � e,

u, max u
ℓR
α (u), min u

ℓL
α (u), u

ℓH
α (u)􏽮 􏽯􏽮 􏽯, max u

uR
α (u), min u

uL
α (u), u

uH
α (u)􏽮 􏽯􏽮 􏽯􏽨 􏽩,

min v
ℓR
α (u), max v

ℓL
α (u), v

ℓH
α (u)􏽮 􏽯􏽮 􏽯, min v

uR
α (u), max v

uL
α (u), v

uH
α (u)􏽮 􏽯􏽮 􏽯􏽨 􏽩,

min w
ℓR
α (u), max w

ℓL
α (u), w

ℓH
α (u)􏽮 􏽯􏽮 􏽯, min w

uR
α (u), max w

uL
α (u), w

uH
α (u)􏽮 􏽯􏽮 􏽯􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

: u ∈ U, α � 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

: e ∈ E

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

(27)
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Hence,

℘R ∪ ℘L ∩℘H( 􏼁 � ℘R ∩℘L( 􏼁∪ ℘R ∩℘H( 􏼁. (28)

Similarly, we can prove other results.

Definition 16. Let ℘R and ℘L be two mPIVNSSs over U.
,en, their extended union is defined as

u ℘R ∪ ϵ℘L( 􏼁 �

u
ℓR
α (u), u

uR
α (u)􏽨 􏽩, if e ∈ R − L,

u
ℓL
α (u), u

uL
α (u)􏽨 􏽩, if e ∈L − R,

max u
ℓR
α (u), u

ℓL
α (u)􏽮 􏽯,max u

uR
α (u), u

uL
α (u)􏽮 􏽯􏽨 􏽩, if e ∈ R∩L,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v ℘R ∪ ϵ℘L( 􏼁 �

v
ℓR
α (u), v

uR
α (u)􏽨 􏽩, if e ∈ R − L,

v
ℓL
α (u), v

uL
α (u)􏽨 􏽩, if e ∈L − R,

min v
ℓR
α (u), v

ℓL
α (u)􏽮 􏽯,min v

uR
α (u), v

uL
α (u)􏽮 􏽯􏽨 􏽩, if e ∈ R∩L,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w ℘R ∪ ϵ℘L( 􏼁 �

w
ℓR
α (u), w

uR
α (u)􏽨 􏽩, if e ∈ R − L,

w
ℓL
α (u), w

uL
α (u)􏽨 􏽩, if e ∈L − R,

min w
ℓR
α (u), w

ℓL
α (u)􏽮 􏽯,min w

uR
α (u), w

uL
α (u)􏽮 􏽯􏽨 􏽩, if e ∈ R∩L.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(29)

Example 1. Assume U � u1, u2􏼈 􏼉 be a universe of discourse
and E � e1, e2, e3, e4􏼈 􏼉 be a set of attributes, and R � e1, e2􏼈 􏼉

andL � Unsupported e3, e4􏼈 􏼉⊆E. Consider 3-PIVNSSs ℘R
and ℘L over U can be represented as follows:

℘R �

e1,
u1, ([0.5, 0.8], [0.2, 0.5], [0.1, 0.2]), ([0.3, 0.5], [0.1, 0.3], [0.2, 0.4]), ([0.6, 0.9], [0.7, 0.8], [0.8, 1])( 􏼁

u2, ([0.2, 0.4], [0.3, 0.4], [0.1, 0.3]), ([0.2, 0.5], [0.1, 0.6], [0.1, 0.3]), ([0.8, 1], [0.6, 0.9], [0.6, 0.7])( 􏼁
􏼨 􏼩􏼠 􏼡,

e2,
u1, ([0.3, 0.6], [0.1, 0.6], [0.3, 0.4]), ([0, 0.2], [0.1, 0.4], [0.3, 0.5]), ([0.5, 0.9], [0.3, 0.8], [0.5, 0.8])( 􏼁

u2, ([0.2, 0.5], [0.2, 0.3], [0.5, 0.6]), ([0.3, 0.5], [0.1, 0.5], [0.5, 0.8]), ([0.6, 0.9], [0.5, 0.8], [0.6, 0.9])( 􏼁
􏼨 􏼩􏼠 􏼡

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

℘L �

e1,
u1, ([0.4, 0.8], [0.3, 0.6], [0.2, 0.5]), ([0.2, 0.7], [0.3, 0.4], [0.4, 0.6]), ([0.7, 0.8], [0.4, 0.9], [0.5, 1])( 􏼁

u2, ([0.1, 0.6], [0.5, 0.7], [0.1, 0.2]), ([0.3, 0.4], [0.2, 0.5], [0.2, 0.5]), ([0.5, 0.9], [0.7, 0.8], [0.4, 0.6])( 􏼁
􏼨 􏼩􏼠 􏼡,

e2,
u1, ([0.2, 0.7], [0.3, 0.5], [0.2, 0.6]), ([0.1, 0.3], [0.2, 0.5], [0.2, 0.7]), ([0.4, 0.9], [0.4, 0.7], [0.5, 0.8])( 􏼁

u2, ([0.1, 0.6], [0.1, 0.5], [0.4, 0.8]), ([0.3, 0.6], [0.3, 0.4], [1, 1]), ([0.5, 0.9], [0.3, 0.7], [0.1, 0.8])( 􏼁
􏼨 􏼩􏼠 􏼡

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(30)

,en,

℘R ∪ ϵ℘L �

e1,
u1, ([0.5, 0.8], [0.2, 0.5], [0.1, 0.2]), ([0.3, 0.5], [0.1, 0.3], [0.2, 0.4]), ([0.6, 0.9], [0.7, 0.8], [0.8, 1])( 􏼁

u2, ([0.2, 0.4], [0.3, 0.4], [0.1, 0.3]), ([0.2, 0.5], [0.1, 0.6], [0.1, 0.3]), ([0.8, 1], [0.6, 0.9], [0.6, 0.7])( 􏼁
􏼨 􏼩􏼠 􏼡,

e2,
u1, ([0.4, 0.8], [0.1, 0.6], [0.2, 0.4]), ([0.2, 0.7], [0.1, 0.4], [0.3, 0.5]), ([0.7, 0.9], [0.3, 0.8], [0.5, 0.8])( 􏼁

u2, ([0.2, 0.6], [0.2, 0.3], [0.1, 0.2]), ([0.3, 0.5], [0.1, 0.5], [0.2, 0.5]), ([0.6, 0.9], [0.5, 0.8], [.4, 0.6])( 􏼁
􏼨 􏼩􏼠 􏼡

e2,
u1, ([0.2, 0.7], [0.3, 0.5], [0.2, 0.6]), ([0.1, 0.3], [0.2, 0.5], [0.2, 0.7]), ([0.4, 0.9], [0.4, 0.7], [0.5, 0.8])( 􏼁

u2, ([0.1, 0.6], [0.1, 0.5], [0.4, 0.8]), ([0.3, 0.6], [0.3, 0.4], [1, 1]), ([0.5, 0.9], [0.3, 0.7], [0.1, 0.8])( 􏼁
􏼨 􏼩􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(31)

Definition 17. Let ℘R and ℘L be two mPIVNSSs over U.
,en, their extended intersection is defined as
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u ℘R ∩ ϵ℘L( 􏼁 �

u
ℓR
α (u), u

uR
α (u)􏽨 􏽩, if e ∈ R − L,

u
ℓL
α (u), u

uL
α (u)􏽨 􏽩, if e ∈L − R,

min u
ℓR
α (u), u

ℓL
α (u)􏽮 􏽯,min u

uR
α (u), u

uL
α (u)􏽮 􏽯􏽨 􏽩, if e ∈ R∩L,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v ℘R ∩ ϵ℘L( 􏼁 �

v
ℓR
α (u), v

uR
α (u)􏽨 􏽩, if e ∈ R − L,

v
ℓL
α (u), v

uL
α (u)􏽨 􏽩, if e ∈L − R,

max v
ℓR
α (u), v

ℓL
α (u)􏽮 􏽯,max v

uR
α (u), v

uL
α (u)􏽮 􏽯􏽨 􏽩, if e ∈ R∩L,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w ℘R ∩ ϵ℘L( 􏼁 �

w
ℓR
α (u), w

uR
α (u)􏽨 􏽩, if e ∈ R − L,

w
ℓL
α (u), w

uL
α (u)􏽨 􏽩, if e ∈L − R,

max w
ℓR
α (u), w

ℓL
α (u)􏽮 􏽯, max w

uR
α (u), w

uL
α (u)􏽮 􏽯􏽨 􏽩, if e ∈ R∩L.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(32)

Remark 1. Generally, if ℘R ≠℘�0 and ℘R ≠℘�
E
, then the law

of contradiction ℘R ∩℘CR � ℘�0 and the law of the excluded
middle ℘R ∪℘CR � ℘�

E
do not satisfy mPIVNSS. On the other

hand, in classical set theory, both laws always hold.

