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(2021) Neuronal Sequence Models for

Bayesian Online Inference.

Front. Artif. Intell. 4:530937.

doi: 10.3389/frai.2021.530937

Neuronal Sequence Models for
Bayesian Online Inference
Sascha Frölich*, Dimitrije Marković and Stefan J. Kiebel

Department of Psychology, Technische Universität Dresden, Dresden, Germany

Various imaging and electrophysiological studies in a number of different species and

brain regions have revealed that neuronal dynamics associated with diverse behavioral

patterns and cognitive tasks take on a sequence-like structure, even when encoding

stationary concepts. These neuronal sequences are characterized by robust and

reproducible spatiotemporal activation patterns. This suggests that the role of neuronal

sequencesmay bemuchmore fundamental for brain function than is commonly believed.

Furthermore, the idea that the brain is not simply a passive observer but an active

predictor of its sensory input, is supported by an enormous amount of evidence in fields

as diverse as human ethology and physiology, besides neuroscience. Hence, a central

aspect of this review is to illustrate how neuronal sequences can be understood as

critical for probabilistic predictive information processing, and what dynamical principles

can be used as generators of neuronal sequences. Moreover, since different lines of

evidence from neuroscience and computational modeling suggest that the brain is

organized in a functional hierarchy of time scales, we will also review how models based

on sequence-generating principles can be embedded in such a hierarchy, to form a

generative model for recognition and prediction of sensory input. We shortly introduce

the Bayesian brain hypothesis as a prominent mathematical description of how online,

i.e., fast, recognition, and predictions may be computed by the brain. Finally, we briefly

discuss some recent advances in machine learning, where spatiotemporally structured

methods (akin to neuronal sequences) and hierarchical networks have independently

been developed for a wide range of tasks. We conclude that the investigation of

specific dynamical and structural principles of sequential brain activity not only helps

us understand how the brain processes information and generates predictions, but also

informs us about neuroscientific principles potentially useful for designing more efficient

artificial neuronal networks for machine learning tasks.

Keywords: neuronal sequences, Bayesian inference, generative models, Bayesian brain hypothesis, predictive

coding, hierarchy of time scales, recurrent neural networks, spatiotemporal trajectories

1. INTRODUCTION

In the neurosciences, one important experimental and theoretical finding of recent years
was that many brain functions can be described as predictive (Rao and Ballard, 1999;
Pastalkova et al., 2008; Friston and Kiebel, 2009; Aitchison and Lengyel, 2017). This means
that the brain not only represents current states of the environment but also potential
states of the future to adaptively select its actions and behavior. For such predictions, one
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important feature of neuronal dynamics is their often-observed
sequence-like structure. In this review, we will present evidence
that sequence-like structure in neuronal dynamics is found over
a wide range of different experiments and different species. In
addition, we will also review models for such sequence-like
neuronal dynamics, which can be used as generative models
for Bayesian inference to compute predictions. To familiarize
readers of different backgrounds with each of these topics, we first
briefly give an overview of the topics of sequences, predictions,
hierarchical structure, the so-called Bayesian brain hypothesis
and provide amore precise definition of the kind of sequence-like
neuronal dynamics that we consider in this review.

1.1. Sequences in the Brain
The brain is constantly receiving spatiotemporally structured
sensory input. This is most evident in the auditory domain
where, when listening to human speech, the brain receives
highly structured, sequential input in the form of phonemes,
words, and sentences (Giraud and Poeppel, 2012). Furthermore,
even in situations which apparently provide only static sensory
input, the brain relies on spatiotemporally structured coding. For
example, when observing a static visual scene, the eyes constantly
perform high-frequency micro-oscillations and exploratory
saccades (Martinez-Conde et al., 2004; Martinez-Conde, 2006),
which renders the visual input spatiotemporally structured, and
yet the visual percepts appear stationary. Another example is
olfaction, where in animal experiments, it has been shown that
neurons in the olfactory system respond to a stationary odor
with an elaborate temporal coding scheme (Bazhenov et al.,
2001; Jones et al., 2007). In the state space of those neurons,
their activity followed a robust and reproducible trajectory,
a neuronal sequence (see Table 1), which was specific to the
presented odor. Similarly, in a behavioral experiment with
monkeys, spatial information of an object was encoded by a
dynamical neural code, although the encoded relative location
of the object remained unchanged (Crowe et al., 2010). In other
words, there is evidence that the brain recognizes both dynamic
and static entities in our environment on the basis of sequence-
like encoding.

Neuronal sequences have been reported in a wide range of
experimental contexts. For example, in the hippocampus of mice
and rats (MacDonald et al., 2011; Pastalkova et al., 2008; Bhalla,
2019; Skaggs and McNaughton, 1996; Dragoi and Tonegawa,
2011), the visual cortex of cats and rats (Kenet et al., 2003; Ji
and Wilson, 2007), the somatosensory cortex of mice (Laboy-
Juárez et al., 2019), the parietal cortex of monkeys and mice
(Crowe et al., 2010; Harvey et al., 2012), the frontal cortex
of monkeys (Seidemann et al., 1996; Abeles et al., 1995; Baeg
et al., 2003), the gustatory cortex of rats (Jones et al., 2007),
the locust antennal lobe (Bazhenov et al., 2001), specific song-
related areas in the brain of songbirds (Hahnloser et al., 2002),
and the amygdala of monkeys (Reitich-Stolero and Paz, 2019),
among others. Even at the cellular level, there is evidence of
sequence-processing capacities of single neurons (Branco et al.,
2010). Neuronal sequences seem to serve a variety of different
purposes. While sequences in specific brain regions drive the
spatiotemporal motor patterns during behavior like birdsong

TABLE 1 | Glossary.

Neuronal sequence Spatiotemporal patterns of neuronal activity that

encode stimulus properties, abstract concepts, or

motion signals (see Figure 1). Can be described by

a specific, sequential trajectory in the so-called state

space of the system, see also Figure 3 for an

example.

State space/Phase

space

A multidimensional space that encompasses all

possible states a system can be in. Every possible

state is defined by a unique point in the space.

Continuodiscrete

dynamics/Trajectory

Reproducible spatiotemporal trajectories

characterized by discrete points in state space (see

Figure 3).

Winnerless

Competition (WLC)

Type of dynamic behavior of a system where the

system shortly settles into a stable or metastable

state before being forced away from it (by internal or

external mechanisms) (see Figures 3, 6).

Metastable

state/Saddle state

A state in the state space of a dynamical system. A

metastable state of a system is stable in some

directions and unstable in others. A saddle point is a

metastable point where the first derivative vanishes.

Stable heteroclinic

channel (SHC)

Type of dynamic behavior of a system where the

system goes through a succession of saddle points

(metastable states) forming heteroclinic state-space

trajectories (orbits). Importantly, small deviations

from those trajectories will not diverge away from

the heteroclinic orbit. See section 2.2.2.

