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Abstract: The basic leucine zipper (bZIP) is an important transcription factor required for fungal
development, nutrient utilization, biosynthesis of secondary metabolites, and defense against various
stresses. Aspergillus flavus is a major producer of aflatoxin and an opportunistic fungus on a wide
range of hosts. However, little is known about the role of most bZIP genes in A. flavus. In this
study, we developed a high-throughput gene knockout method based on an Agrobacterium-mediated
transformation system. Gene knockout construction by yeast recombinational cloning and screening
of the null mutants by double fluorescence provides an efficient way to construct gene-deleted
mutants for this multinucleate fungus. We deleted 15 bZIP genes in A. flavus. Twelve of these
genes were identified and characterized in this strain for the first time. The phenotypic analysis of
these mutants showed that the 15 bZIP genes play a diverse role in mycelial growth (eight genes),
conidiation (13 genes), aflatoxin biosynthesis (10 genes), oxidative stress response (11 genes), cell wall
stress (five genes), osmotic stress (three genes), acid and alkali stress (four genes), and virulence to
kernels (nine genes). Impressively, all 15 genes were involved in the development of sclerotia, and the
respective deletion mutants of five of them did not produce sclerotia. Moreover, MetR was involved
in this biological process. In addition, HapX and MetR play important roles in the adaptation to
excessive iron and sulfur metabolism, respectively. These studies provide comprehensive insights
into the role of bZIP transcription factors in this aflatoxigenic fungus of global significance.

Keywords: Aspergillus flavus; bZIP transcription factors; mycelial growth; conidiation; sclerotia;
aflatoxin; stress response; pathogenicity

1. Introduction

Aspergillus flavus is a saprophytic opportunistic fungus that is infamous for its pro-
duction of the hepatocarcinogenic secondary metabolites known as aflatoxins. These
mycotoxins frequently contaminate a wide range of crops, such as maize (Zea mays L.),
peanut (Arachis hypogeae L.) and tree nuts, causing substantial economic losses worldwide.
The contamination of food or feed with aflatoxins poses a serious threat and health risk to
humans and animals.

A. flavus normally reproduces with asexual spores. These conidia are an efficient
form of mass dissemination and serve as the primary inocula. Initially, germination of
the spores and subsequent vegetative growth forms the mycelia. Some of the hyphal cells
stop mycelial growth and begin asexual development by forming conidiophores that bear
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multiple chains of conidia. In severe environmental conditions, sclerotia are formed by
fusion and aggregation of the mycelia and can remain dormant for long periods of time until
favorable conditions allow for germination and the production of conidia. The fungus can
also reproduce sexually. Unlike A. nidulans, which produces meiospores (i.e., ascospores)
in the sexual fruiting bodies known as cleistothecia, the sexual ascospores of A. flavus
are found within ascocarps present in the matrix of stromata [1,2]. If the environmental
conditions are favorable, mycelia, conidia and sclerotia can produce aflatoxin.

Transcription factors (TFs) are essential regulators of gene expression in eukaryotic
cells and play a major role in fungal development, pathogenesis and responses to the
environment [3]. The Fungal Transcription Factor Database (http://ftfd.snu.ac.kr, accessed
on 6 January 2020) contains 118,563 putative fungal TFs classified into 61 families in
249 fungal and six oomycete species. In A. flavus, 647 putative TFs corresponding to
5.13% of 12,604 genes were identified in the genome (www.ftfd.snu.ac.kr, accessed on 6
January 2020). In addition, several TFs that modulate the development and secondary
metabolism of A. flavus have been reported. The Zn2Cys6 TF, AflR, regulates aflatoxin
biosynthesis by binding to the palindromic sequence 5′-TCGN5CGA-3′ in the aflatoxin
pathway cluster gene promoters [4–6]. A homeobox TF, Hbx1, is involved in development
and the production of aflatoxin [7,8]. The Far TFs, FarA and FarB, are involved in various
aspects of fatty acid metabolism [9]. A C2H2 TF, RsrA, that regulates stress responses is
required for both meiotic and mitotic spore development and affects the production of
spores and sclerotia [10]. Another C2H2 TF, mtfA, governs the production of aflatoxin and
the normal maturation of sclerotia and increases the pathogenicity of A. flavus [11].

The basic leucine zipper (bZIP) transcription factor family is one of the largest and
most diverse TF families in fungi. The bZIP TFs are defined by a conserved basic region
responsible for DNA-binding, followed by a leucine zipper that forms a homo- and hetero-
dimerization interface between the bZIPs. In recent years, fungal genome sequencing
has provided a platform for the systematic analysis of the primordial bZIPs based on
conserved domains. Members of bZIPs in some species have been thoroughly investigated
on the genomic level. For example, 14 members of the bZIP TF family are present in
Saccharomyces cerevisiae, nine in Neurospora crassa [12], 22 in Magnaporthe oryzae [13] and 22
in Fusarium graminearum [14]. In addition, 26 bZIP genes in Coniothyrium chrysosperma [15],
34 in Coniothyrium minitans [16], 28 in Ustilaginoidea virens [17], and 38 in Phytophthora
infestans [18] were also identified at the genomic level.