Definition 18. Let ℘R and ℘L be two mPIVNSSs over U.
,en, their difference is defined as follows:

℘R\℘L � e,

u, min u
ℓR
α (u), u

ℓL
α (u)􏽮 􏽯, min u

uR
α (u), u

uL
α (u)􏽮 􏽯􏽨 􏽩,

max v
ℓR
α (u), 1 − v

uL
α (u)􏽮 􏽯, max v

uR
α (u), 1 − v

ℓL
α (u)􏽮 􏽯􏽨 􏽩,

max w
ℓR
α (u), w

ℓL
α (u)􏽮 􏽯, max w

uR
α (u), w

uL
α (u)􏽮 􏽯􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, α � 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: e ∈ E

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(33)

Definition 19. Let ℘R and ℘L be two mPIVNSSs over U.
,en, their addition is defined as follows:

℘R + ℘L � e,

u, min u
ℓR
α (u) + u

ℓL
α (u), 1􏽮 􏽯, min u

uR
α (u) + u

uL
α (u), 1􏽮 􏽯􏽨 􏽩,

min v
ℓR
α (u) + v

ℓL
α (u), 1􏽮 􏽯, min v

uR
α (u) + v

uL
α (u), 1􏽮 􏽯􏽨 􏽩,

min w
ℓR
α (u) + w

ℓL
α (u), 1􏽮 􏽯, min w

uR
α (u) + w

uL
α (u), 1􏽮 􏽯􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, α � 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: e ∈ E

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(34)

Definition 20. Let ℘R be an mPIVNSS over U. ,en, its
scalar multiplication is represented as ℘R. �a, where �a ∈ [0, 1]

and defined as follows:

℘R · �a � e,

u, min u
ℓR
α (u).�a, 1􏽮 􏽯, min u

uR
α (u).�a, 1􏽮 􏽯􏽨 􏽩,

min v
ℓR
α (u).�a, 1􏽮 􏽯, min v

uR
α (u).�a, 1􏽮 􏽯􏽨 􏽩,

min w
ℓR
α (u).�a, 1􏽮 􏽯, min w

uR
α (u).�a, 1􏽮 􏽯􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, α � 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: e ∈ E

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (35)

Definition 21. Let ℘R be the mPIVNSS over U. ,en, its
scalar division is represented as ℘R/�a, where �a ∈ [0, 1] and
defined as follows:
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℘R
�a

� e,

u, min
u
ℓR
α (u)

a�
, 1􏼨 􏼩, min

u
uR
α (u)

a�
, 1􏼨 􏼩􏼢 􏼣,

min
v
ℓR
α (u)

a�
, 1􏼨 􏼩, min

v
uR
α (u)

a�
, 1􏼨 􏼩􏼢 􏼣,

min
w

ℓR
α (u)

a�
, 1􏼨 􏼩, min

w
uR
α (u)

a�
, 1􏼨 􏼩􏼢 􏼣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

: u ∈ U, α � 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

: e ∈ E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (36)

Definition 22. Let ℘R be an mPIVNSS over U. ,en, the
truth-favorite operator on ℘R is denoted by 􏽥Δ℘R and de-
fined as follows:

􏽥Δ℘R � e,
u, min u

ℓR
α (u) + v

ℓR
α (u), 1􏽮 􏽯, min u

uR
α (u) + v

uR
α (u), 1􏽮 􏽯􏽨 􏽩,

[0, 0], [0, 0], . . . , [0, 0], w
ℓR
α (u), w

uR
α (u)􏽨 􏽩

⎛⎜⎝ ⎞⎟⎠: u ∈ U, α � 1, 2, 3, . . . , m
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠: e ∈ E

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (37)

Definition 23. Let ℘R be an mPIVNSS over U. ,en, the
false-favorite operator on ℘R is denoted by 􏽥Δ℘R and is
defined as follows:

􏽥∇℘R � e,
u, u

ℓR
α (u), u

uR
α (u)􏽨 􏽩, [0, 0], [0, 0], . . . , [0, 0],

min w
ℓR
α (u) + v

ℓR
α (u), 1􏽮 􏽯, min w

uR
α (u) + v

uR
α (u), 1􏽮 􏽯􏽨 􏽩

⎛⎜⎝ ⎞⎟⎠: u ∈ U, α � 1, 2, 3, . . . , m
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠: e ∈ E

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (38)

Definition 24. Let ℘R and ℘L be two mPIVNSSs over U.
,en, their AND operator is represented by ℘R ∧℘L and
defined as follows:

℘R ∧ ℘L � ΓR×L, where

ΓR×L(x, y) � ℘R(x)∩℘L(y) for all (x, y) ∈ R × L.

(39)

Definition 25. Let ℘R and ℘L be two mPIVNSSs over U.
,en, their OR operator is represented by ℘R ∨℘L and
defined as follows:

℘R∨℘L � ΓR×L, where

ΓR×L(x, y) � ℘R(x)∪℘L(y) for all (x, y) ∈ R × L.

(40)

Example 2. Reconsider Example 1.

℘R �

e1,
u1, ([0.5, 0.8], [0.2, 0.5], [0.1, 0.2]), ([0.3, 0.5], [0.1, 0.3], [0.2, 0.4]), ([0.6, 0.9], [0.7, 0.8], [0.8, 1])( 􏼁

u2, ([0.2, 0.4], [0.3, 0.4], [0.1, 0.3]), ([0.2, 0.5], [0.1, 0.6], [0.1, 0.3]), ([0.8, 1], [0.6, 0.9], [0.6, 0.7])( 􏼁
􏼨 􏼩􏼠 􏼡,

e2,
u1, ([0.3, 0.6], [0.1, 0.6], [0.3, 0.4]), ([0, 0.2], [0.1, 0.4], [0.3, 0.5]), ([0.5, 0.9], [0.3, 0.8], [0.5, 0.8])( 􏼁

u2, ([0.2, 0.5], [0.2, 0.3], [0.5, 0.6]), ([0.3, 0.5], [0.1, 0.5], [0.5, 0.8]), ([0.6, 0.9], [0.5, 0.8], [0.6, 0.9])( 􏼁
􏼨 􏼩􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

℘L �

e1,
u1, ([0.4, 0.8], [0.3, 0.6], [0.2, 0.5]), ([0.2, 0.7], [0.3, 0.4], [0.4, 0.6]), ([0.7, 0.8], [0.4, 0.9], [0.5, 1])( 􏼁

u2, ([0.1, 0.6], [0.5, 0.7], [0.1, 0.2]), ([0.3, 0.4], [0.2, 0.5], [0.2, 0.5]), ([0.5, 0.9], [0.7, 0.8], [0.4, 0.6])( 􏼁
􏼨 􏼩􏼠 􏼡,

e2,
u1, ([0.2, 0.7], [0.3, 0.5], [0.2, 0.6]), ([0.1, 0.3], [0.2, 0.5], [0.2, 0.7]), ([0.4, 0.9], [0.4, 0.7], [0.5, 0.8])( 􏼁

u2, ([0.1, 0.6], [0.1, 0.5], [0.4, 0.8]), ([0.3, 0.6], [0.3, 0.4], [1, 1]), ([0.5, 0.9], [0.3, 0.7], [0.1, 0.8])( 􏼁
􏼨 􏼩􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,
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℘R ∧℘L �

e1, e2( 􏼁, u1, ([0.4, 0.8], [0.3, 0.6], [0.2, 0.5]), ([0.2, 0.5], [0.3, 0.4], [0.4, 0.6]), ([0.6, 0.8], [0.7, 0.9].[0.8, 0.1])( 􏼁,

u2, ([0.1, 0.4], [0.5, 0.7], [0.1, 0.3]), ([0.2, 0.4], [0.2, 0.6], [0.2, 0.5]), ([0.5, 0.9], [0.7, 0.9].[0.6, 0.7])( 􏼁,

e1, e3( 􏼁, u1, ([0.2, 0.7], [0.3, 0.5], [0.2, 0.6]), ([0.1, 0.3], [0.2, 0.5], [0.2, 0.7]), ([0.4, 0.9], [0.7, 0.8].[0.8, 0.1])( 􏼁,

u2, ([0.1, 0.4], [0.3, 0.5], [0.4, 0.8]), ([0.2, 0.5], [0.3, 0.6], [1, 1]), ([0.5, 0.9], [0.6, 0.9].[0.6, 0.8])( 􏼁,

e1, e2( 􏼁, u1, ([0.3, 0.6], [0.1, 0.6], [0.3, 0.4]), ([0, 0.2], [0.1, 0.4], [0.3, 0.5]), ([0.5, 0.9], [0.3, 0.8].[0.5, 0.8])( 􏼁,

u2, ([0.2, 0.5], [0.2, 0.3], [0.5, 0.6]), ([0.3, 0.5], [0.1, 0.5], [0.5, 0.8]), ([0.6, 0.9], [0.5, 0.8].[0.6, 0.9])( 􏼁,

e1, e3( 􏼁, u1, ([0.2, 0.6], [0.1, 0.6], [0.3, 0.6]), ([0, 0.2], [0.2, 0.5], [0.3, 0.7]), ([0.4, 0.9], [0.4, 0.8].[0.5, 0.8])( 􏼁,

u2, ([0.2, 0.5], [0.2, 0.5], [0.5, 0.8]), ([0.3, 0.5], [0.3, 0.5], [0.5, 0.8]), ([0.5, 0.9], [0.5, 0.9].[0.6, 0.9])( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(41)