Heteroclinic

orbit/Trajectory

A path in the state space of a system that connects

two equilibrium points.

Limit cycle Attractor type occurring in some complex dynamical

systems. Closed, continuous trajectory in state

space with fixed period and amplitude. The regular

firing behavior of neurons can be described by limit

cycle behavior. See section 2.2.1.

Synfire chain A feed-forward neuronal network architecture. See

section 2.1.

rendition (Hahnloser et al., 2002) (Figure 1B), in other studies
of different brain areas and different species, neuronal sequences
were found to encode stationary stimuli (Seidemann et al., 1996;
Bazhenov et al., 2001) and spatial information (Crowe et al.,
2010), to represent past experience (Skaggs and McNaughton,
1996) (see also Figure 1A), and to be involved with both working
memory and memory consolidation (MacDonald et al., 2011;
Harvey et al., 2012; Skaggs and McNaughton, 1996). Behaviorally
relevant neuronal sequences were reported to occur before the
first execution of a task (Dragoi and Tonegawa, 2011), and in
some behavioral tasks sequences were found to be predictive of
future behavior (Abeles et al., 1995; Pastalkova et al., 2008).

As these findings show, neuronal sequences can be measured
in different species, in different brain areas and at different levels
of observation, where the expression of these sequences depends
on the measurement and analysis method. A neuronal sequence
can appear as the successive spiking of neurons (Figures 1A,B),
or the succession of more abstract compound states (Figure 1C),
or in yet different forms, depending on the experimental
approach. For example, evidence for sequences can also be
found with non-invasive cognitive neuroscience methods like
magnetoencephalography (MEG) as shown in Figure 1D. Given
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FIGURE 1 | Four illustrative examples of sequential neuronal activity in different paradigms and experimental contexts. (A) Sequential activation of rat hippocampal

cells are found during action and in rest phases after the behavioral tasks. The top plot shows the spiking histogram of 91 hippocampal cells during a rat’s trip along a

physical track. The bottom panel shows the rat’s actual position on the track (blue line) against the position inferred from the spiking pattern of its hippocampal cells.

After the traversal of the track, hippocampal cells “replayed” their activation sequence in reverse during a short ripple event (red box, enlarged in the box on the right).

Figure adapted from Pfeiffer (2020) (Copyright 1999–2019 John Wiley & Sons, Inc.). (B) Zebra finches are songbirds whose songs consist of highly consistent

so-called song motifs. Here, the activations of ten different HVC(RA) neurons and two HVC interneurons in the HVC nucleus of the zebra finch brain during ten

renditions of the same song motif are shown. HVC(RA) project from the HVC nucleus to the RA nucleus in the birdbrain, and exhibit precise and reproducible firing

sequences during the rendition of a song. Adapted from Hahnloser et al. Hahnloser et al. (2002) with permission from Springer Nature. (C) Firing patterns of neurons

in the gustatory cortex of rats in vivo when presented with four different odors. The sequential switching of states of a hidden Markov model (HMM, see section 3.1)

was characteristic of the presented aroma. For each of the four odors, the different color hues represent different HMM states that were inferred based on the data.

Adapted from Jones et al. (2007) (Copyright 2007 National Academy of Sciences, U.S.A.). (D) Evidence for fast sequence representation in human participants during

planning of a trajectory through task state space, see Kurth-Nelson et al. (2016) for details. The four examples, each for a different participant, show evidence of brain

activity, as measured with magnetoencephalography (MEG), to quickly transition through task state space with roughly 40 ms duration for each sequence element.

Figure taken from Kurth-Nelson et al. (2016).

these very different appearances of experimentally observed
neuronal sequences, it is clear that an answer to the question
of “What is a neuronal sequence?” depends on the experimental
setup. In the context of this article, we understand a “neuronal
sequence” quite broadly as any kind of robust and reproducible
spatiotemporal trajectory, where stimulus properties, abstract
concepts, or motion signals are described by a specific trajectory
in the state space of the system (see Table 1). The brain
may use such trajectory representations, whose experimental

expressions are measured as neuronal sequences, to form a
basis for encoding the spatiotemporal structure of sensory
stimuli (Buonomano and Maass, 2009) and the statistical
dependencies between past, present, and future (Friston and
Buzsáki, 2016). Here, we will review evidence for this type
of encoding and discuss some of the implications for our
understanding of the brain’s capacity to perform probabilistic
inference, i.e., recognition based on spatiotemporally structured
sensory input.

Frontiers in Artificial Intelligence | www.frontiersin.org 3 May 2021 | Volume 4 | Article 530937

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Frölich et al. Neuronal Sequences for Bayesian Inference

1.2. Hierarchies in the Brain
The brain’s structure and function are often described with
reference to a hierarchical organization, which we will cover in
more detail in section 3.2. Human behavior can be described
as a hierarchically structured process (Lashley and Jeffress,
1951; Rosenbaum et al., 2007; Dezfouli et al., 2014), as can
memory, where the grouping of information-carrying elements
into chunks constitutes a hierarchical scheme (Bousfield, 1953;
Miller, 1956; Fonollosa et al., 2015). Similarly, the perception and
recognition of spatiotemporally structured input can be regarded
as a hierarchical process. For example, percepts, such as the
observation of a walking person can be regarded as percepts
of higher order (“walking person”), as they emerge from the
combination of simpler, lower order percepts, e.g., a specific
sequence of limb movements. Critically, the concept “someone
walking” is represented at a slower time scale as compared to
the faster movements of individual limbs that constitute the
walking. There is emerging evidence that the brain is structured
and organized hierarchically along the relevant time scales of
neuronal sequences (e.g., Murray et al., 2014; Hasson et al., 2008;
Cocchi et al., 2016;Mattar et al., 2016; Gauthier et al., 2012; Kiebel
et al., 2008). Such a hierarchy allows the brain to model the causal
structure of its sensory input and form predictions at slower time
scales (“someone walking”) by representing trajectories capturing
the dynamics of its expected spatiotemporal sensory input at
different time scales, and by representing causal dependencies
between time scales. This allows for inference about the causes
of sensory input in the environment, as well as for inference of
the brain’s own control signals (e.g., motor actions). In this paper,
we will review some of the experimental evidence and potential
computational models for sequence generation and inference.