The bZIP TFs are involved in many critical processes, such as development, the uti-
lization of nutrients, biosynthesis of secondary metabolites, and defense against various
stresses. One bZIP member designated FlbB is involved in the transcriptional activation
and developmental progression of brlA in A. nidulans [19–21]. In A. fumigatus, it is required
for gliotoxin production beyond asexual development [22]. Other members, such as CpcA
and JlbA, are TFs that respond to amino acid starvation in A. nidulans [23] and A. fumi-
gatus [24]. Another member, HacA, mediates the response to unfolded proteins, which
involves a complex signal pathway related to the folding, quality control and transport of
secreted proteins in species of Aspergillus [25–27] and Trichophyton rubrum [28]. HapX is
indispensable for the adaption to iron starvation and crucial for virulence in many fungi,
such as A. fumigatus [29,30], A. nidulans [31], F. graminearum [32], F. oxysporum [33], Verticil-
lium dahliae [34] and Beauveria bassiana [35]. In addition, MetR contributes to the regulation
of sulfur and methionine metabolism [36–39], while MeaB affects the repression of nitrogen
metabolites [40–42]. Moreover, some bZIP TFs mediate the oxidative stress response and
play important roles in fungal development, particularly secondary metabolism. Nap1 in
A. nidulans, an ortholog of yeast Yap1 [43], regulates sexual development and affects the
response to oxidative stress and the biosynthesis of mycotoxin sterigmatocystin (ST) [44,45].
Apyap1 in A. parasiticus [46] and Aoyap1 in A. ochraceus [47] have also been verified to be
involved in antioxidant defenses and affect the biosynthesis of mycotoxins. In addition,
RsmA (Yap-like bZIP) regulates gliotoxin cluster metabolites in A. fumigatus [48] and ST
production in A. nidulans [49]. Although a few bZIPs have been characterized in A. flavus,
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such as MeaB [40], Afap1 [50] and AflRsmA [51], the function and regulation of most bZIPs
produced by A. flavus remain to be elucidated.

In this study, we identified and characterized the bZIP genes at the genome level in
A. flavus. In the 17 bZIP genes predicted, except for MeaB, Afap1 and Fcr3 (AflRsmA or-
tholog), which have been reported, the functions of 14 bZIP genes have not been verified in
this fungus. We used a high-throughput gene knockout method based on an Agrobacterium-
mediated transformation system to delete these bZIP genes. In our method, gene-deleted
cassettes were constructed by yeast recombinational cloning, and the null mutants were
identified by a double fluorescence and negative (target gene) screening system. We used
this system to generate 15 bZIP genes in null mutants with homogeneous nuclei (HMN)
and studied the involvement of these genes in mycelial growth, conidiation, sclerotial
development, aflatoxin production, abiotic stress, and virulence on kernels. Our work will
help to understand the regulation of the bZIP transcription factor family in development,
secondary metabolism, oxidative stress response and pathogenicity of A. flavus and pro-
vide an efficient method to construct gene-deleted mutants at the genome level in this
multinucleate fungus.

2. Materials and Methods
2.1. Strains and Culture Conditions

Escherichia coli strain DH5α and Agrobacterium tumefaciens strain AGL-1 were grown
in DYT media (tryptone, 16 g/L; yeast extract, 10 g/L; and NaCl, 5 g/L; with 15 g/L agar
added to prepare the plates) at 37 and 28 ◦C, respectively.

Saccharomyces cerevisiae strain FY834 (MATa; his∆200; ura3-52; leu2∆1; and lys2∆202)
was refreshed on YPD agar medium (yeast extract, 10 g/L; glucose, 20 g/L; and peptone,
20 g/L) at 28 ◦C for 48 h, and then used to prepare competent cells with the PEG/LiAC
method [52]. Yeast transformants were selected on Sc-U medium (yeast nitrogen base,
1.7 g/L; ammonium sulfate, 5 g/L; casein hydrolysate, 5 g/L; adenine hemisulfate salt,
20 mg/L; and glucose, 20 g/L).

The A. flavus wild-type isolate NRRL 3357 [53] was used as the recipient strain for
fungal genetic transformation. The isolate was grown at 30 ◦C on potato dextrose agar
(PDA) (Difco Laboratories, Inc., Detroit, MI, USA) plates in the dark for 7 days. Fresh
conidia were then harvested and used for the transformation experiments. Wickerham
medium (WKM) was used to observe the formation of sclerotia [54]. The analysis for
aflatoxin was conducted on strains grown on YES media (20 g/L yeast extract, 150 g/L
sucrose, and 15 g/L agar).

2.2. Prediction of bZIPs in A. flavus

Previously reported bZIP proteins of A. flavus [40,50,51] and Hidden Markov Model
(HMM) profiles of the bZIP proteins were aligned against the A. flavus NRRL 3357 proteins
(http://fungi.ensembl.org, v2.0, accessed on 8 January 2020) using BLASTP. The candi-
date genes were verified in the Pfam database (http://pfam.xfam.org/, accessed on 15
January 2020) and SMART (http://fungi.ensembl.org, v2.0, accessed on 15 January 2020).
Conserved motifs among the bZIP genes were examined using MEME software (Multiple
Expectation Maximization for Motif Elicitation).

2.3. Generation of the Yeast–Escherichia–Agrobacterium Shuttle Vector pUM-GFP

To construct the pUM-GFP vector, a promoter fragment of the A. flavus tef1 gene
(838 bp) and gfp gene (720 bp) were amplified together from the pFC-eGFP vector [53] with
primers Ptef1-up/Pgfp-down (Table S1), and inserted into the Xho I/BamH I sites of the
pUM vector [53].