Definition 26. Let ℘R be an mPIVNSS. ,en, necessity
operation on mIVPNSS is represented by ⊕℘R and defined
as follows:

⊕℘R � e,
u, u

ℓR
α (u), u

uR
α (u)􏽨 􏽩, v

ℓR
α (u), v

uR
α (u)􏽨 􏽩,

1 − u
uR
α (u), 1 − u

ℓR
α (u)􏽨 􏽩

⎛⎝ ⎞⎠: u ∈ U, α � 1, 2, 3, . . . , m
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠: e ∈ E

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (42)

Definition 27. Let ℘R be the mPIVNSS over U. ,en,
possibility operation on mIVPNSS is represented by ⊗℘R
and defined as follows:

⊗℘R � e,
u, 1 − w

uR
α (u), 1 − w

ℓR
α (u)􏽨 􏽩,

v
ℓR
α (u), v

uR
α (u)􏽨 􏽩, w

ℓR
α (u), w

uR
α (u)􏽨 􏽩

⎛⎝ ⎞⎠: u ∈ U, α � 1, 2, 3, . . . , m
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠: e ∈ E

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (43)

Proposition 4. Let ℘R and ℘L be two mPIVNSSs over U.
)en,

⊕ ℘R ∪ ϵ℘L( 􏼁 � ⊕℘L ∪ ϵ ⊕℘R,

⊕ ℘R ∩ ϵ℘L( 􏼁 � ⊕℘L ∩ ϵ ⊕℘R.
(44)

Proof. As we know,

℘R � e, u, u
ℓR
α (u), u

uR
α (u)􏽨 􏽩, v

ℓR
α (u), v

uR
α (u)􏽨 􏽩, w

ℓR
α (u), w

uR
α (u)􏽨 􏽩􏼐 􏼑: u ∈ U, α � 1, 2, 3, . . . , m􏽮 􏽯􏼐 􏼑: e ∈ E􏽮 􏽯,

℘L(e) � e, u, u
ℓL
α (u), u

uL
α (u)􏽨 􏽩, v

ℓL
α (u), v

uL
α (u)􏽨 􏽩, w

ℓL
α (u), w

uL
α (u)􏽨 􏽩􏼐 􏼑: u ∈ U, α � 1, 2, 3, . . . , m􏽮 􏽯􏼐 􏼑: e ∈ E􏽮 􏽯,

(45)

be two mPIVNSSs over U. Let ℘R ∪ ϵ℘L � ℘H:

u ℘H( 􏼁 �

u
ℓR
α (u), u

uR
α (u)􏽨 􏽩, if e ∈ R − L,

u
ℓL
α (u), u

uL
α (u)􏽨 􏽩, if e ∈L − R,

max u
ℓR
α (u), u

ℓL
α (u)􏽮 􏽯,max u

uR
α (u), u

uL
α (u)􏽮 􏽯􏽨 􏽩, if e ∈ R∩L,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
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v ℘H( 􏼁 �

v
ℓR
α (u), v

uR
α (u)􏽨 􏽩, if e ∈ R − L,

v
ℓL
α (u), v

uL
α (u)􏽨 􏽩, if e ∈L − R,

min v
ℓR
α (u), v

ℓL
α (u)􏽮 􏽯,min v

uR
α (u), v

uL
α (u)􏽮 􏽯􏽨 􏽩, if e ∈ R∩L,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

w ℘H( 􏼁 �

w
ℓR
α (u), w

uR
α (u)􏽨 􏽩, if e ∈ R − L,

w
ℓL
α (u), w

uL
α (u)􏽨 􏽩, if e ∈L − R,

min w
ℓR
α (u), w

ℓL
α (u)􏽮 􏽯, min w

uR
α (u), w

uL
α (u)􏽮 􏽯􏽨 􏽩, if e ∈ R∩L.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(46)

By using Definition 26,

⊕ u ℘H( 􏼁 �

u
ℓR
α (u), u

uR
α (u)􏽨 􏽩, if e ∈ R − L,

u
ℓL
α (u), u

uL
α (u)􏽨 􏽩, if e ∈L − R,

max u
ℓR
α (u), u

ℓL
α (u)􏽮 􏽯,max u

uR
α (u), u

uL
α (u)􏽮 􏽯􏽨 􏽩, if e ∈ R∩L,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⊕ v ℘H( 􏼁 �

v
ℓR
α (u), v

uR
α (u)􏽨 􏽩, if e ∈ R − L,

v
ℓL
α (u), v

uL
α (u)􏽨 􏽩, if e ∈L − R,

min v
ℓR
α (u), v

ℓL
α (u)􏽮 􏽯,min v

uR
α (u), v

uL
α (u)􏽮 􏽯􏽨 􏽩, if e ∈ R∩L,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⊕w ℘H( 􏼁 �

1 − u
ℓR
α (u), 1 − u

uR
α (u)􏽨 􏽩, if e ∈ R − L,

1 − u
ℓL
α (u), 1 − u

uL
α (u)􏽨 􏽩, if e ∈L − R,

min u1−
ℓR
α (u), 1 − u

ℓL
α (u)􏽮 􏽯, min 1 − u

uR
α (u), 1 − u

uL
α (u)􏽮 􏽯􏽨 􏽩, if e ∈ R∩L.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(47)

Assume ⊕℘L ∪ ϵ ⊕℘R � ℵ, where ⊕℘R and ⊕℘L are
given as follows by using the definition of necessity
operation.

⊕℘R(e) � e,
u, u

ℓR
α (u), u

uR
α (u)􏽨 􏽩, v

ℓR
α (u), v

uR
α (u)􏽨 􏽩,

1 − u
uR
α (u), 1 − u

ℓR
α (u)􏽨 􏽩

⎛⎝ ⎞⎠: u ∈ U, α � 1, 2, 3, . . . , m
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠: e ∈ E

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

⊕℘L(e) � e,
u, u

ℓL
α (u), u

uL
α (u)􏽨 􏽩, v

ℓL
α (u), v

uL
α (u)􏽨 􏽩,

1 − u
uL
α (u), 1 − u

ℓL
α (u)􏽨 􏽩

⎛⎝ ⎞⎠: u ∈ U, α � 1, 2, 3, . . . , m
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠: e ∈ E

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(48)

By using Definition 16,

u(ℵ) �

u
ℓR
α (u), u

uR
α (u)􏽨 􏽩, if e ∈ R − L,

u
ℓL
α (u), u

uL
α (u)􏽨 􏽩, if e ∈L − R,

max 1 − u
ℓR
α (u), 1 − u

ℓL
α (u)􏽮 􏽯,max 1 − u

uR
α (u), 1 − u

uL
α (u)􏽮 􏽯􏽨 􏽩, if e ∈ R∩L,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

v(ℵ) �

v
ℓR
α (u), v

uR
α (u)􏽨 􏽩, if e ∈ R − L,

v
ℓL
α (u), v

uL
α (u)􏽨 􏽩, if e ∈L − R,

min 1 − v
ℓR
α (u), 1 − v

ℓL
α (u)􏽮 􏽯,min 1 − v

uR
α (u), 1 − v

uL
α (u)􏽮 􏽯􏽨 􏽩, if e ∈ R∩L,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩
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w(ℵ) �

1 − u
ℓR
α (u), 1 − u

uR
α (u)􏽨 􏽩, if e ∈ R − L,

1 − u
ℓL
α (u), 1 − u

uL
α (u)􏽨 􏽩, if e ∈L − R,

min 1 − u
ℓR
α (u), 1 − u

ℓL
α (u)􏽮 􏽯, min 1 − u

uR
α (u), 1 − u

uL
α (u)􏽮 􏽯􏽨 􏽩, if e ∈ R∩L.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(49)

,erefore, (℘R ∪ ϵ ℘L) � ⊕℘L ∪ ϵ ⊕℘R.

4. Correlation Coefficient of m-Polar Interval-
Valued Neutrosophic Soft Set

In this section, we introduce CC and WCC with their
properties for mPIVNSS and present the decision-making
approach by using developed CC.