In the following section 1.3 we will first give a short
introduction to the Bayesian brain hypothesis and the basic
concept of the brain as a predictor of its environment. In
section 1.4 we will go into more detail about the question
“What is a sequence?” and will further discuss the trajectory
representation. In section 2, we will provide an overview of
several dynamical principles that might underlie the generation
of neuronal trajectories in biological networks. Importantly, we
are going to focus on general dynamical network principles that
may underlie sequence generation, and which may differentiate
types of sequence-generating networks. We are therefore not
going to cover the vast field of sequence learning (e.g., Sussillo
and Abbott, 2009; Tully et al., 2016; Lipton et al., 2015;Wörgötter
and Porr, 2005), which mainly investigates neurobiologically
plausible learning rules and algorithms that can lead to neuronal
sequences, and thus possibly to the network types discussed
in this article. In section 3, we review some approaches in
which sequences are used to model recognition of sensory
input. To highlight the relevance of sequence generators to a
large variety of problems, we will visit methods and advances
in computer science and machine learning, where structured
artificial recurrent neural networks (RNNs) that are able to
generate spatiotemporal activity patterns are used to perform a
range of different computational tasks. This will however only
serve as a rough and incomplete overview over some common
machine learning methods, and we will not cover methods like

Markov Decision Processes (Feinberg and Shwartz, 2012) and
related approaches, as an overview of research on sequential
decision making is beyond the scope of this review. Finally, we
will briefly discuss functional hierarchies in the brain and in
machine learning applications. A glossary of technical terms that
we will use in the review can be found in Table 1.

1.3. The Bayesian Brain Hypothesis
Dating back to Hermann von Helmholtz in the 19th century, the
idea that the brain performs statistical inference on its sensory
input to infer the underlying probable causes of that same input
(Helmholtz, 1867), started gaining considerable traction toward
the end of the 20th century and had a strong influence on
both computer science and neuroscience (Hinton and Sejnowski,
1983; Dayan et al., 1995; Wolpert et al., 1995; Friston, 2005;
Friston et al., 2006; Beck et al., 2008; see also Rao and Ballard,
1999; Ernst and Banks, 2002; Körding and Wolpert, 2004). In
particular, research into this interpretation of brain function led
to the formulation of the Bayesian brain hypothesis (Knill and
Pouget, 2004; Doya et al., 2007; Friston, 2010). The Bayesian
brain hypothesis posits that aspects of brain function can be
described as equivalent to Bayesian inference based on a causal
generative model of the world, which models the statistical
and causal regularities of the environment. In this framework,
recognition is modeled as Bayesian inversion of the generative
model, which assigns probabilities, that is, beliefs to different
states of the world based on perceived sensory information.
This process of Bayesian inference is hypothesized to be an
appropriate basis for the mathematical description of most, if
not all, brain functions (Friston, 2010; Knill and Pouget, 2004).
Although the hypothesis that the brain is governed by Bayesian
principles has met with criticism since human behavior does
not always appear to be Bayes-optimal (Rahnev and Denison,
2018; Soltani et al., 2016), and because the definition of Bayes-
optimality can be ambiguous (Colombo and Seriès, 2012),
there is growing evidence that human behavior can indeed be
explained by Bayesian principles (Figure 2) (Ernst and Banks,
2002; Körding and Wolpert, 2004; Weiss et al., 2002; Feldman,
2001), and that even phenomena like mental disorders might
be explained by Bayesian mechanisms (Adams et al., 2013;
Leptourgos et al., 2017; Fletcher and Frith, 2009) (see Knill and
Pouget, 2004 and Clark, 2013 for reviews on the Bayesian brain
hypothesis). How Bayesian inference is achieved in the human
brain is an ongoing debate, and it has been proposed that the
corresponding probabilities are encoded on a population level
(Zemel et al., 1998; Beck et al., 2008) or on single-neuron level
(Deneve, 2008).

Under the Bayesian view, model inversion, i.e., recognition,
satisfies Bayes’ theorem, which states that the optimal posterior
belief about a state is proportional to the generative model’s
prior expectation about the state multiplied by the probability
of the sensory evidence under the generative model. In
Bayesian inference, prior expectation, posterior belief, and
sensory evidence are represented as probability distributions
and accordingly called prior distribution, posterior distribution,
and likelihood (Figure 2). The posterior can be regarded as an
updated version of the prior distribution, and will act as the prior
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FIGURE 2 | Illustration of Bayesian Inference. The prior belief (blue) about a

state is updated by sensory evidence (red) represented by the likelihood

function. The updated belief is the posterior belief (turquoise), which will serve

as the prior belief in the next updating step. Each row illustrates how the shape

of the prior distribution and the likelihood influence the inference process. Both

an increase in likelihood precision (inverse variance), and a decrease in prior

precision result in a posterior belief which is more biased toward the sensory

evidence. This is illustrated by a deviation of the posterior toward the sensory

evidence and away from the prior belief (dashed line and arrows). In the

Bayesian predictive coding framework (Friston and Kiebel, 2009; Rao and

Ballard, 1999), inference naturally minimizes the prediction error, defined as the

difference between expected and observed outcomes. Figure reprinted from

Adams et al. (2013).

in the next inference step. Importantly, the prior is part of the
generative model as different priors could lead to qualitatively
different expectations (Gelman et al., 2017).

The quality of the inference, that is, the quality of the belief
about the hidden states of the world, is dependent on the
quality of the agent’s generative model, and the appropriateness
of a tractable (approximate) inference scheme. In this review
paper, we suggest that good generative models of our typical
environment should generate, that is, expect sequences, and
that such a sequence-like representation of environmental
dynamics is used to robustly perform tractable inference on
spatiotemporally structured sensory data.

The theory of predictive coding suggests that the equivalent of
an inversion of the generative model in the cortex is achieved in
a hierarchical manner by error-detecting neurons which encode
the difference between top-down predictions and sensory input
(Friston and Kiebel, 2009; Rao and Ballard, 1999; Aitchison
and Lengyel, 2017) (Figure 2). The fact that sequences in
specific contexts appear to have predictive properties (Abeles
et al., 1995; Pastalkova et al., 2008) is interesting in light of
possible combinations of the frameworks of predictive coding
and the Bayesian brain hypothesis (Knill and Pouget, 2004;
Doya et al., 2007; Friston, 2010). One intriguing idea is that
the brain’s internal representations and predictions rely on
sequences of neuronal activity (FitzGerald et al., 2017; Kiebel
et al., 2009; Hawkins et al., 2009). Importantly, empirical evidence
suggests that these approximate representations are structured
in temporal and functional hierarchies (see sections 1.2 and
3.2) (Koechlin et al., 2003; Giese and Poggio, 2003; Botvinick,
2007; Badre, 2008; Fuster, 2004). Combining the Bayesian brain
hypothesis with the hierarchical aspect of predictive coding
provides a theoretical basis for computational mechanisms that
drive a lifelong learning of the causal model of the world (Friston
et al., 2014). Examples for how these different frameworks can
be combined can be found in Yildiz and Kiebel (2011) and Yildiz
et al. (2013).

As an example of a tight connection between prediction
and sequences, one study investigating the electrophysiological
responses in the song nucleus HVC of bengalese finch (Bouchard
and Brainard, 2016) found evidence for an internal prediction of
upcoming song syllables, based on sequential neuronal activity in
HVC. As another example, a different study investigating single-
cell recordings of neurons in the rat hippocampus found that
sequences of neuronal activations during wheel-running between
maze runs were predictive of the future behavior of the rats,
including errors (Pastalkova et al., 2008). This finding falls in
line with other studies showing that hippocampal sequences can
correlate with future behavior (Pfeiffer, 2020).