2.4. High-Throughput Construction of the Gene Knockout Vector

Gene-deletion cassettes were constructed using a yeast in vivo homologous recombina-
tion system. It contained a 900–1200 bp DNA fragment of the 5′ and 3′ flanking sequences
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of the target gene and the Ble-RFP (BR) expression cassette. Flanking sequences of the
17 bZIP genes were retrieved from the A. flavus NRRL 3357 genome. Primers for specific
flank sequences of the target genes were designed with primer premier 5.0 as shown in
Table S1. For each gene, primers 5f/5r and 3f/3r were designed and synthesized with the
common 30-nt 5′ homologous regions:

5f: GGCATGGACGAGCTGTACAAGTAAGGATCC . . . (homologous to pUM-GFP)
5r: CAATAAGGAGCTTACTCCTCCTTGACACCA . . . (homologous to the

BR cassette)
3f: GTAAGCGCCCACTCCACATCTCCACTCGAC . . . (homologous to the

BR cassette)
3r: TAAACGCTCTTTTCTCTTAGGTTTACCCGC . . . (homologous to pUM-GFP)
The BR cassette was constructed by the substitution of GFP gene in the pDHBG

vector [55] with RFP gene to generate the pDHBR vector.
The flank fragments of target genes were produced from the genomic DNA of A. flavus

NRRL 3357. The BR cassette fragment was amplified with the primers Pbr-f/ Pbr-r from
pDHBR. All the PCR products were verified by sequencing. The flank fragments of the
target gene, the BR cassette fragment and pUM-GFP that had been linearized by BamH
I/Hind III were mixed and transformed into FY834 competent cells following a small-scale
yeast transformation according to the manufacturer’s instructions for pYES2 (Invitrogen,
Carlsbad, CA, USA) and selected on Sc-U media. The homologous recombination plasmid
products were purified using a TIANprep Yeast Plasmid DNA Kit (DP112; Tiangen Biotech
Co., Ltd., Beijing, China) and then transformed into E. coli DH5α competent cells. The
DNA sequence of the final assembled plasmid designated pKO-x (x represents the target
gene) was confirmed by PCR and DNA sequencing, after which it was transformed into
the AGL-1 strain. The primers used in this study are shown in Table S1.

2.5. Generation of the Knockout Mutants by ATMT

pKO-x plasmids that harbored gene-deletion cassettes were transformed into A. flavus
using the Agrobacterium tumefaciens-mediated transformation (ATMT) method [55]. Simply,
the mixture of A. flavus conidial suspensions and A. tumefaciens cultures was cultured
on cellulose nitrate membranes placed on co-cultivation media at 22 ◦C for 2 days and
then transferred to selective media that contained 300 µg/mL cefotaxime, 60 µg/mL
streptomycin and 100 µg/mL zeocin and incubated at 28 ◦C in the dark until colonies
appeared. The individual colonies were transferred to new selection media and grown at
28 ◦C for 3–4 days.

2.6. Identification of Gene-Deleted Mutants by Double Fluorescence

The expression of GFP and RFP in the A. flavus transformants was analyzed using
a Leica DM5000 B fluorescence microscope (Leica, Wetzlar, Germany). Selected transfor-
mants were incubated on PDA plates at 30 ◦C for 2–5 days, and then spores, mycelia or
conidiophores were collected for fluorescence analysis. The ectopic transformants emitted
both green and red fluorescence; putative null mutants only emitted red fluorescence, and
the wild-type strain NRRL 3357 did not respond when excited under the fluorescence
microscope. The transformants with red fluorescence were picked out and inoculated on a
new selective medium to isolate single spores. Each isolate was studied further under the
fluorescence microscope.

2.7. Verification of Gene-Deleted Mutants by PCR and Southern Blotting

The genomic DNA was extracted using an amended CTAB method [55]. The putative
null mutants with red fluorescence were identified by negative screening double PCR as
previously described [56]. PCR was performed using the primers Pnull_f/Pnull_r internal
to the target gene (Table S1B) and the primers Ptub-f/Ptub-r for the β-tubulin gene. The PCR
reaction system was as follows: 1.0 µL Px-f/Px-r (10 µM), 0.3 µL Ptub-f/Ptub-r (10 µM),
2.5 µL 10 × PCR buffer, 0.4 µL dNTP mix (25 µM), 0.3 µL Taq (5U/µL), 19.5 µL ddH2O and
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1 µL genomic DNA. The amplification reaction was carried out at 94 ◦C for 2 min, 32 cycles
of 94 ◦C for 30 s, 58 ◦C for 45 s and 72 ◦C for 30 s, followed by 72 ◦C for 5 min. If the target
gene was deleted, there was only one band for β-tubulin with 580 bp in homogeneous
nuclei (HMN) strains. Otherwise, there were two bands in a heterogeneous nuclei (HTN)
strain, one for β-tubulin and another for the target gene.

The null mutants were also identified by positive PCR. One primer P1 or P4 was
limited in the genomic DNA outside of the 5′ or 3′ flanking fragment in gene-deletion
cassettes, and another primer P2 or P3 was limited in the BR cassettes. In this study, only
P1/P2 primers were used (Table S1C).

For Southern blotting, DNA hybridization probes were amplified with primers
(Table S1D) and labeled with digoxigenin-dUTP using DIG-high prime according to the
manufacturer’s instructions (11585614910; Roche, Shanghai, China). The Southern blots
were performed as previously described [53].

One deletion mutant was selected for each bZIP gene and used in the phenotypic
characterization.

2.8. Complementation of Null Mutants with Native Genes

The mutant ∆MetR was complemented with native gene copies from the wild-type
strain NRRL 3357 using a site-specific integration system [53]. Briefly, the fragments that
contained the native promoter region of the gene, full-length coding region and terminator
sequences were amplified from NRRL 3357 genomic DNA with the primers PMRcom-
f/PMRcom-r (Table S1D) and then cloned into the pUM vector using the yeast gap repair
approach to generate the pFC-MetR vector. The sequenced complementary plasmids were
transformed into the mutants using the ATMT method. The spores of ∆MetR harvested
from PDA supplemented with 5 mM L-methionine were used as the transforming receptor.
The transformants were screened on MM media supplemented with 150 µg/mL carboxin.
The gene-rescued transformants were validated by quantitative PCR (qPCR).