Definition 28. Let

℘R � e, u, u
ℓR
α uj􏼐 􏼑, u

uR
α uj􏼐 􏼑􏽨 􏽩, v

ℓR
α uj􏼐 􏼑, v

uR
α uj􏼐 􏼑􏽨 􏽩, w

ℓR
α uj􏼐 􏼑, w

uR
α uj􏼐 􏼑􏽨 􏽩􏼐 􏼑: uj ∈ U, α � 1, 2, 3, . . . , m􏽮 􏽯􏼐 􏼑: e ∈ E􏽮 􏽯,

℘L � e, u, u
ℓL
α uj􏼐 􏼑, u

uL
α uj􏼐 􏼑􏽨 􏽩, v

ℓL
α uj􏼐 􏼑, v

uL
α uj􏼐 􏼑􏽨 􏽩, w

ℓL
α uj􏼐 􏼑, w

uL
α uj􏼐 􏼑􏽨 􏽩􏼐 􏼑: uj ∈ U, α � 1, 2, 3, . . . , m􏽮 􏽯􏼐 􏼑: e ∈ E􏽮 􏽯,

(50)

be two mPIVNSSs over the universe of discourse U. ,en,
informational neutrosophic energies for mPIVNSS can be
presented as

ςmPIVNSS ℘R( 􏼁 � 􏽘

m

α�1
􏽘

n

j�1
u
ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ u

uR
α uj􏼐 􏼑􏼐 􏼑

2
+ v

ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ v

uR
α uj􏼐 􏼑􏼐 􏼑

2
+ w

ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ w

uR
α uj􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓,

ςmPIVNSS ℘L( 􏼁 � 􏽘
m

α�1
􏽘

n

j�1
u
ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ u

uL
α uj􏼐 􏼑􏼐 􏼑

2
+ v

ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ v

uL
α uj􏼐 􏼑􏼐 􏼑

2
+ w

ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ w

uL
α uj􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓.

(51)

Definition 29. Let ℘R and ℘L be two mPIVNSSs. ,en, the
correlation between them defined as

CmPIVNSS ℘R, ℘L( 􏼁 � 􏽘
m

α�1
􏽘

n

j�1
u
ℓR
α uj􏼐 􏼑∗ u

ℓL
α uj􏼐 􏼑 + u

uR
α uj􏼐 􏼑∗ u

uL
α uj􏼐 􏼑 + v

ℓR
α uj􏼐 􏼑∗ v

ℓL
α uj􏼐 􏼑􏼐

+ v
uR
α uj􏼐 􏼑∗ v

uL
α uj􏼐 􏼑 + w

ℓR
α uj􏼐 􏼑∗w

ℓL
α uj􏼐 􏼑 + w

uR
α uj􏼐 􏼑∗w

uL
α uj􏼐 􏼑􏼑.

(52)

Theorem 1. Let ℘R and ℘L be two mPIVNSSs and
CmPIVNSS(℘R,℘L) represents the correlation among them.
)en, the subsequent estates hold.

(1) CmPIVNSS(℘R,℘R) � ςmPIVNSS(℘R)

(2) CmPIVNSS(℘L,℘L) � ςmPIVNSS(℘L)

Proof. ,e proof is trivial.

Definition 30. Let ℘R and ℘L be two mPIVNSSs over U.
,en, the CC between them is given as δmPIVNSS(℘R,℘L)

and can be stated as follows:
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δmPIVNSS ℘R,℘L( 􏼁 �
CmPIVNSS ℘R,℘L( 􏼁

������������������������
ςmPIVNSS ℘R( 􏼁∗ ςmPIVNSS ℘L( 􏼁

􏽱 ,

(53)

δmPIVNSS ℘R,℘L( 􏼁 �

􏽐
m
α�1 􏽐

n
j�1

u
ℓR
α uj􏼐 􏼑∗ u

ℓL
α uj􏼐 􏼑 + u

uR
α uj􏼐 􏼑∗ u

uL
α uj􏼐 􏼑 + v

ℓR
α uj􏼐 􏼑∗ v

ℓL
α uj􏼐 􏼑 +

v
uR
α uj􏼐 􏼑∗ v

uL
α uj􏼐 􏼑 + w

ℓR
α uj􏼐 􏼑∗w

ℓL
α uj􏼐 􏼑 + w

uR
α uj􏼐 􏼑∗w

uL
α uj􏼐 􏼑

⎛⎝ ⎞⎠

���������������������������������������������������������������������������

􏽐
m
α�1 􏽐

n
j�1 u

ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ u

uR
α uj􏼐 􏼑􏼐 􏼑

2
+ v

ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ v

uR
α uj􏼐 􏼑􏼐 􏼑

2
+ w

ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ w

uR
α uj􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓

􏽲

����������������������������������������������������������������������������

􏽐
m
α�1 􏽐

n
j�1 u

ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ u

uL
α uj􏼐 􏼑􏼐 􏼑

2
+ v

ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ v

uL
α uj􏼐 􏼑􏼐 􏼑

2
+ w

ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ w

uL
α uj􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓

􏽲
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(54)

Theorem 2. Let ℘R and ℘L be two mPIVNSSs overU. )en,
CC between them satisfies the following properties.

(1) 0≤ δmPIVNSS(℘R, ℘L)≤ 1
(2) δmPIVNSS(℘R,℘L) � δmPIVNSS(℘L,℘R)

(3) If ℘R � ℘L, that is, ∀j, α, uℓR
α (uj) � uℓL

α (uj),
uuR
α (uj) � uuL

α (uj), vℓRα (uj) � vℓLα (uj), vuRα (uj) �

vuLα (uj), wℓR
α (uj) � wℓL

α (uj), wuR
α (uj) � wuL

α (uj),
then δmPIVNSS(℘R,℘L) � 1.

Proof. ,e proof is obvious.

Definition 31. Let ℘R and ℘L be two mPIVNSSs over U.
,en, their CC has also been given as δ1mPIVNSS(℘R,℘L) and
is expressed as follows:

δ1mPIVNSS ℘R, ℘L( 􏼁 �
CmPIVNSS ℘R, ℘L( 􏼁

max ςmPIVNSS ℘R( 􏼁, ςmPIVNSS ℘L( 􏼁􏼈 􏼉
,

δ1IVIFSS ℘R,℘L( 􏼁 �

􏽐
m
α�1 􏽐

n
j�1

u
ℓR
α uj􏼐 􏼑∗ u

ℓL
α uj􏼐 􏼑 + u

uR
α uj􏼐 􏼑∗ u

uL
α uj􏼐 􏼑 + v

ℓR
α uj􏼐 􏼑∗ v

ℓL
α uj􏼐 􏼑+

v
uR
α uj􏼐 􏼑∗ v

uL
α uj􏼐 􏼑 + w

ℓR
α uj􏼐 􏼑∗w

ℓL
α uj􏼐 􏼑 + w

uR
α uj􏼐 􏼑∗w

uL
α uj􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

max

���������������������������������������������������������������������������

􏽐
m
α�1 􏽐

n
j�1 u

ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ u

uR
α uj􏼐 􏼑􏼐 􏼑

2
+ v

ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ v

uR
α uj􏼐 􏼑􏼐 􏼑

2
+ w

ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ w

uR
α uj􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓

􏽲

����������������������������������������������������������������������������

􏽐
m
α�1 􏽐

n
j�1 u

ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ u

uL
α uj􏼐 􏼑􏼐 􏼑

2
+ v

ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ v

uL
α uj􏼐 􏼑􏼐 􏼑

2
+ w

ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ w

uL
α uj􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓

􏽲

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (55)

Theorem 3. Let ℘R and ℘L be two mPIVNSSs overU. )en,
CC between them satisfies the following properties.

(1) 0 0≤ δ1IVIFSS(℘R,℘L)≤ 1

(2) δ1IVIFSS(℘R,℘L) � δ1IVIFSS(℘L, ℘R)

(3) If ℘R � ℘L, that is, ∀j, α, uℓR
α (uj) � uℓL

α (uj),
uuR
α (uj) � uuL

α (uj), vℓRα (uj) � vℓLα (uj), vuRα (uj) �

vuLα (uj), wℓR
α (uj) � wℓL

α (uj), wuR
α (uj) � wuL

α (uj),
then δ1IVIFSS(℘R, ℘L) � 1.

Proof. ,e proof is obvious.

,ese days, it is important to discuss the weight of
mPNSS for practical life. When professionals set different
weights for each alternative, the decision may be different.
,erefore, it is perfectly correct for experts to weigh the
recent decision. Suppose the weight of professionals can be
stated as �ω � �ω1, �ω2, �ω3, . . . , �ωm􏼈 􏼉

T, where �ωk > 0,
􏽐

m
k�1 �ωk � 1. ,e weights for an attribute can be assumed as

follows: c � c1, c2, c3, . . . , cn􏼈 􏼉
T, where ci > 0, 􏽐

n
i�1 ci � 1.

Definition 32. Let ℘R and ℘L are two mPIVNSS over U.