1.4. What Are Sequences?
What does it mean to refer to neuronal activity as sequential?
In the most common sense of the word, a sequence is usually
understood as the serial succession of discrete elements or
states. Likewise, when thinking of sequences, most people
intuitively think of examples like “A, B, C,...” or “1, 2, 3,....”
However, when extending this discrete concept to neuronal
sequences, there are only few compelling examples where
spike activity is readily interpretable as a discrete sequence,
like the “domino-chain” activation observed in the birdbrain
nucleus HVC (Hahnloser et al., 2002) (Figure 1B). As mentioned
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before, we will use the word “sequence” to describe robust
and reproducible spatiotemporal trajectories, which encode
information to be processed or represented. Apart from
the overwhelming body of literature reporting sequences in
many different experimental settings (section 1.1), particularly
interesting are the hippocampus (Bhalla, 2019; Pfeiffer, 2020) and
entorhinal cortex (Zutshi et al., 2017; O’Neill et al., 2017). Due to
the strong involvement of the hippocampus and the entorhinal
cortex with sequences, the idea that neuronal sequences are
also used in brain areas directly connected to them is not too
far-fetched. For example, hippocampal-cortical interactions are
characterized by sharp wave ripples (Buzsáki, 2015), which are
effectively compressed spike sequences. Recent findings suggest
that other cortical areas connected to the hippocampus use grid-
cell like representations similar to space representation in the
entorhinal cortex (Constantinescu et al., 2016; Stachenfeld et al.,
2017). This is noteworthy because grid cells have been linked
to sequence-like information processing (Zutshi et al., 2017;
O’Neill et al., 2017). This suggests that at least areas connected
to the hippocampus and entorhinal cortex are able to decode
neuronal sequences.

The example of odor recognition shows that sequences are
present even in circumstances where one intuitively would
not expect them (Figure 1C). This very example does also
show an interesting gap between a continuous and a discrete
type of representation: The spatiotemporal trajectory is of
a continuous nature, while the representation of the odor
identity is characterized by discrete states and at a slower
time scale. This gap also presents itself on another level.
While we understand the term “neuronal sequence” to refer
to a robust and reproducible spatiotemporal trajectory, in
many cases these continuous state-space trajectories appear
as a succession of quasi-discrete states (Abeles et al., 1995;
Seidemann et al., 1996; Mazor and Laurent, 2005; Jones
et al., 2007). In order to emphasize this interplay between
continuous dynamics and discrete points we will denote such
dynamics as continuodiscrete (see Table 1). In continuodiscrete
dynamics, robust, and reproducible spatiotemporal trajectories
are characterized by discrete points in state-space. As an example,
in Figure 1C one can see the response of in vivo neurons in
the gustatory cortex of rats, which is determined by the odor
that is presented to the animal. The activity patterns of the
neurons were analyzed with a hidden Markov model which
revealed that the activity of the neuron ensemble can be described
as a robust succession of discrete Markov states, where the
system remains in a state for hundreds of milliseconds before
quickly switching to another discrete state. These sequential
visits to discrete states and the continuous expression of these
states, specifically the switching between them, in terms of fast
neuronal dynamics (here spiking neurons) is what we consider
as continuodiscrete dynamics. Similar observations have been
made in other experiments (Abeles et al., 1995; Seidemann
et al., 1996; Mazor and Laurent, 2005; Rabinovich et al., 2001;
Rivera et al., 2015) (see also Figure 3). The discrete states of a
continuodiscrete sequence can be for example stable fixed points
(Gros, 2009), or saddle points (Rabinovich et al., 2006, 2001) of
the system, or simply points along a limit cycle trajectory (Yildiz

and Kiebel, 2011; Yildiz et al., 2013), depending on the modeling
approach (see section 2). Depending on the dynamical model, the
system might leave a fixed point due to autonomously induced
destabilization (Gros, 2007, 2009), noise (Rabinovich et al., 2006,
2001), or external input (Kurikawa and Kaneko, 2015; Toutounji
and Pipa, 2014; Rivera et al., 2015; Hopfield, 1982).

Concepts similar to continuodiscrete trajectories have been
introduced before. For example, in winner-less competition
(WLC) (Rabinovich et al., 2000; Afraimovich et al., 2004b;
Rabinovich et al., 2008), a system moves from one discrete
metastable fixed-point (see Table 1) of the state space to the
next, never settling for any state, similar to the fluctuations in a
Lotka-Volterra system (Rabinovich et al., 2001) (see Figure 3).
In winner-take-all (WTA) dynamics, like during memory recall
in a Hopfield network (Hopfield, 1982), the system is attracted
to one fixed point in which it will settle. Both WLC and WTA
are thus examples of continuodiscrete dynamics. The concept
of continuodiscrete dynamics also allows for dynamics which
are characterized by an initial alteration between discrete states,
before settling into a final state, as for example in Rivera et al.
(2015). In section 2, we will look at different ways to model
continuodiscrete neuronal dynamics.

For the brain, representing continuodiscrete trajectories
seems to combine the best of two worlds: Firstly, the
representation of discrete points forms the basis for the
generalization and categorization of the sequence. For example,
for the categorization of a specific movement sequence, it is not
necessary to consider all the details of the sensory input, as it
is sufficient to categorize the sequence type (dancing, walking,
running) by recognizing the sequence of discrete points, as e.g.,
in Giese and Poggio (2003). Secondly, the brain requires a way
of representing continuous dynamics to not miss important
details. This is because key information can only be inferred by
subtle variations within a sequence, as is often the case in our
environment. For instance, when someone is talking, most of
the speech content, i.e., what is being said, is represented by
discrete points that describe a sequence of specific vocal tract
postures. Additionally, there are subtle variations in the exact
expression of these discrete points and the continuous dynamics
connecting them, which let us infer about otherwise hidden
states like the emotional state of the speaker (Birkholz et al.,
2010; Kotz et al., 2003; Schmidt et al., 2006). Some of these
subtle variations in the sensory input may be of importance to
the brain, while others are not. For example, when listening to
someone speaking, slight variations in the speaker’s talking speed
or pitch of voice might give hints about her mood, state of health,
or hidden intentions. In other words, representing sensory
input as continuodiscrete trajectories enables the recognition of
invariances of the underlying movements without losing details.