2.9. RNA Isolation and Quantitative PCR

To investigate the transcriptional inhibition of aflatoxin biosynthesis, conidial suspen-
sion (3 × 104 spores) was seeded onto YES plates and incubated at 28 ◦C. The mycelia of
A. flavus grown for three days were collected for total RNA isolation using the RNAiso Plus
reagent (TaKaRa Co., Ltd., Otsu, Shiga, Japan) according to the manufacturer’s instructions.
cDNA was synthesized from 1 µL of total RNA by reverse transcription using a TransScript
One-Step gDNA Removal and cDNA Synthesis SuperMix Kit (Transgen Biotech Co. Ltd.,
Beijing, China). Reverse transcription (RT) was performed by incubating the mixture for
5 min at 65 ◦C, and the PCR program was as follows: 25 ◦C for 10 min, 42 ◦C for 15 min,
85 ◦C for 5 s and 40 ◦C for 5 s.

aflR and aflS, the regulatory genes of the aflatoxin biosynthetic pathway, were selected
for quantitative analysis. qPCR (PikoReal 96 Real-Time PCR System; Ventaa, Finland)
was conducted using the TB Green® Premix Ex TaqTM II (TaKaRa Co., Ltd.), in a final
volume of 20 µL, consisting of 10 µL TB Green Premix Ex Taq II (2×), 0.5 µL of each primer
(10 µM) and 1 µL cDNA. The qPCR program included an initial denaturation at 95 ◦C
for 30 s, followed by a 2-step PCR, 40 cycles of 95 ◦C for 5 s and 60 ◦C for 30 s. The
β-tubulin gene was used as the reference gene, with three biological replicates assessed for
each sample. The relative levels of expression were calculated using the comparative CT
(2−∆∆CT) method.

2.10. Fungal Growth, Conidial and Sclerotial Production

To investigate the development of all the mutants, fresh spores were harvested from
7-day-old PDA plates with 0.01% Triton X-100 and diluted with sterilized water to a
concentration of 106 spores/mL after filtration through lens wiping paper to remove
hyphae. The spores of ∆MetR harvested from PDA supplemented with 5 mM L-methionine.
The spore count was estimated using a hemocytometer. A 10 µL aliquot of the spore
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suspension was used as inoculum for all the cultivation states. The wild-type strain NRRL
3357 was used as the control, and three replications were conducted for each test.

To determine the fungal growth, a spore suspension was inoculated onto fresh MM
and PDA media. Cultures were grown at 30 ◦C for 7 days. The diameter of the mycelial
colony was recorded, and the colony images were photographed at 7 days post inoculation.
To quantitatively compare the production of conidia, they all were washed off from a
7-day-old culture using a solution of 0.01% Triton X-100 and counted in a hemocytometer.

The sclerotia were analyzed by centrally seeding a spore suspension onto the WKM
plates and incubating them in the dark for 10 days at 30 ◦C. The conidia were then washed off
the plates with 75% alcohol, and the remaining sclerotia were counted under a microscope.

2.11. Abiotic Stress Conditions

For oxidative stress, a 10 µL spore suspension (1 × 106 spore/mL) of A. flavus wild-
type and bZIP mutants was point inoculated onto fresh PDA media supplemented with
3, 6 and 8 mM H2O2, respectively. PDA medium supplemented with 1.5 M sorbitol was
used to assess osmotic stress, while PDA medium supplemented with 400 µg/mL CFW
was used to assess cell wall stress. pH 5.0 and pH 9.0 MM media were used for acid and
alkali stress, respectively. After 3 days of culture in darkness at 30 ◦C, the diameters of
the mycelial colonies were recorded. Three replicates were analyzed for each stress. The
growth inhibition rate of each mutant was calculated as follows:

Growth inhibition rate (%) = (colony diameter under no stress conditions − colony
diameter under stress conditions)/colony diameter under no stress conditions × 100.

2.12. Aflatoxin Analysis

The production of AFB1 was quantitatively compared as previously described [57].
The deleted mutants cultivated on YES agar were used to analyze the toxins. The plate
was overlaid with sterile cellophane sheets and then centrally single-point inoculated
with a 10 µL spore suspension (1 × 106 spore/mL). The wild-type fungus was used as
the positive control. After 4 days of incubation at 28 ◦C, the fungal biomass was scraped
from the plates and weighed, and extracted in a 50 mL tube by incubation with 5 mL of
methanol at room temperature with shaking at 200 rpm for 2 h. The supernatant was then
collected by centrifugation at 3000× g for 10 min at room temperature and filtered through
a syringe filter (0.22 µm, Alltech, Nicholasville, KY, USA). Each sample was analyzed by a
Waters 600 Controller HPLC equipped with a fluorescence detector (Waters 2475 Multi λ
Fluorescence Detector; Milford, MA, USA). The chromatogram was recorded at 365 nm
excitation and 465 nm emission wavelength using a reverse-phase column Luna 3u C18
(2), 150 mm × 4.6 mm × 3 µm (Phenomenex, Torrance, CA, USA), and an isocratic mobile
phase with a flow rate of 0.6 mL min−1 that consisted of a mixture of methanol:water (55:45).
Three replicates were analyzed for each concentration. AFB1 production was measured as
µg/g of mycelia.