,en, their WCC is given as δWmPIVNSS(℘R,℘L) and stated
as follows:
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δWmPIVNSS ℘R,℘L( 􏼁 �
CmPIVNSS ℘R,℘L( 􏼁

������������������������
ςmPIVNSS ℘R( 􏼁∗ ςmPIVNSS ℘L( 􏼁

􏽱 ,

δWmPIVNSS ℘R,℘L( 􏼁 �

􏽐
m
α,k�1 �ω 􏽐

n
i,j�1 ci

u
ℓR
α uj􏼐 􏼑∗ u

ℓL
α uj􏼐 􏼑 + u

uR
α uj􏼐 􏼑∗ u

uL
α uj􏼐 􏼑 + v

ℓR
α uj􏼐 􏼑∗ v

ℓL
α uj􏼐 􏼑+

v
uR
α uj􏼐 􏼑∗ v

uL
α uj􏼐 􏼑 + w

ℓR
α uj􏼐 􏼑∗w

ℓL
α uj􏼐 􏼑 + w

uR
α uj􏼐 􏼑∗w

uL
α uj􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

����������������������������������������������������������������������������������

􏽐
m
α,k�1 �ω 􏽐

n
i,j�1 ci u

ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ u

uR
α uj􏼐 􏼑􏼐 􏼑

2
+ v

ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ v

uR
α uj􏼐 􏼑􏼐 􏼑

2
+ w

ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ w

uR
α uj􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓􏼒 􏼓

􏽲

�����������������������������������������������������������������������������������

􏽐
m
α,k�1 �ω 􏽐

n
i,j�1 ci u

ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ u

uL
α uj􏼐 􏼑􏼐 􏼑

2
+ v

ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ v

uL
α uj􏼐 􏼑􏼐 􏼑

2
+ w

ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ w

uL
α uj􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓􏼒 􏼓

􏽲

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(56)

Definition 33. Let ℘R and ℘L be two mPIVNSSs over U.
,en, theirWCC also given as δ1WmPIVNSS(℘R,℘L) is defined
as follows:

δ1WmPIVNSS ℘R,℘L( 􏼁 �
CmPIVNSS ℘R,℘L( 􏼁

max ςmPIVNSS ℘R( 􏼁, ςmPIVNSS ℘L( 􏼁􏼈 􏼉
,

δ1WmPIVNSS ℘R,℘L( 􏼁 �

􏽐
m
α,k�1 �ω 􏽐

n
i,j�1 ci

u
ℓR
α uj􏼐 􏼑∗ u

ℓL
α uj􏼐 􏼑 + u

uR
α uj􏼐 􏼑∗ u

uL
α uj􏼐 􏼑 + v

ℓR
α uj􏼐 􏼑∗ v

ℓL
α uj􏼐 􏼑 +

v
uR
α uj􏼐 􏼑∗ v

uL
α uj􏼐 􏼑 + w

ℓR
α uj􏼐 􏼑∗w

ℓL
α uj􏼐 􏼑 + w

uR
α uj􏼐 􏼑∗w

uL
α uj􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

max

����������������������������������������������������������������������������������

􏽐
m
α,k�1 �ω 􏽐

n
i,j�1 ci u

ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ u

uR
α uj􏼐 􏼑􏼐 􏼑

2
+ v

ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ v

uR
α uj􏼐 􏼑􏼐 􏼑

2
+ w

ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ w

uR
α uj􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓􏼒 􏼓

􏽲

�����������������������������������������������������������������������������������

􏽐
m
α,k�1 �ω 􏽐

n
i,j�1 ci u

ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ u

uL
α uj􏼐 􏼑􏼐 􏼑

2
+ v

ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ v

uL
α uj􏼐 􏼑􏼐 􏼑

2
+ w

ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ w

uL
α uj􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓􏼒 􏼓

􏽲

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(57)

If we consider �ω � (1/m), (1/m), . . . , (1/m){ } and
c � (1/n), (1/n), . . . , (1/n){ }, then δWmPIVNSS(℘R,℘L) and
δ1WmPIVNSS(℘R,℘L) are reduced to δmPIVNSS(℘R,℘L) and
δ1mPIVNSS(℘R,℘L), respectively, defined in Definitions 30
and 31.

Theorem 4. Let ℘R and ℘L be two mPIVNSSs overU. )en,
WCC between them satisfies the following properties.

(1) 0≤ δWmPIVNSS(℘R,℘L)≤ 1
(2) δWmPIVNSS(℘R, ℘L) � δWmPIVNSS(℘L, ℘R)

(3) If ℘R � ℘L, that is, ∀j, α, uℓR
α (uj) � uℓL

α (uj),
uuR
α (uj) � uuL

α (uj), vℓRα (uj) � vℓLα (uj), vuRα (uj) �

vuLα (uj), wℓR
α (uj) � wℓL

α (uj), wuR
α (uj) � wuL

α (uj),
then δWmPIVNSS(℘R,℘L) � 1.

Proof. ,e proof is obvious.

4.1. Decision-Making Approach Based on Correlation Coef-
ficient of mPIVNSS. Assume a set of “s” alternatives such as
β � β1, β2, β3, . . . , βs

􏽮 􏽯 for assessment under the team of
experts such as U � u{ 1, u2, u3, . . . , un} with weights
Ω � (Ω1, Ω1, . . . , Ωn)T, such that Ωi > 0, 􏽐

n
i�1Ωi � 1. Let

E � e1, e2, . . . , em􏼈 􏼉 be a set of attributes with weights, and
c � (c1, c2, c3, . . . , cm)T be a weight vector for parameters
such as ci > 0, 􏽐

m
j�1 cj � 1. ,e team of experts {ui:

i � 1, 2, . . . , n} evaluate the alternatives {β(z): z � 1, 2, . . . , s}
under the considered parameters {ej: j � 1, 2, . . . , m} given
in the form of mPIVNSNs L(z)

ij � (u(z)
αij

, v(z)
αij

, w(z)
αij

), where
u(z)
αij

� [uℓ
αij

(u), uu
αij

(u)], v(z)
αij

� [vℓαij
(u), vuαij

(u)], and w(z)
αij

�

[wℓ
αij

(u), wu
αij

(u)], where 0≤ uℓ
α(u), uu

α(u), vℓα(u), vuα(u),

wℓ
α(u), wu

α(u)≤ 1 and 0≤ uu
αij

(u) + vuαij
(u) + wu

αij
(u)≤ 3. So,

L
(z)
ij � ([uℓ

αij
(u), tuu

αij
n(u)), t [vℓαij

(u), vuαij
(u)]n, q

[wℓ
αij

(u), wu
αij

(u)]) for all i, j.
,e flowchart of the offered algorithm is shown in

Figure 1.

5. Similarity Measures and Weighted Average
Operator for m-Polar Interval-Valued
Neutrosophic Soft Set

In the past few years, many mathematicians developed
various methodologies to solve MCDM problems, such as
aggregation operators for different hybrid structures, CC,
similarity measures, and decision-making applications.
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Some operational laws and mPIVNSWA with its decision-
making approach have been established for mPIVNSS which
is an extension of the interval-valued neutrosophic weighted
aggregation operator [47]. ,e idea of the score, accuracy,
and certainty functions based on [48] introduces in the
following section for comparing m-polar interval-valued
neutrosophic numbers (mPIVNNs). We also present two
different types of similarity measures with their decision-
making approaches, such as cosine and set-theoretic based
on Bhattacharya’s distance [49, 50] for mPIVNSS.

Definition 34. Let ℘R � [uℓ
α(u), uu

α(u)], [vℓα(u), vuα(u)],

[wℓ
α(u), wu

α(u)], ℘R1
� [u

ℓR1
α (u), u

uR1
α (u)], [v

ℓR1
α (u),

v
uR1
α (u)], [w

ℓR1
α (u), w

uR1
α (u)], and ℘R2

� [u
ℓR2
α (u), uuR

α

2(u)], [v
ℓR2
α (u), v

uR2
α (u)], [w

ℓR2
α (u), w

uR2
α (u)] be three

mPIVNSNs, and the basic operators for mPIVNSNs are
defined as when δ > 0.

(1) ℘R1
⊕℘R2

� [u
ℓR1
α (u) + u

ℓR2
α (u) − u

ℓR1
α (u)u

ℓR2
α􏽄

(u), u
uR1
α (u) + u

uR2
α (u) − u

uR1
α (u)u

uR2
α (u)], [v

ℓR1
α

(u)v
ℓR2
α (u), vα

uR1(u) v
uR2
α (u)], [w

ℓR1
α (u)w

ℓR2
α (u),

w
uR1
α (u) w

uR2
α (u)]〉

(2) ℘R1
⊗℘R2

� [u
ℓR1
α (u)u

ℓR2
α􏽄 (u), u

uR1
α (u)u

uR2
α (u)],

[v
ℓR1
α (u) + v

ℓR2
α (u) − v

ℓR1
α (u)v

ℓR2
α (u), v

uR1
α (u) +

v
uR2
α (u) − v

uR1
α (u)v

uR2
α (u)], [w

ℓR1
α (u) + w

ℓR2
α (u) −

w
ℓR1
α (u)w

ℓR2
α (u), w

uR1
α (u) + w

uR2
α (u) − w

uR1
α

(u)w
uR2
α (u)]〉

(3) δ℘R � [1 − (1 − uℓR
α (u))δ,􏽄 1 − (1 − uuR

α (u))δ],

[(vℓRα (u))δ, (vuRα (u))δ], [(wℓR
α (u))δ, (wuR

α (u))δ]〉

(4) (℘R)δ � [(uℓ
α(u))δ, (uu

α(u))δ],􏽄 [1 − (1 − vℓRα
(u))δ, 1 − (1 − vuRα (u))δ], [1 − (1 − wℓR

α (u))δ, 1−

(1 − wuR
α (u))δ] 〉

Theorem 5. Let ℘R, ℘R1
, and ℘R2

be three mPIVNSNs and
δ, δ1, δ2 > 0; then, the following laws hold.