There is growing evidence that sequences with discrete states
like fixed points are a fundamental feature of cognitive and
perceptual representations (e.g., Abeles et al., 1995; Seidemann
et al., 1996; Mazor and Laurent, 2005; Jones et al., 2007). This
feature may be at the heart of several findings in the cognitive
sciences which suggest that human perception is chunked
into discrete states, see VanRullen and Koch (2003) for some
insightful examples. Assuming that the brain uses some form
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FIGURE 3 | (A) Illustration of continuodiscrete dynamics based on Stable Heteroclinic Channels (SHC, see section 2.2.2 and Table 1). The solid line represents a

continuous heteroclinic trajectory in three-dimensional phase space and the dotted lines indicate invariant manifolds between saddle states (see Table 1). The green

tube illustrates a Stable Heteroclinic Channel. All heteroclinic trajectories originating in the SHC will remain inside of it. This is a type of WLC dynamics. (B) Simulation

of an SHC-trajectory based on Lotka-Volterra dynamics, where a point in phase space determines the firing rate of each neuron. (C) Neuronal responses to odor

representation in the locust brain. (B,C) Are adapted from Rabinovich et al. (2001). Copyright (2001) by the American Physical Society.

of continuodiscrete dynamics to model sensory input, we will
next consider neuronal sequence-generating mechanisms that
may implement such dynamics and act as a generative model for
recognition of sensory input. Importantly, as we are interested
in generative models of sequential sensory input, we will only
consider models that have the ability to autonomously generate
sequential activity. Therefore, we are not going to discuss models
where sequential activity is driven by sequential external input,
as in models of non-autonomous neural networks (Toutounji
and Pipa, 2014), or in models where intrinsic sequential neural
activity is disrupted by bifurcation-inducing external input
(Kurikawa and Kaneko, 2015).

2. NEURONAL NETWORK MODELS AS
SEQUENCE GENERATORS

In order to explain sequential neuronal activity in networks of
biological neurons, several models have been proposed, some
of which we are going to review in the following sections. As
this paper aims at a general overview of neuronal sequence-
generating mechanisms and less at a detailed analysis, we will not

cover the details and nuances of the presented dynamical models
and refer the interested reader to the references given in the text.

2.1. Synfire Chains
Synfire chains are concatenated groups of excitatory neurons
with convergent-divergent feed-forward connectivity, as
illustrated in Figure 4A (Abeles, 1991; Diesmann et al., 1999).
Synchronous activation of one group leads to the activation
of the subsequent group in the chain after one synaptic delay
(Figure 4B). It has been shown that the only stable operating
mode in synfire chains is the synchronous mode where all
neurons of a group spike in synchrony (Litvak et al., 2003).
Synfire chains create sequences that are temporally highly precise
(Abeles, 1991; Diesmann et al., 1999). Such temporally precise
sequences have been observed in slices of the mouse primary
visual cortex and in V1 of anaesthetized cats (Ikegaya et al.,
2004), as well as in the HVC nucleus of the bird brain during
song production (Hahnloser et al., 2002; Long et al., 2010), and in
the frontal cortex of behaving monkeys (Prut et al., 1998; Abeles
and Gat, 2001). While synfire chains make predictions that
agree well with these observations, a striking mismatch between
synfire chains and neuronal networks in the brain is the absence
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FIGURE 4 | (A) Illustration of a synfire chain between groups of neurons (filled

circles). Arrows indicate excitatory connections. (B) Illustration of a spiking

histogram of neurons in a synfire chain with 10 groups of 100 neurons each.

The average time interval between the firing of two adjacent groups

corresponds to one synaptic delay.

of recurrent connections in the synfire chain’s feed-forward
architecture. Modeling studies have shown that sequential
activation similar to synfire chain activity can be achieved by
changing a small fraction of the connections in a random neural
network (Rajan et al., 2016; Chenkov et al., 2017), and that synfire
chains can emerge in self-organizing recurrent neural networks
under the influence of multiple interacting plasticity mechanisms
(Zheng and Triesch, 2014). Such fractional changes of network
connections were used to implement working memory (Rajan
et al., 2016) or give a possible explanation for the occurrence of
memory replay after one-shot learning (Chenkov et al., 2017).
Such internally generated sequences have been proposed as a
mechanism for memory consolidation, among other things (see
Pezzulo et al., 2014 for a review).

2.2. Attractor Networks
2.2.1. Limit Cycles
Limit cycles are stable attractors in the phase space of a system,
and they occur in practically every physical domain (Strogatz,
2018). A limit cycle is a closed trajectory, with fixed period and
amplitude (Figure 5). Limit cycles occur frequently in biological
and other dynamical systems, and the beating of the heart,
or the periodic firing of a pacemaker neuron are examples of
limit cycle behavior (Strogatz, 2018). They are of great interest

to theoretical neuroscience, as periodic spiking activity can be
represented by limit cycles, both on single-cell level (Izhikevich,
2007) and population level (Berry andQuoy, 2006; Jouffroy, 2007;
Mi et al., 2017). They also play an important role in the emulation
of human motion in robotics. While there are numerous ways
to model human motion, one interesting approach is that of
dynamic motion primitives (DMPs) (Schaal et al., 2007), which
elegantly unifies the two different kinds of human motion,
rhythmic and non-rhythmic motion, in one framework. The
main idea of DMPs is that the limbs move as if they were pulled
toward an attractor state. In the case of rhythmic motion, the
attractor is given by a limit cycle, while in the case of motion
strokes the attractor is a discrete point in space (Schaal et al.,
2007). In Kiebel et al. (2009), Yildiz and Kiebel (2011), and
Yildiz et al. (2013), the authors used a hierarchical generative
model of sequence-generators based on limit cycles to model the
generation and perception of birdsong and human speech.

2.2.2. Heteroclinic Trajectories
Another approach to modeling continuodiscrete dynamics are
heteroclinic networks (Ashwin and Timme, 2005; Rabinovich
et al., 2008) (see also Table 1). A heteroclinic network is a
dynamical system with semi-stable states (saddle points) which
are connected by invariant manifolds, so-called heteroclinic
connections. Networks of coupled oscillators have been shown
to give rise to phenomena like heteroclinic cycles (Ashwin and
Swift, 1992; Ashwin et al., 2007). It has therefore been proposed
that neuronal networks exhibit such heteroclinic behavior as
well, which has been verified using simulations of networks
of globally coupled Hodgkin-Huxley neurons (Hansel et al.,
1993a,b; Ashwin and Borresen, 2004). Interestingly, heteroclinic
networks can be harnessed to perform computational tasks
(Ashwin and Borresen, 2005; Neves and Timme, 2012), and it has
been shown that it is possible to implement any logic operation
within such a network (Neves and Timme, 2012). Furthermore,
the itinerancy in a heteroclinic network can be guided by external
input, where the trajectory of fixed points discriminates between
different inputs (Ashwin et al., 2007; Neves and Timme, 2012),
which means that different inputs are encoded by different
trajectories in phase space.