2.13. Kernel Infection Assay

A laboratory kernel infection assay (KIA) was performed as previously described
with modifications [57]. Conidia of the A. flavus strains were harvested from the PDA
plates using a solution of 0.01% Triton X-100 and adjusted to a cell density of 2 × 106 /mL.
Undamaged maize kernels were sterilized with 75% ethanol and 1% NaClO for 5 min in
turn and dipped into conidial suspension for 5 min. The kernels were then placed in 35 mm
Petri dishes without a lid, and these small dishes were then placed in a large Petri dish (90
× 20 mm) with the embryo up and incubated at 30 ◦C for 7 days. High humidity (>95%
relative humidity (RH)) was maintained by adding double-distilled water to the large
dishes. An untreated sample served as the control, and three replications were conducted
for each test. Infection was designated as visible mycelia and conidia on the surface of the
kernel. The rate of infection was calculated by dividing the infected area by kernel surface
area. Spores were also harvested and counted with a hemacytometer.
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2.14. Statistical Analysis

All experimental results were reported as mean ± standard deviation (SD). Statistical
analyses were performed using GraphPad Prism 8.0 software (GraphPad Software, San
Diego, CA, USA). A Dunnett test was used to determine the difference between each bZIP
mutant and wild-type. The significance level was set at p < 0.05.

3. Results
3.1. Identification of bZIP Transcription Factors in the Aspergillus flavus Genome

Seventeen putative bZIP genes were identified in the A. flavus NRRL 3357 genome
(http://fungi.ensembl.org, v2.0, accessed on 15 January 2020). Except for bZIP1 to bZIP6
designated in this paper, 11 bZIPs had been annotated in GenBank. Among those, the
functions of AP1 and MeaB have been experimentally verified. Conserved motifs of the
bZIP proteins were identified using the MEME software suite and showed that all the
proteins contained at least one bZIP domain, which is shown in red in Figure 1 (p < 0.001).
In addition, seven members of the bZIP proteins also contain adjoining leucine-rich motifs
(shaded blue).
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3.2. Strategy of the Double Fluorescence Knockout System in A. flavus

To quickly construct gene-deletion cassettes and efficiently identify null mutants from
the numerous transformants, we developed a high-throughput gene knockout system
using a yeast–Escherichia–Agrobacterium shuttle vector, pUM-GFP. This vector contains the
URA3-2µ origin sequence from the yeast plasmid pYES2 and a GFP reporter gene under the
control of the A. flavus tef1 promoter. The yeast replicon design makes it highly convenient
and efficient to construct multiple gene-deletion cassettes by yeast recombinational cloning,
regardless of the potential restriction sites in the sequences. The 5′ and 3′ flanking fragments
of the targeted gene (x), designated x-up and x-down, the Ble-RFP (BR) fusion expression
cassette and the linearized pUM-GFP vector were transformed to yeast for one-step in vivo
recombination. The final pKO-x vector contained two fluorescence reporter genes, GFP
and RFP (Figure 2A,B). The gene-deletion cassettes in the pKO-x vector were transformed
to the wild-type fungus using the ATMT method. The transformants were grown on
positive selection plates and were then identified by double fluorescence screening. The
transformants that emitted only red fluorescent protein (RFP) fluorescence were identified

http://fungi.ensembl.org
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as putative null mutants; the ones that emitted both RFP and green fluorescent protein (GFP)
fluorescence were ectopic insertional transformants, and the ones that did not fluoresce
were the wild-type (Figure 2C).
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Figure 2. Gene knockout strategy in Aspergillus flavus. (A) Features of the yeast–Escherichia–
Agrobacterium shuttle vector pUM-GFP. (B) Construction of the double fluorescence knockout vector
pKO-x and deletion of the targeted gene (x) by homologous recombination in the fungi. (C) The
transformants were screened by double fluorescence. Putative mutants have RFP fluorescence;
ectopic transformants have both GFP and RFP fluorescence, and the wild-type lacks fluorescence.
Bar = 25 µm. (D) Negative double PCR to identify the null mutants with homogeneous nuclei (HMN)
using the β-tubulin gene as a positive control. (E) HMN mutants were verified by positive PCR for a
unique recombinational DNA fragment. GFP, green fluorescent protein; HMN, homogeneous nuclei;
HTN, heterogeneous nuclei; RFP, red fluorescent protein; WT, wild-type.

The putative null mutants were further identified to have homogeneous nuclei in
their conidia by negative double PCR of the target and β-tubulin genes. Theoretically, the
putative null mutants emit only RFP, and a lack of GFP fluorescence suggested that the
target gene had been recombinationally replaced by the Ble-RFP cassette. In addition,
only one band for β-tubulin could be amplified in negative PCR. However, most of the
conidia of A. flavus are multinucleate. In rare cases, a few putative null mutants harbored
heterogeneous nuclei (HTN), a condition in which wild-type and recombinational nuclei
coexisted in one strain. Thus, another band for the target gene could be amplified from the
HTN mutants. Through negative PCR, the null mutants with homogeneous nuclei (HMN)
were identified, and only one band for a β-tubulin gene of 580 bp could be amplified in this
mutant (Figure 2D). HMN mutants were then verified by positive PCR of the gene-deletion
cassettes. In positive PCR, one primer was limited in the genomic DNA outside of the x-up
or x-down, while another primer was limited in the BR cassette. One band of approximately
1.2–2.5 kb in length was amplified from the HMN mutants (Figure 2E), which suggested
that the foreign fragment (BR cassette) had replaced the target gene. Although the same
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band could be amplified from the HTN mutants, the interference would be eliminated by
negative PCR.

3.3. Construction of bZIP Deletion Mutants in A. flavus

The 17 bZIP genes that were predicted to contain the two verified genes were all
selected to generate gene-deletion mutants using the double fluorescence knockout system.
As a result, 201 resistant transformants for all bZIP genes were obtained. A total of 96
only had red fluorescence and 57 had double fluorescence, while 48 lacked fluorescence.
Further, double PCR and positive PCR (Figure S1A) for the transformants showing only
the red fluorescence allowed for the selection of 61 HMN mutants, while the other 35 were
HTN mutants (Table S2). The knockout event was also verified by a Southern blot assay of
two mutants (Figure S1B). The 61 HMN mutants are members of the 15 bZIP genes. The
knockout rate of 15 genes ranged from 6.25% (LziP) to 100% (JlbA) (Table S2). However,
bZIP3 and HacA were only obtained in HTN mutants. The causes may lie in the following:
(1) The genes could be involved in fungal nutrient metabolism. Therefore, their deletion
may have resulted in an inability of the mutant to grow on minimal medium (MM) selection
media. (2) The genes may be essential. The homozygous mutant is lethal. In these cases, a
heterozygote with heterogeneous nuclei could grow.