(1) ℘R1
⊕℘R2

� ℘R2
⊕℘R1

(2) ℘R1
⊗℘R2

� ℘R2
⊗℘R1

(3) δ(℘R1
⊕℘R2

) � δ℘R2
⊕ δ℘R1

(4) (℘R1
⊗℘R2

)δ � (℘R1
)δ ⊗ (℘R2

)δ

(5) δ1℘R1
⊕ δ2℘R1

� (δ1 ⊕ δ2)℘R1

(6) (℘R1
)δ1 ⊗ (℘R1

)δ2 � (℘R1
)δ1+δ2

(7) (℘R ⊕℘R1
)⊕℘R2

� ℘R ⊕ (℘R1
⊕℘R2

)

(8) (℘R ⊗℘R1
)⊗℘R2

� ℘R ⊗ (℘R1
⊗℘R2

)

Proof. ,e proof of the above laws is straightforward by
using Definition 28.

Definition 35. Let ℘Reij
� [uℓR

αij
(u), uuR

αij
(u)],

[vℓRαij
(u), vuRαij

(u)], [wℓR
αij

(u), wuR
αij

(u)] be a collection of
mPIVNSNs.Ωi and cj are the weight vectors for expert’s and
parameters, respectively, with given conditions Ωi > 0,
􏽐

n
i�1Ωi � 1, cj > 0, 􏽐

m
j�1 cj � 1, where

(i � 1, 2, . . . , n and j � 1, 2, . . . , m). ,en, the
mPIVNSWA operator defined as mPIVNSWA: Δn⟶Δ is
defined as follows:

mPIVNSWA ℘Re11
,℘Re12

, . . . , ℘Renk
􏼐 􏼑 � ⊕ k

j�1cj ⊕
n
i�1Ωi℘Reij

􏼒 􏼓

(58)

Theorem 6. Let ℘Reij
� [uℓR

αij
(u), uuR

αij (u)], [vℓRαij
(u),

vuRαij
(u)], [wℓR

αij
(u), wuR

αij
(u)] be a collection of mPIVNSNs,

where (i � 1, 2, . . . , n and j � 1, 2, . . . , k), and the aggre-
gated value is also an interval-valued neutrosophic soft
number, such as

mPIVNSWA ℘Re11, ℘Re12, . . . , ℘Renk
􏼐 􏼑 �

1 − 􏽙
m

j�1
􏽙

n

i�1
1 − u

ℓR
αij

(u)􏼒 􏼓
Ωi

⎛⎝ ⎞⎠

cj

, 1 − 􏽙
m

j�1
􏽙

n

i�1
1 − u

uR
αij

(u)􏼒 􏼓
Ωi

⎛⎝ ⎞⎠

cj

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

1 − 1 − 􏽙
m

j�1
􏽙

n

i�1
1 − v

ℓR
αij

(u)􏼒 􏼓
Ωi

⎛⎝ ⎞⎠

cj

⎛⎝ ⎞⎠, 1 − 1 − 􏽙
m

j�1
􏽙

n

i�1
1 − v

uR
αij

(u)􏼒 􏼓
Ωi

⎛⎝ ⎞⎠

cj

⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

1 − 1 − 􏽙
m

j�1
􏽙

n

i�1
1 − w

ℓR
αij

(u)􏼒 􏼓
Ωi

⎛⎝ ⎞⎠

cj

⎛⎝ ⎞⎠, 1 − 1 − 􏽙
m

j�1
􏽙

n

i�1
1 − w

uR
αij

(u)􏼒 􏼓
Ωi

⎛⎝ ⎞⎠

cj

⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

􏼪 􏼫. (59)

Step 1
• Input alternatives, attributes 

Step 2

• Construct the decision matrix according to experts in
form of mPIVNSNs. 

Step 3

• Compute the informational interval neutrosophic energies
for mPIVNSSs. 

Step 4
• Calculate the correlation between mPIVNSSs

Step 5
• Compute the CC among mPIVNSSs

Step 6
• Analyze the alternatives ranking

Figure 1: Flowchart for correlation coefficient under mPIVNSS.
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Proof. We can prove this easily by using IFSWA [51].

Definition 36. Let ℘R � [uℓ
α(u), uu

α(u)], [vℓα(u),

vuα(u)], [wℓ
α(u), wu

α(u)] be an mPIVNSN; then the score,
accuracy, and certainty functions for an mPIVNSN, re-
spectively, defined as follows:

(1) S(℘R) � (1/6m)(uℓ
α (u) + uu

α(u) + 1 − vℓα(u) + 1 −

vuα(u) + 1 − wℓ
α(u) + 1 − wu

α(u))(℘R)
(2) (2)A(℘R) � (1/4m)(4 + uℓ

α(u) + uu
α (u) − wℓ

α(u) −

wu
α(u))(℘R)

(3) (3)C(℘R) � (1/2m)(2 + uℓ
α(u) + uu

α(u))(℘R), where
α � 1, 2, . . . , m

Definition 37. Let ℘R and ℘R1
be two mPIVNSSs. ,en, the

comparison approach is presented as follows:

(1) (1)If (℘R)> (℘R1
), then ℘R is superior to ℘R1

(2) (2)If (℘R) � (℘R1
) and (℘R)>A(℘R1

), then ℘R is
superior to ℘R1

(3) (3)If S(℘R) � S(℘R1
), A(℘R) � A(℘R1

), and
C(℘R)>C(℘R1

), then ℘R is superior to ℘R1

(4) If S(℘R) � S(℘R1
), A(℘R)>A(℘R1

), and
C(℘R) � C(℘R1

), then ℘R is indifferent to ℘R1
and

can be denoted as ℘R ∼ ℘R1

5.1. Decision-Making Approach-Based mPIVNSWA for
mPIVNSS. Assume a set of “s” alternatives such as
β � β1, β2, β3, . . . , βs

􏽮 􏽯 for assessment under the team of
experts such as U � u1, u2, u3, . . . , un􏼈 􏼉 with weights Ω �

(Ω1, Ω1, . . . , Ωn)T, such that Ωi > 0, 􏽐
n
i�1Ωi � 1. Let E �

e1, e2, . . . , em􏼈 􏼉 be a set of attributes with weights
c � (c1, c2, c3, . . . , cm)T be a weight vector for parameters
such as ci > 0, 􏽐

m
j�1 cj � 1. ,e team of experts {ui:

i � 1, 2, . . . , n} evaluate the alternatives {β(z): z � 1, 2, . . . , s}
under the considered parameters {ej: j � 1, 2, . . . , m} given
in the form of mPIVNSNs L(z)

ij � (u(z)
αij

, v(z)
αij

, w(z)
αij

), where
u(z)
αij

� [uℓ
αij

(u), uu
αij

(u)], v(z)
αij

� [vℓαij
(u), vuαij

(u)], and
w(z)

αij
� [wℓ

αij
(u), wu

αij
(u)], where 0≤ uℓ

α(u), uu
α(u), vℓα(u),

vuα(u), wℓ
α(u), wu

α(u)≤ 1 and 0≤ uu
αij

(u) + vuαij
(u) + wu

αij

(u)≤ 3. So, Δk � ([uℓ
αij

(u), tuu
αij

n (u)], t[vℓαij
(u), vuαij

(u)]n, q[wℓ
αij

(u), wu
αij

(u)]) for all i, j. Experts give their
preferences for each alternative in term of mPIVNSNs by
using the mPIVNSWA operator in the form
ofΔk � ([uℓ

αij
(u), t uu

αij
n(u)], t[vℓαij

(u), vuαij
(u)]n, q[wℓ

αij
(u),

wu
αij

(u)]). Compute the score values for each alternative and
analyze the ranking of the alternatives.

,e flowchart of the offered algorithm is shown in
Figure 2.

Definition 38. Let ℘R1
and ℘R2

be two mPIVNSSs over the
universe of discourse U � u1, u2, . . . , uj􏽮 􏽯. ,en, a cosine
similarity measure between ℘R1

and ℘R2
is defined as

S
1
mPIVNSS ℘R1

,℘R2
􏼐 􏼑 �

1
mn

􏽘
n

j�1
􏽘
m

α�1

u
ℓR
α uj􏼐 􏼑 + u

uR
α uj􏼐 􏼑􏼐 􏼑 u

ℓL
α uj􏼐 􏼑 + u

uL
α uj􏼐 􏼑􏼐 􏼑 + v

ℓR
α uj􏼐 􏼑 + v

uR
α uj􏼐 􏼑􏼐 􏼑 v

ℓL
α uj􏼐 􏼑 + v

uL
α uj􏼐 􏼑􏼐 􏼑 +

w
ℓR
α uj􏼐 􏼑 + w

uR
α uj􏼐 􏼑􏼐 􏼑 w

ℓL
α uj􏼐 􏼑 + w

uL
α uj􏼐 􏼑􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

��������������������������������������������������������������������

u
ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ u

uR
α uj􏼐 􏼑􏼐 􏼑

2
+ v

ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ v

uR
α uj􏼐 􏼑􏼐 􏼑

2
+ w

ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ w

uR
α uj􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓

􏽲

��������������������������������������������������������������������

u
ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ u

uL
α uj􏼐 􏼑􏼐 􏼑

2
+ v

ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ v

uL
α uj􏼐 􏼑􏼐 􏼑

2
+ w

ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ w

uL
α uj􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓

􏽲

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(60)

Theorem 7. Let ℘R, ℘L, and ℘Q be three mPIVNSSs. )en,
the following properties hold.