While theoretical neuroscience has progressed with research
on heteroclinic behavior of coupled neural systems, concrete
biological evidence is still sparse, as this requires a concrete
and often complex mathematical model which is often beyond
the more directly accessible research questions in biological
science. Despite this, heteroclinic behavior has been shown to
reproduce findings from single-cell recordings in insect olfaction
(Rabinovich et al., 2001; Rivera et al., 2015) and olfactory
bulb electroencephalography (EEG) in rabbits (Breakspear,
2001). Another study replicated the chaotic hunting behavior
of a marine mollusk based on an anatomically plausible
neuronal model with heteroclinic winnerless competition (WLC)
dynamics (Varona et al., 2002), which is closely related to the
dynamic alteration between states in a heteroclinic network
(Rabinovich et al., 2000; Afraimovich et al., 2004b; Rabinovich
et al., 2008). WLC was proposed as a general information
processing principle for dynamical networks and is characterized
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FIGURE 5 | Two different representations of a limit cycle. (A) A Limit cycle in three-dimensional phase space. In the case of a neuronal network, the dimensions of the

phase space can be interpreted as the firing rates of the neurons. (B) Representation of a six-dimensional limit cycle as alternating activations of six different neurons.

by dynamic switching between network states, where the
switching behavior is based on external input (Afraimovich
et al., 2004b) (see Table 1). Importantly, the traveled trajectory
identifies the received input, while any single state of the
trajectory generally does not, see for example Neves and Timme
(2012). In phase space representation, WLC can be achieved
by open or closed sequences of heteroclinically concatenated
saddle points. Such sequences are termed stable heteroclinic
sequences (SHS) if the heteroclinic connections are dissipative,
i.e., when a trajectory starting in a neighborhood close to
the sequence remains close (Afraimovich et al., 2004a). While
perturbations and external forcing can destroy stable heteroclinic
sequences, it can be shown that even under such adverse
circumstances, in many neurobiologically relevant situations
the general sequential behavior of the system is preserved
(Rabinovich et al., 2006). Such behavior is described by the
concept of Stable Heteroclinic Channels (SHC) (see Figure 3

and Table 1) (Rabinovich et al., 2006). A simple implementation
of SHCs is based on the generalized Lotka-Volterra equations
(Bick and Rabinovich, 2010; Rabinovich et al., 2001), which
are a type of recurrent neural network implicitly implementing
the WLC concept. The temporal precision of a system that
evolves along an SHC is defined by the noise level as well
as the eigenvalues of the invariant directions of the saddle
points. Therefore, sequences along heteroclinic trajectories are
reproducible although the exact timing of the sequence elements
may be subject to fluctuation.

In a similar approach, recent theoretical work on the
behavior of RNNs has introduced the concept of excitable
network attractors, which are characterized by stable states
of a system connected by excitable connections (Ceni et al.,
2019). The conceptual idea of orbits between fixed points
may further be implemented in different ways. For instance,
transient activation of neuronal clusters can be achieved by
autonomously driven destabilization of stable fixed points (Gros,
2007, 2009).

2.3. Hierarchical Sequence Generators
As briefly introduced in section 1.2, growing evidence suggests
that the brain is organized into a hierarchy of different time
scales, which enables the representation of different temporal
features in its sensory input (e.g., Murray et al., 2014; Hasson
et al., 2008; Cocchi et al., 2016; Mattar et al., 2016; Gauthier
et al., 2012). Here the idea is that lower levels represent
dynamics at faster time scales, which are integrated at higher
levels that represent slower time scales. For example, speech
consists of phonemes (fast time scales), which are integrated
into increasingly slower representations of syllables, words,
sentences, and a conversation (Hasson et al., 2008; Ding et al.,
2016; Boemio et al., 2005). The combination of this hierarchical
aspect of brain function with the Bayesian brain hypothesis
and the concept of neuronal sequences suggests that the brain
implicitly uses hierarchical continuodiscrete dynamical systems
as generative models. One illustrative example of a hierarchical
continuodiscrete process is given in Figure 6. In this example,
the dynamics of the 2nd and 3rd level of the hierarchy are
modeled by limit cycles and govern the evolution of parameters
of the sequence-generating mechanisms at the levels below.
Such an approach for a generative model for prediction and
recognition of sensory data has been used to model birdsong
and human speech recognition (Yildiz and Kiebel, 2011; Yildiz
et al., 2013; Kiebel et al., 2009) (see Figure 6). In Yildiz and Kiebel
(2011), the 3rd level represented sequential neuronal activity
in area HVC (proper name, see also Figure 1B), and the 2nd
level modeled activity in the robust nucleus of the arcopallium
(RA). Similarly, in Rivera et al. (2015) the authors employed a
hierarchical generative model with a heteroclinic sequence for a
sequence-generating mechanism to model odor recognition in
the insect brain. In a slightly different approach to hierarchical
continuodiscrete modeling, hierarchical SHCs, implementing
winnerless competition, were used to demonstrate how chunking
of information can emerge, similar to memory representation
in the brain (Fonollosa et al., 2015). One computational study
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FIGURE 6 | Illustration of hierarchical continuodiscrete dynamics based on limit cycles. Slowly changing dynamics at the 3rd level parametrize the sequence of states

of the faster changing 2nd-level dynamics z(2). As the dynamics of variables Ex(2) and Ex(3) change between the states “on” and “off,” their behavior constitutes

continuodiscrete WLC dynamics. At around iteration step 600, the green unit at the 3rd level (element Ex
(3)
3 ) becomes active, which changes the 2nd-level sequential

dynamics from red→green→orange→blue→red to green→orange→red→blue→green. This is achieved by a change of the 2nd-level connectivity matrix ρ (2) which

depends on the 3rd-level variable Ex(3). In this toy example, the 2nd-level dynamics model the evolution of the parameters of an Ornstein-Uhlenbeck process (black

graph showing the evolution of variable x(1)). In the framework of hierarchical generative modeling, the 1st level would correspond to an agent’s predictions of its

sensory input, while the higher levels are the hidden states of the agent’s generative model. This hierarchical parametrization of sequences is similar to the approach in

Kiebel et al. (2009). The dot product between vectors b = (0.6, 0,−1,−0.3)T and Ex(2) determines the 1st-level attractor µ. The rate parameter 2 is parametrized by

vector a = (1, 0.5, 1.2, 0.8)T and its dot product with Ex(2). σ (·) is the softmax function which is applied element-wise. 1 denotes a vector of ones. κ = 2, λ = 1/8. Gray

vertical lines in the 1st level mark the time-points where states in the 2nd level change. This hierarchical parametrization of sequences is similar to the approach in

Kiebel et al. (2009). Similar hierarchical autonomous models can be used as a generative model for Bayesian inference to achieve prediction and recognition of

sequential data, as has for example been done in Yildiz and Kiebel (2011) and Yildiz et al. (2013).

provided a proof of principle that complex behavior, like
handwriting, can be decomposed into a hierarchical organization
of stereotyped dynamical flows onmanifolds of lower dimensions
(Perdikis et al., 2011). These stereotyped dynamics can be
regarded as the discrete points in a continuodiscrete sequence,
which gave rise to complex and flexible behavior.

In the following section, we will briefly review how
sequential methods have been used for problems in neuroscience
and especially AI. Afterwards, we will review evidence for
the organization of neuronal sequences into a hierarchy of
time scales.