3.4. Phenotypic Analyses of the bZIP Transcription Factor Deletion Mutants

The phenotypes of HMN mutants of 15 bZIPs were analyzed at different developmen-
tal stages, including developmental characteristics, such as mycelial growth, conidiation,
and sclerotial production. The production of aflatoxin B1 (AFB1), response to stress and vir-
ulence to kernels were also studied. The results showed that eight TF genes were involved
in mycelial growth, 13 genes in conidial production, 15 genes in sclerotial production, and
10 genes were involved in the biosynthesis of aflatoxin. Eleven TF genes were involved
in H2O2 stress, five in cell wall stress, three in osmotic stress, and four in acid and alkali
stress. Nine TF genes were involved in virulence to kernels (Figure 3A, Table 1 and Table
S3). Each TF gene was involved in multiple biological processes. There were seven TF
genes that were simultaneously involved in growth, conidiation, sclerotial and aflatoxin
production and oxidative stress response (Figure 3B). In addition, MetR was involved in all
the processes examined (Table 1).
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Table 1. Phenotypic summary of 15 bZIP transcription factor gene-deleted mutants.

Mutant Growth Conidiation Sclerotia Aflatoxin Oxidative
Stress

Cell Wall
Stress

Osmotic
Stress

Acid and
Alkali Stress Pathogenicity

∆bZIP1 Reduced 1 Increased 2 None Reduced Affected ↓ No No No Affected 6

∆bZIP2 Reduced 1 Reduced 1 Reduced Reduced Affected ↑ No No No Affected 6

∆bZIP4 Reduced 2 Reduced 1 None Reduced Affected ↓ No No Affected 3 Affected 5,6

∆bZIP5 Normal Reduced 1 Reduced Reduced No No No No No
∆bZIP6 Normal Normal Reduced Normal No Affected No No Affected 5

∆AP1 Normal Normal Reduced Normal Affected ↓ No No No Affected 5

∆AtfA Reduced 2 Reduced 1 None Reduced Affected ↓ Affected No No Affected 6

∆AtfB Reduced 2 Reduced 1 Reduced Reduced Affected ↓ No No No No
∆CpcA Reduced 2 Reduced 1 Reduced Normal No Affected No Affected 4 No
∆Fcr3 Normal Reduced 1 Reduced Normal No No No No Affected 5

∆HapX Normal Reduced 1 Increased Reduced Affected ↓ No Affected No No
∆JlbA Reduced 2 Reduced 1 Reduced Reduced Affected ↑ No No No No
∆LziP Normal Reduced 1 Increased Normal Affected ↓ Affected No Affected 4 Affected 5,6

∆MeaB Normal Reduced 1,2 None Reduced Affected ↓ No Affected No No

∆MetR Reduced
1,2 Reduced 1,2 None Reduced Affected ↓ Affected Affected Affected 4 Affected 5,6

Note: The phenotypes of the mutants in colony growth, conidiation, sclerotia and aflatoxin production, response
to stress, and pathogenicity were compared with the wild-type strain NRRL 3357. 1, strains cultured on PDA
plates; 2, strains cultured on MM plates; 3, affected by acid stress; 4, affected by alkali stress; 5, infection rate of
maize kernels by mutants; 6, conidial production of mutants on infected kernels; ↑, increased resistance to H2O2;
↓, decreased resistance to H2O2. H2O2, hydrogen peroxide; None, no sclerotia; No, unaffected.

3.5. bZIP Transcription Factors Involved in Fungal Growth

The fungal growth of the null mutants with HMN of the 15 bZIP transcription factors
was studied on PDA and MM media. Figure S2 shows the colony phenotype of each mutant
and the control strain. The mycelia of eight of these null mutants differed significantly
compared with those of the wild-type fungus (Figure 4, Table S3). In detail, ∆bZIP1 and
∆bZIP2 only had smaller colonies on PDA at 82% and 73.2%, respectively. The growth of
colonies of five bZIPs mutants (∆bZIP4, ∆AtfA, ∆AtfB, ∆CpcA and ∆JlbA) was only reduced
on MM. ∆MetR reduced growth on PDA at 24.7% and did not grow on MM. Moreover,
∆LziP exhibited a “fluffy” phenotype on MM (Figure S2).
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Figure 4. Mycelial growth of Aspergillus flavus strains on media. In total, 1× 104 spores were cultured
on PDA (A) and MM (B) media for 7 days at 30 ◦C. The diameter of colonies was measured. Error
bars represent the SD. * p < 0.05, significant difference from the wild-type group as estimated by a
Dunnett test. MM, minimal media; PDA, potato dextrose agar; SD, standard deviation.

3.6. bZIP Transcription Factors Involved in Conidial Production

The conidiation of HMN mutants of the 15 bZIP transcription factors was also studied.
The ∆bZIP2 and ∆MeaB mutants produced approximately 73.8% and 76.4% fewer conidia on
PDA plates, respectively, compared with the wild-type fungus. In addition, the two mutants
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produced only sparse conidiophores. The ∆MetR mutant produced few conidiophores
(Figure 5A,C).
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Figure 5. Analysis of conidial production of Aspergillus flavus strains. In total, 1 × 104 spores
were cultured on PDA (A) and MM (B) media for 7 days at 30 ◦C. The conidia produced per
plate by the tested strains were numbered. Error bars represent the SD. * p < 0.05, significant
difference from the wild-type group as estimated by a Dunnett test. (C) Conidiophores of the mutant
strains ∆MeaB and ∆MetR on PDA. Bar = 400 µm. MM, minimal media; PDA, potato dextrose agar;
SD, standard deviation.