(1) 0≤S1
mPIVNSS(℘R,℘L)≤ 1

(2) S1
mPIVNSS(℘R,℘L) � S1

mPIVNSS(℘L,℘R)

(3) If ℘R ⊆℘L ⊆℘Q, then S1
mPIVNSS(℘R,℘Q)≤

S1
mPIVNSS(℘R,℘L) and S1

mPIVNSS(℘R,℘Q)≤
S1

mPIVNSS(℘L,℘Q)

Proof. By using the above definition, the proof of these
properties can be done easily.

Definition 39. Let ℘R1
and ℘R2

be two mPIVNSSs over the
universe of discourse U � u1, u2, . . . , uj􏽮 􏽯. ,en, the set-
theoretic similarity measure between ℘R1

and ℘R2
is defined

as
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S
2
mPIVNSS ℘R1

,℘R2
􏼐 􏼑 �

1
mn

􏽘
n

j�1
􏽘
m

α�1

u
ℓR
α uj􏼐 􏼑 + u

uR
α uj􏼐 􏼑􏼐 􏼑 u

ℓL
α uj􏼐 􏼑 + u

uL
α uj􏼐 􏼑􏼐 􏼑 + v

ℓR
α uj􏼐 􏼑 + v

uR
α uj􏼐 􏼑􏼐 􏼑 v

ℓL
α uj􏼐 􏼑 + v

uL
α uj􏼐 􏼑􏼐 􏼑 +

w
ℓR
α uj􏼐 􏼑 + w

uR
α uj􏼐 􏼑􏼐 􏼑 w

ℓL
α uj􏼐 􏼑 + w

uL
α uj􏼐 􏼑􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

max

��������������������������������������������������������������������

u
ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ u

uR
α uj􏼐 􏼑􏼐 􏼑

2
+ v

ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ v

uR
α uj􏼐 􏼑􏼐 􏼑

2
+ w

ℓR
α uj􏼐 􏼑􏼐 􏼑

2
+ w

uR
α uj􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓

􏽲

��������������������������������������������������������������������

u
ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ u

uL
α uj􏼐 􏼑􏼐 􏼑

2
+ v

ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ v

uL
α uj􏼐 􏼑􏼐 􏼑

2
+ w

ℓL
α uj􏼐 􏼑􏼐 􏼑

2
+ w

uL
α uj􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓

􏽲

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.
(61)

Theorem 8. Let ℘R and ℘L be two mPIVNSSs overU. )en,
the following properties hold.

(1) 0 0≤S2
mPIVNSS(℘R,℘L)≤ 1

(2) S2
mPIVNSS(℘R,℘L) � S2

mPIVNSS(℘L,℘R)

(3) If ℘R ⊆℘L ⊆℘Q, then S2
mPIVNSS(℘R,℘Q)

≤S2
mPIVNSS(℘R,℘L) and S2

mPIVNSS(℘R,℘Q)≤
S2

mPIVNSS(℘L,℘Q)

Proof. By using the above definition, the proof of these
properties can be done easily.

6. Application of Similarity Measures and
Correlation Coefficient of mPIVNSS for
Decision Making

In this section, we utilized the developed approaches based
on correlation coefficient, mPIVNSWA operator, and
similarity measures for decision making.

6.1. Numerical Example. A university calls for the ap-
pointment of a vacant position of associate professor. For
further assessment, four candidates (alternatives) choose
after preliminary review such as {β(1), β(2), β(3), β(4)}. A
team of three experts has been hired by the president of the
institution u1, u2, u3􏼈 􏼉 with weights (0.25, 0.30, 0.45)T for

final scrutiny and provide the selection criteria, as given in
Table 1. First of all, the group of experts decides the pa-
rameters for the selection of the candidate such as
e1 � experience, e2 � publications, and e3 � research quality
with weights (0.35, 0.25, 0.40)T. Each expert gives his
preferences for each alternative in the form of mPIVNSNs
under the considered parameters given in Tables 2–5. ,e
developed methods to find the best alternative for the
position of associate professor are presented in Algo-
rithm 1, Definitions 35 and 36.

6.2. Applications of ProposedApproaches. Assume {β(1), β(2),
β(3), β(4)} be a set of alternatives who are shortlisted for
interview and E � e1 � experience, e2 �􏼈 publications, e3 �

research quality} be a set of parameters for the selection of
associate professor. LetR andL⊆E; then, we construct the
3-PIVNSS ℘R(e) according to the requirement of university
management such as follows:

Construct 3-PIVNSS ℘(t)
L (e) for each alternative

according to experts, where t� 1, 2, 3, 4.

6.2.1. Solution by Using Algorithm 1. By using Tables 1–5,
compute the correlation coefficient between
δmPIVNSS(℘R(e),℘(1)

L (e)), δmPIVNSS(℘R(e),℘(2)
L (e)),

δmPIVNSS(℘R(e),℘(3)
L (e)), and δmPIVNSS(℘R(e),℘(4)

L (e)) by
using equation (54), such as

• Develop the
mPIVNSM

for each
alternative.

Step 1 

• Aggregate
matrix using

IVIFSWA
operator

Step 2

Step 3

• Analyze the
ranking. 

Step 4
• Find the

scoring values
for each

alternative 

Figure 2: Decision-making model for mPIVNSS.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�
24.28
27.7036

􏼒 􏼓 � 0.87642.

(62)

Similarly, we can find the CC between
δmPIVNSS(℘R(e),℘(2)

L (e)), δmPIVNSS(℘R(e),℘(3)
L (e)), and

δmPIVNSS(℘R(e),℘(4)
L (e)) given as. δmPIVNSS(℘R(e),

℘(2)
L (e)) � (25.04/28.6727) � 0.87330, δmPIVNSS(℘R(e),

℘(3)
L (e)) � (23.73/29.4968) � 0.80449, and δmPIVNSS(℘R(e),

℘(4)
L (e)) � (24.58/28.7433) � 0.85516. ,is shows that

δmPIVNSS(℘R (e),℘L (1)(e))> δmPIVNSS (℘R(e),℘(2)
L (e))>

δmPIVNSS(℘R(e), ℘(4)
L (e)) > δmPIVNSS(℘R(e),℘(3)

L (e)). ,e
above-obtained ranking shows that β(1) is the best alter-
native. So, the ranking of other alternatives is given as
β(1) > β(2) > β(4) > β(3). Graphical results are shown in
Figure 3.

6.2.2. Solution by Using Algorithm 2

Step 1: experts evaluate the scores for each alternative in
the form of mPIVNSNs given in Tables 2–5.
Step 2: utilizing equation (59), the opinion of experts
for each alternative can be summarized as follows: Δ1 �

[0.3144, 0.5379], [0.1819, 0.3711], [0.2437, 0.3752],
Δ2 � [0.4569, 0.6073], [0.2813, 0.3947], [0.2988,

0.4815], Δ3 � [0.3303, 0.4884], [0.3018, 0.4429],

[0.4296, 0.5670], and Δ4 � [0.3530, 0.5200],

[0.2815, 0.4420], [0.3546, 0.5037].
Step 3: utilizing equation (60), compute the score
values for each alternative. S(Δ1) � 0.2045, S(Δ2) �

0.2004, S(Δ3) � 0.1709, and S(Δ4) � 0.1828.
Step 4: so, alternatives’ ranking is as follows:
S(Δ1)>S(Δ2)>S(Δ4)>S(Δ3). So, β(1) > β(2) >
β(4) > β(3); hence, the alternative β(1) is the most
suitable alternative for the position of associate pro-
fessor. Graphical representation of the obtained results
is shown in Figure 3.

6.2.3. Solution by Using Algorithm 3. By using Tables 1–5,
compute the cosine similarity measure between δ1mPIVNSS

(℘R(e),℘(1)
L (e)), δ1mPIVNSS(℘R(e),℘(2)

L (e)),
δ1mPIVNSS(℘R(e),℘(3)

L (e)), and δ1mPIVNSS(℘R(e),℘(4)
L (e)) by

using equation (60), such as

Step 1: choose the set of attributes
Step 2: construction of decision matrix in terms of mPIVNSNs in light of experts’ opinion for each alternative
Step 3: compute the informational neutrosophic energies for mPIVNSSs
Step 4: compute the correlation among two mPIVNSSs utilizing the following formula:
CmPIVNSS(℘R,℘L) � 􏽐

m
α�1 􏽐

n
j�1(uℓR

α (uj)∗ uℓL
α (uj) + uuR

α (uj)∗ uuL
α (uj) + vℓRα (uj)∗ vℓLα

(uj) + vuRα (uj)∗ vuLα (uj) + wℓR
α (uj)∗wℓL

α (uj) + wuR
α (uj)∗wuL

α (uj))

Step 5: calculate the CC between two mPIVNSSs by using the following formula:
δmPIVNSS(℘R,℘L) � (CmPIVNSS(℘R,℘L)/

������������������������
ςmPIVNSS(℘R)∗ ςmPIVNSS(℘L)

􏽰
)

Step 6: analyze the results

ALGORITHM 1: For the correlation coefficient of mPIVNSS.
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δ1mPIVNSS ℘R(e),℘(1)
L (e)􏼐 􏼑 �
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􏽱

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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�
1
9

45.88
27.7036

􏼒 􏼓 � 0.18401.