3. RECOGNITION OF SEQUENCES

Although neuronal sequence models, such as the ones
introduced in the preceding sections have been used to
explain experimentally observed neuronal activity, these models
by themselves do not explain how predictions are formed about
the future trajectory of a sequence. To take the example of song
production and recognition in songbirds, a sequence-generating
model of birdsong generation is not sufficient to model or explain
how a listening bird recognizes a song (Yildiz and Kiebel, 2011).
Given a generative model, recognition of a song corresponds

to statistical model inversion (Watzenig, 2007; Ulrych et al.,
2001). A simple example of such a scheme is provided in Bitzer
and Kiebel (2012), where RNNs are used as a generative model
such that model inversion provides for an online recognition
model. As shown in Friston et al. (2011), one can also place
such a generative model into the active inference framework to
derive a model that not only recognizes sequential movements
from visual input but also generates continuodiscrete movement
patterns. Generative models are not only interesting from a
cognitive neuroscience perspective but also point at a shared
interest with the field of artificial intelligence and specifically
machine learning, to find a mechanistic understanding of how
spatiotemporally structured sensory input can be recognized
by an artificial or a biological agent. In the following, we will
discuss how both fields seem to converge on the conceptual idea
that generative models should be spatiotemporally structured
and hierarchical.

3.1. Sequence Recognition in Machine
Learning
The most widely-used models for discrete sequence generation
are hidden Markov models (HMM) and their time-dependent
generalisation, hidden semi-Markov models (HSMM) (Yu,
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2015). In particular, HMMs and HSMMs are standard tools
in a wide range of applications concerned with e.g., speech
recognition (Liu et al., 2018; Zen et al., 2004; Deng et al.,
2006) and activity recognition (Duong et al., 2005). Furthermore,
they have often been used for the analysis of neuronal activity
(Tokdar et al., 2010) and human behavior in general (Eldar
et al., 2011). Similar to HSMMs, artificial RNNs are used in
machine learning for classifying and predicting time series data.
When training a generic RNN for prediction and classification
of time series data, one faces various challenges, most notably
incorporating information about long-term dependencies in the
data. To address these dependencies, specific RNN architectures
have been proposed, such as long-short term memory (LSTM)
networks (Gers et al., 1999) and gate recurrent units (GRU)
(Chung et al., 2014). In a common LSTM network, additionally
to the output variable, the network computes an internal memory
variable. This endows the network with high flexibility. LSTM
networks belong to the most successful and most widely applied
RNN architectures, with applications in virtually every field
involving time-series data, or any data structure with long-range
dependencies (Yu et al., 2019; LeCun et al., 2015). Another RNN
approach is reservoir computing (RC), which started with the
development of echo-state networks and liquid state machines
in the early 2000s (Lukoševičius et al., 2012; Jaeger, 2001; Maass
et al., 2002). In RC, sequential input is fed to one or more
input neurons. Those neurons are connected with a reservoir
of randomly connected neurons, which in turn are connected
to one or more output neurons. Connections in the reservoir
are pseudo-randomized to elicit dynamics at the edge of chaos
(Yildiz et al., 2012), leading to a spatiotemporal network response
in the form of reverberations over multiple time scales. RC
networks have successfully been applied in almost every field of
machine learning and data science, such as speech recognition,
handwriting recognition, robot motor control, and financial
forecasting (Lukoševičius et al., 2012; Tanaka et al., 2019).

While there is a lot of research on neurobiologically plausible
learning paradigms for RNNs (Sussillo and Abbott, 2009;
Miconi, 2017; Taherkhani et al., 2020), one possible approach
for understanding the role of neuronal sequences is to use
neurobiologically more plausible sequence generation models,
which can act as generative models of the causal dynamic
relationships in the environment. A natural application would
be the development of recognition models based on Bayesian
inference (Bitzer andKiebel, 2012), andmore specifically in terms
of variational inference (Friston et al., 2006; Daunizeau et al.,
2009).

3.2. Biological and Artificial Inferential
Hierarchies
In neuroscience and the cognitive sciences, the brain is often
viewed as a hierarchical system, where a functional hierarchy can
be mapped to the structural hierarchy of the cortex (Badre, 2008;
Koechlin et al., 2003; Kiebel et al., 2008). The best example of
such a hierarchical organization is the visual system, for which
the existence of both a functional and an equivalent structural
hierarchy is established (Felleman and Van Essen, 1991). Cells

in lower levels of the hierarchy encode simple features and
have smaller receptive fields than cells further up the hierarchy,
which posses larger receptive fields and encode more complex
patterns by integrating information from lower levels (Hubel
and Wiesel, 1959; Zeki and Shipp, 1988; Giese and Poggio,
2003). This functional hierarchy is mediated by an asymmetry
of recurrent connectivity in the visual stream, where forward
connections to higher layers are commonly found to have fast,
excitatory effects on the post-synaptic neurons, while feedback
connections act in a slower, modulatory manner (Zeki and Shipp,
1988; Sherman and Guillery, 1998). Moreover, neuroimaging
studies have shown that the brain is generally organized into a
modular hierarchical structure (Bassett et al., 2010;Meunier et al.,
2009, 2010). This is substantiated by other network-theoretical
characteristics of the brain, like its scale-free property (Eguiluz
et al., 2005), which is a natural consequence of modular hierarchy
(Ravasz and Barabási, 2003). Hierarchies also play an important
role in cognitive neuroscience as most if not all types of behavior,
as well as cognitive processes, can be described in a hierarchical
fashion. For example, making a cup of tea can be considered a
high-order goal in a hierarchy with subgoals that are less abstract
and temporally less extended. In the example of making a cup
of tea, these subgoals can be: (i) putting a teabag into a pot, (ii)
pouring hot water into the pot, and (iii) pouring tea into a cup
(example adopted from Botvinick, 2007).

3.2.1. A Hierarchy of Time Scales
Importantly, all theories of cortical hierarchies of function share
the common assumption that primary sensory regions encode
rather quickly changing dynamics representing the fast features
of sensory input, and that those regions are at the bottom
of the hierarchy, while temporally more extended or more
abstract representations are located in higher order cortices.
This principle has been conceptualized as a “hierarchy of time
scales” (Kiebel et al., 2008; Hasson et al., 2008; Koechlin et al.,
2003; Badre, 2008; Kaplan et al., 2020). In this view, levels
further up the hierarchy code for more general characteristics of
the environment and inner cognitive processes, which generally
change slowly (Hasson et al., 2008; Koechlin et al., 2003; Badre,
2008). For example, although the visual hierarchy is typically
understood as a spatial hierarchy, experimental evidence is
emerging that it is also a hierarchy of time scales (Cocchi et al.,
2016; Gauthier et al., 2012; Mattar et al., 2016). Importantly,
the information exchange in such a hierarchy is bidirectional.
While top-down information can be regarded as the actions of
a generative model trying to predict the sensory input (Dayan
et al., 1995; Friston, 2005), recognition is achieved by bottom-
up information that provides higher levels in the hierarchy with
information about the sensory input, see also Yildiz and Kiebel
(2011) and Yildiz et al. (2013) for illustrations of this concept.
A related finding is an experimentally observed hierarchy of
time scales with respect to the time lag of the autocorrelation
of neuronal measurements (e.g., Murray et al., 2014). Here,
it was found that the decay of autocorrelation was fastest for
sensory areas (<100 ms) but longest for prefrontal areas like
ACC (>300 ms).
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FIGURE 7 | Study by Lerner et al. (2011) as an example for representations in a hierarchy of time scales. Here, the authors used fMRI and a between-subject

correlational analysis to categorize brain voxels according to four levels of representation. These four levels were fast dynamics of auditory input (red), words (yellow),

sentences (green), and paragraphs (blue). Results are displayed on a so-called inflated cortical surface. Figure reprinted from Lerner et al. (2011).