∆MetR could not grow on MM plates. The mutants of other 10 bZIP genes displayed
defects in conidiation, and five of them, ∆bZIP4, ∆AtfA, ∆AtfB, ∆JlbA, and ∆MeaB, produced
at least 70% fewer conidia compared with the wild-type. ∆bZIP1 produced significantly
more conidia than the wild-type fungus, with an increase of approximately 50% (Figure 5B).

3.7. bZIP Transcription Factors Involved in Sclerotial Development

The effects of deletion of the bZIP genes on sclerotial production were determined.
When the HMN mutants were cultured on WKM in the dark for 10 days, the mutants
of five bZIPs did not produce sclerotia, including ∆bZIP1, ∆bZIP4, ∆AtfA, ∆MeaB and
∆MetR (Figure S3). The mutants of seven bZIPs produced significantly fewer sclerotia
compared with the wild-type (Figure 6A). The numbers of sclerotia of ∆bZIP2, ∆bZIP6 and
∆JlbA were reduced by approximately 50%, ∆AtfB and ∆CpcA by approximately 70%, while
∆bZIP5 and ∆AP1 were reduced by at least 90%. However, ∆HapX and ∆LziP produced
approximately 50% more sclerotia than the wild-type (Figure 6B). The size of sclerotia of
these mutants was also determined. The mutants of bZIP6, AP1, AtfB, CpcA, HapX and JlbA
genes all produced smaller sclerotia than the wild-type, and the sclerotia of ∆HapX were
the smallest, decreased by 42.3% in diameter (Figure 6C, Table S3).
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Figure 6. Analysis of the sclerotial production of Aspergillus flavus strains. (A) Colonies of mutants
with sclerotia. In total, 1 × 104 spores were cultured on 90 mm WKM plates in the dark for 10
days at 30 ◦C. Bar = 1 cm. (B) The number of sclerotia per plate. Bar = 2 mm. (C) Analyses of
the size of sclerotia. Ten sclerotia were arranged in a row, and the length was measured and then
converted into the diameter (mm) of a sclerotium. Error bars represent the SD. * p < 0.05, significant
difference from the wild-type group as estimated using a Dunnett test. SD, standard deviation; WKM,
Wickerham media.

3.8. bZIP Transcription Factors Involved in Aflatoxin Production

To study the effect of the deletion of bZIPs genes on the biosynthesis of aflatoxin, the
production of AFB1 by the mutants of 15 bZIP genes was quantified by high performance
liquid chromatography (HPLC). Our findings revealed that the mutants of 10 bZIP genes
produced significantly lower amounts of AFB1 compared with the wild-type (121.5 µg/g),
and eight produced <10% of AFB1, including ∆bZIP1, ∆bZIP2, ∆bZIP4, ∆bZIP5, ∆AtfA,
∆AtfB, ∆MeaB and ∆MetR. The production of AFB1 by ∆HapX and ∆JlbA was reduced at
74.6% and 57.9%, respectively (Figure 7A).

In these 10 mutants with reduced levels of AFB1, we also studied the expression of aflR
and aflS, important positive regulators of the aflatoxin biosynthetic pathway (Figure 7B,C).
The results showed that the expression of aflR in four mutants (∆bZIP1, ∆bZIP4, ∆AtfA and
∆AtfB) was significantly downregulated at the same time. It is notable that the expression
of aflS in the ∆bZIP4 and ∆AtfA was also downregulated. In contrast, aflS in ∆HapX were
downregulated, while there was no difference in the expression of aflR compared with the
wild-type. However, aflR was significantly upregulated in three mutants (∆bZIP2, ∆bZIP5
and ∆JlbA). In particular, the level of expression of aflS in ∆bZIP5 and ∆JlbA was also
upregulated. In addition, only aflS was upregulated in two mutants (∆MeaB and ∆MetR).
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levels of expression of aflR (B) and aflS (C) in mutants with reduced aflatoxin production. Error bars
represent the SD. * p < 0.05, significant difference from the wild-type group as estimated by a Dunnett
test. AFB1, aflatoxin B1; HPLC, high pressure liquid chromatography; SD, standard deviation; YES,
yeast extract with supplements.

3.9. bZIP Transcription Factors Related to Oxidative Stress

The sensitivities of 15 bZIPs mutants to oxidative stress were assayed by measuring
their mycelial growth under 3, 6 and 8 mM hydrogen peroxide (H2O2). The wild-type
fungus could not grow when treated with 8 mM H2O2. In comparison, ∆AP1 was most
sensitive to oxidative stress and could not grow under 3 mM H2O2. Seven bZIPs mutants
were more sensitive to 6 mM H2O2. ∆bZIP1, ∆HapX and ∆MetR could not grow at all,
while the growth of ∆bZIP4, ∆AtfA, ∆AtfB, and ∆LziP was significantly reduced under
6 mM H2O2. The mutants ∆bZIP2 and ∆JlbA were significantly more tolerant to oxidative
stress and could grow under 8 mM H2O2 (Figure 8, Table S3). In addition, ∆MeaB was
only less sensitive to 3 mM H2O2 compared with the wild-type, although it was similarly
affected by 6 and 8 mM H2O2 compared with the wild-type (Table S3).
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30 ◦C. Bar = 1 cm. Growth inhibition rate (%) of 15 bZIPs mutants under H2O2 stress are shown in
Table S3. H2O2, hydrogen peroxide; PDA, potato dextrose agar.
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3.10. bZIP Transcription Factors Related to Cell Wall, Osmotic, Acid and Alkali Stress