(63)

Similarly, we can find the cosine similarity measure
between δ1mPIVNSS(℘R(e),℘(2)

L (e)), δ1mPIVNSS(℘R(e),

℘(3)
L (e)), and δ1mPIVNSS(℘R(e),℘(4)

L (e)) given as
δ1mPIVNSS(℘R(e),℘L (2)(e)) � (1/9)(46.77/28.6727) �

0.18124, δ1mPIVNSS(℘R(e),℘ (3)
L (e)) � (1/9)(45.11/

29.4968) � 0.16992, and δ1mPIVNSS(℘R (e),℘(4)
L (e)) �

(1/9)(46.45/28.7433) � 0.17956. ,is shows that
δ1mPIVNSS(℘R (e),℘(1)

L (e))> δ1mPIVNSS (℘R(e),℘(2)
L (e))>

δ1mPIVNSS(℘R(e),℘(4)
L (e))> δ1mPIVNSS(℘R(e),℘(3)

L (e)), which
shows that alternative β(1) is the most appropriate and
similar to ℘R(e). So, alternatives ranking is given as
β(1) > β(2) > β(4) > β(3).

Now, we compute the set-theoretic similarity measure by
using Definition 37 between δ2mPIVNSS(℘R(e),℘(1)

L (e)),
δ2mPIVNSS(℘R(e),℘(2)

L (e)), δ2mPIVNSS(℘R(e),℘(3)
L (e)), and

δ2mPIVNSS(℘R(e),℘(4)
L (e)). From Tables 1–5, we can find the

set-theoretic similarity measure for each alternative by using
equation (61) given as δ2mPIVNSS(℘R(e),℘(1)

L (e)) � 0.17889,
δ2mPIVNSS(℘R(e),℘(2)

L (e)) � 0.17548, δ2mPIVNSS (℘R(e),

℘(3)
L (e)) � 0.16735, and δ2mPIVNSS(℘R (e),℘(4)

L (e)) �

0.17766. ,is shows that δ2mPIVNSS(℘R(e),℘(1)
L

(e)) > δ2mPIVNSS(℘R(e),℘(4)
L (e))> δ2mPIVNSS

Step 1: establish the m-polar interval-valued neutrosophic soft matrix for each alternative.
Step 2: develop the collective decision matrix Δk for each alternative using the mPIVNSWA operator.
Step 3: compute the score value for each alternative Δk, where k � 1, 2, . . . , s.
Step 4: rank the alternatives β(k) and choose the best alternative.
Step 5: end.

ALGORITHM 2: For mPIVNSWA operator.
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Figure 3: Ranking of alternatives by using proposed techniques.
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(℘R(e),℘(2)
L (e))> δ2mPIVNSS(℘R(e),℘(3)

L (e)). So, β(1) is the
best alternative using the set-theoretic similarity measure,
and the ranking of other alternatives is given as
β(1) > β(4) > β(2) > β(3). Graphical representation of results is
shown in Figure 3.

7. Discussion and Comparative Analysis

In the next section, we are going to talk about utility, ease,
and management with the help of a planned method. We
also made a tentative assessment of the following with
planned techniques and some existing methods.

7.1. Superiority and Advantage of the Proposed Method.
,rough this study and comparison, it can be determined
that the results obtained from the proposed approach are
either more general than the methods available. Although,
on the whole, the DMmethod associated with the usual DM
methods adjusts the additional information to overcome the
hesitation. Also, the various hybrid structures of FS are
becoming a special feature of mPIVNS, with some suitable
conditions being added. General information related to the
object can be described accurately and analytically, as given
in Table 6. ,erefore, the proposed approach precedes the
specific hybrid structure of the practical, modest, and fuzzy
set.

It turns out to be a contemporary problem. Why do we
have to particularize novel algorithms according to the
present novel structure? ,ere are several indications that
the recommended methodology can be exceptional
compared to other existing methods. We remember the
fact that IFS, picture fuzzy set, FS, hesitant fuzzy set, NS,
and other fuzzy sets have been restricted by the mixed
structure and cannot provide complete information re-
garding the situation. But, the proposed model in this
study be the utmost appropriate for MCDM because it can
handle three types of information such as truth, falsity,
and indeterminacy. Comparative analysis with some
common methods is given in Table 6. So, the established
model is multipurpose and can simply resolve problems
comparative to intuitionistic, neutrosophy, hesitation,
image, and ambiguity substitution. Hence, we claim that
the presented similarity measures and other developed
measures for mPIVNSS deliver the most appropriate
information.

7.2.Discussion. Chen et al.’ [44] multipolar information of
fuzzy sets deal with the membership value of the objects,
and a multipolar fuzzy set is unable to handle the cir-
cumstances when the objects have indeterminacy and
falsity information. Xu et al. [52] and Zhang et al.’ [53] IFS
only deal with the membership and nonmembership
values of the alternatives, and these techniques are unable
to deal with the multipolar information and indetermi-
nacy of the alternative. Yager [55, 56] and Naeem et al.’
[57] PFS and mPyFS cannot handle the indeterminacy of
the alternatives. Comparative to the abovementioned
theories, our established technique delivers more efficient
outcomes for the MCDM problem. ,e method of Zhang
et al. [54] and Ali et al. [46] dealt with the truthiness,
indeterminacy, and falsity grades for alternatives, but
these techniques cannot manage multiple data. Instead,
our established approach is an innovative method that can
cope with a wide variety of information alternatives. A
comparison is given in Table 6. Meanwhile, the developed
method handles truth, indeterminacy, and falsity of al-
ternatives. ,us, our developed method is extracompetent
and delivers well outcomes for decision-makers over extra
data.

7.3. Comparative Analysis. We recommend some novel
algorithms under mPIVNSS by utilizing the developed
mPIVNSS such as the mPIVNSWA operator, correlation
coefficient, and similarity measures in the following section.
Subsequently, we utilize the suggested algorithms to a re-
alistic problem, namely, for the selection of an appropriate
associate professor. It can be observed that β(1) is the finest
alternative for the position of associate professor. ,e
proposed approach can be compared to other available
methods and observed that our proposed methodologies
deliver the most reliable results comparative to available
techniques. We observe one most interesting fact in our
obtained results that our proposed methodologies deliver
the same optimal and worst choices. ,e comparison of our
proposed methodologies with some existing approaches is
given in Table 7.

,e research concludes that the results obtained from
the planned point of view exceed the results of the pre-
vailing theories. ,erefore, compared to existing tech-
niques, established AOs, similarity measures, and CC
handled uncertain and confusing information efficiently.
However, under the current DM strategy, the main

Step 1: choose the set of attributes
Step 2: construction of mPIVNSS in expert’s opinion.
Step 3: compute the cosine similarity measure by using equation (60)
Step 4: compute the set-theoretic similarity measure for mPIVNSS by utilizing equation (61)
Step 5: an alternative with a maximum value with cosine similarity measure has the maximum rank according to considered numerical

illustration
Step 6: an alternative with a maximum value with set-theoretic similarity measure has the maximum rank according to considered

numerical illustration

ALGORITHM 3: For similarity measure of mPIVNSS.
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advantage of the planned method is that it can accom-
modate additional information in the data compared to
existing techniques. ,is is a useful tool for resolving
misinformation and vagueness in the DM method. ,e
advantage of a planned approach with measures related to
the current approach is avoiding the consequences based
on negative reasons.

8. Conclusion

In this study, a novel hybrid structure has been established by
merging two independent structures m-polar fuzzy set and
interval-valued neutrosophic soft set which is known as
mPIVNSS. Some fundamental operations with their properties
have been introduced for mPIVNSS. We have developed the
CC and WCC with their properties in the content of
mPIVNSS and also defined some operational laws for
mPIVNSS and established a novel operator such as m-polar
interval-valued neutrosophic weighted aggregation operator
based on developed operational laws. To compute the simi-
larity measure between two mPIVNSS, the idea of cosine and
set-theoretic similarity measures have been established. ,ree
novel algorithms based onmPIVNSS have been constructed to
solve MCDM problems, correlation coefficient, mPIVNSWA
operator, and similarity measures. A comparative analysis was
also performed to demonstrate the proposed method. Finally,
the projected ideas presented high constancy and functionality
for decision-makers in the decision-making process. Based on
the results acquired, it has been terminated and the above
approach is extremely appropriate for finding the problem of
MCDM in today’s life. In the future, anyone can be introduced
to the multipolar interval-valued neutrosophic weighted
geometric operator with its decision-making approach. Fur-
thermore, the concept of mPIVNSS will be extended to a

multipolar interval-valued neutrosophic hypersoft set with
their basic operators. ,e proposed impression can be func-
tional to moderately a lot of problems in real life, including the
therapeutic career, computing, artificial intelligence, pattern
recognition, and finances.
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