The importance of cognition based on spatiotemporal
structure at multiple time scales is also illustrated by various
computational modeling studies. In one study, robots were
endowed with a neural network whose parameters were let free
to evolve over time to optimize performance during a navigation
task (Nolfi, 2002). After some time, the robots had evolved neural
assemblies with representations at clearly distinct time scales:
one assembly had assumed a quickly changing, short time scale
associated with immediate sensory input while another assembly
had adopted a long time scale, associated with an integration
of information over an extended period of time, which was
necessary for succeeding at the task. Another modeling study
showed that robots with neuronal populations of strongly
differing time-constants performed their tasks significantly better
than when endowed only with units of approximately identical
time-constants (Yamashita and Tani, 2008). In Botvinick (2007) it
was shown that, after learning, a neural network with a structural
hierarchy similar to the one proposed for the frontal cortex had
organized in such a way that high-level units coded for temporal
context while low-level units encoded fast responses similar to
the role assigned to sensory and motor regions in theories of
hierarchical cortical processing (Kiebel et al., 2008; Alexander
and Brown, 2018; Rao and Ballard, 1999; Botvinick, 2008; Badre,
2008; Koechlin et al., 2003; Fuster, 2004).

The principle of representing spatiotemporal dynamics at
multiple time scales has also been used to model birdsong
generation and inference in songbirds by combining a

hierarchically structured RNN with a model of songbirds’
vocal tract dynamics (Yildiz and Kiebel, 2011). The system
consisted of three levels, each of which was governed by
the sequential dynamics of an RNN following a limit cycle.
The sequential dynamics were influenced both by top-down
predictions, and bottom-up prediction errors. In another study,
the same concept was applied to the recognition of human speech
(Yildiz et al., 2013). The resulting inference scheme was able to
recognize spoken words, even under adversarial circumstances
like accelerated speech, since it inferred and adapted parameters
in an online fashion during the recognition process. The same
principle can also be translated to very different types of input,
see Rivera et al. (2015) for an example of insect olfaction.

3.2.2. A Hierarchy of Time Scales: Neuroimaging

Evidence
Experimental evidence for the hypothesis of a hierarchy of
time scales has been reported in several neuroimaging studies
(Koechlin et al., 2003; Hasson et al., 2008; Lerner et al., 2011;
Gauthier et al., 2012; Cocchi et al., 2016; Mattar et al., 2016;
Baldassano et al., 2017; Gao et al., 2020), two of which we
are going to briefly discuss in the following. One functional
magnetic resonance imaging (fMRI) study investigated the
temporal receptive windows (TRW) of several brain regions in
the human brain (Hasson et al., 2008). The TRW of an area is
the time-interval over which the region “integrates” incoming
information, in order to extract meaning over a specific temporal
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scale. It was found that regions, such as the primary visual cortex
exhibited rather short TRW, while high order regions exhibited
intermediate to long TRW (Hasson et al., 2008). Similarly, in
Lerner et al. (2011) the same principle was tested with temporally
structured auditory input, i.e., speech. Using fMRI, the authors
found evidence for a hierarchy of time scales in specific brain
areas. The different time scales represented fast auditory input,
words, sentences and paragraphs (see Figure 7).

3.2.3. A Hierarchy of Time Scales: Machine Learning
Not surprisingly, the importance of hierarchies of time scales
is well-established within the machine learning community
(El Hihi and Bengio, 1996; Malhotra et al., 2015). Current
state-of-the-art RNN architectures used for prediction and
classification of complex time series data are based on recurrent
network units organized as temporal hierarchies. Notable
examples are the clockwork RNN (Koutnik et al., 2014), gated
feedback RNN (Chung et al., 2015), hierarchical multi-scale RNN
(Chung et al., 2016), fast-slow RNN (Mujika et al., 2017), and
higher order RNNs (HORNNs) (Soltani and Jiang, 2016). These
modern RNN architectures have found various applications in
motion classification (Neverova et al., 2016; Yan et al., 2018),
speech synthesis (Wu and King, 2016; Achanta and Gangashetty,
2017; Zhang and Woodland, 2018), recognition (Chan et al.,
2016), and other related areas (Liu et al., 2015; Krause et al.,
2017; Kurata et al., 2017). These applications of hierarchical
RNN architectures further confirm the relevance of hierarchically
organized sequence generators for capturing complex dynamics
in our everyday environments.

4. CONCLUSION

Here, we have reviewed the evidence that our brain senses
its environment as sequential sensory input, and consequently,
uses neuronal sequences for predicting future sensory input.
Although the general idea that the brain is a prediction device
has by now become a mainstream guiding principle in cognitive
neuroscience, it is much less clear how exactly the brain computes
these predictions. We have reviewed results from different areas
of the neurosciences that the brain may achieve this by using
a hierarchy of time scales, specifically a hierarchy of sequential
dynamics. If this were the case, the question would be whether

already known neuroscience results in specific areas can be re-
interpreted as evidence for the brain’s operations in such a
hierarchy of time scales. Such an interpretation is quite natural
for neuroscience fields like auditory processing, where such a
temporal hierarchy is most evident. But it is much less evident for
other areas, like for example decision-making. To further test this
suggested theory of brain function, researchers need to design
experimental paradigms which are specifically geared toward
testing what probabilistic inference mechanisms the brain uses to
predict its input at different time scales, and select its own actions.
Importantly, hierarchical computational modeling approaches
as reviewed here could be used to further provide theoretical
evidence of the underlying multi-scale inference mechanism and
generate new predictions that can be tested experimentally.

What we found telling is that recent advances in machine
learning converge on similar ideas of representing multi scale
dynamics in sensory data, although with a different motivation
and different aims. The simple reason for this convergence may
be that much of the sensory data that is input to machine
learning implementations is similar to the kind of sensory input
experienced by humans, as for example in videos and speech
data. Therefore, we believe that as computational modeling in
the neurosciences as reviewed here will gain traction, there
will be useful translations form the neurosciences to machine
learning applications.
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