Various types of abiotic stress, such as cell wall, osmotic, acid and alkali stress, can
affect the development and infection cycle of fungi. We studied the response of all bZIPs
mutants to the four kinds of abiotic stress, including 400 µg/mL CFW, 1.5 mM sorbitol,
pH 5.0 and pH 9.0. CFW is a cell wall stress compound. Five of the 15 bZIP mutants
were more sensitive to this compound (Figure 9A). Notably, the growth of ∆MetR was
inhibited by 2.6-fold compared with the wild-type (Figure 9D). Hypertonic pressure with
1.5 mM sorbitol unexpectedly promoted the growth of the wild-type and most mutants. The
exceptions were ∆HapX and ∆MeaB, with growth that only increased by 14.1% and 12.8%,
respectively, which was significantly lower than that of the wild-type (23.9%) (Table S3).
In addition, only ∆MetR exhibited reduced growth under this osmotic stress (Figure 9B).
Acidic conditions also promoted mycelial growth because pH 5.0 is suitable for the growth
of A. flavus, and only ∆bZIP4 differed significantly from the wild-type. Instead, most
mutants grew poorly at pH 9.0 compared with pH 7.0, and only ∆LziP differed from the
wild-type, while the growth of ∆CpcA increased by 2.4% at pH 9.0 (Figure 9C). In addition,
∆MetR could not grow on the MM media. Thus, MM media that had been supplemented
with L-methionine were used for acid and alkali stress. The results showed that ∆MetR
was more sensitive to alkali stress (Figure 9D).
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ΔbZIP1, ΔbZIP2 and ΔAtfA had similar infection rates, but they produced fewer conidia. 
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Figure 9. Effects of cell wall stress, osmotic stress, and acid and alkali stress on the growth of
Aspergillus flavus strains. Mutants with significant differences are shown here. The rate of inhibition of
the others is shown in Table S3. (A) Colonies of the mutants subjected to CFW and sorbitol stress. The
mutant strains were inoculated on PDA supplemented with 400 µg/mL CFW for cell wall stress and
1.5 mM sorbitol for osmotic stress for 3 days at 30 ◦C. Bar = 1 cm. (B) Colonies of mutants under acid
and alkali stress. bZIPs mutant strains that were inoculated on MM with pH 5.0 and pH 9.0 for 3 days
at 30 ◦C, except that ∆MetR was inoculated on MM supplemented with 5 mM L-methionine (L-Met).
pH 7.0 was used as the control. A red star indicates the mutant phenotype. Bar = 1 cm. (C) Growth
inhibition rate of mutants under stresses. The rate of inhibition of mycelial growth was calculated
by measuring the diameter of fungal colonies and normalized to the growth of control, respectively.
(D) Growth inhibition rate of ∆MetR. The error bars represent the SD. * p < 0.05, significant difference
from the wild-type group as estimated by a Dunnett test. CFW, Calcofluor white. MM, minimal
media; PDA, potato dextrose agar; SD, standard deviation.
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3.11. bZIP Genes Required for Pathogenicity

The virulence of 15 bZIPs null mutants was tested by inoculating maize kernels with
conidial suspensions and evaluating the rate of infection and production of conidia. In this
study, the infection rate was calculated from the area covered by hyphae and/or conidia
divided by the kernel surface area. Three mutants, including ∆bZIP4, ∆LziP, and ∆MetR,
were reduced in both their rate of infection and production of conidia (Figure 10A,B).
Although ∆AP1 and ∆Fcr3 infected a smaller area than the wild-type, their production of
conidia did not differ significantly from that on the maize kernels. In contrast, ∆bZIP1,
∆bZIP2 and ∆AtfA had similar infection rates, but they produced fewer conidia. This
was because ∆bZIP1 and ∆bZIP2 displayed more vigorous mycelial growth and dispersed
conidia on kernels compared with the wild-type isolate that produced clustered and
compact conidia (Figure 10C). In addition, the ∆bZIP6 mutant had a higher rate of infection
compared with the wild-type, but there was no difference in the production of conidia
owing to the more vigorous growth of mycelia.
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tween the wild-type and mutant was similar between MM–Fe or MM–Fe+BPS and 
MM+Fe. The radial growth of ΔHapX and the wild-type were all reduced following treat-
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Figure 10. Pathogenicity assay of the Aspergillus flavus strains. Maize kernels were inoculated with a
conidial suspension for 7 days. (A) Infection rate (%) of mutants. The rate of infection was calculated
by taking the infected areas and dividing them by the surface areas of the kernels. (B) Conidial
production of the mutants colonized on kernels. The conidia of mutants were harvested by washing
the kernels with 0.01% Triton X-100 and then numbered. Error bars represent the SD. (C) Virulence
assay of 10 mutants on maize kernels. The 10 mutants ∆bZIP1, ∆bZIP2, ∆bZIP4, ∆bZIP6, ∆AP1, ∆AtfA,
∆AtfB, ∆Fcr3, ∆LziP and ∆MetR differed significantly in infection rate or/and conidial production
compared with the wild type. Bar = 0.5 cm. * p < 0.05, significant difference from the wild-type group
as estimated by a Dunnett test. SD, standard deviation.

3.12. Hapx Is Important for A. flavus to Adapt to an Excess of Iron

Since HapX was identified as important to sustain iron homeostasis in A. nidulans [58]
and other fungal pathogens [30,32,34], we investigated whether HapX has a similar role
in A. flavus. To control the level of iron, MM that lacked FeSO4 (MM–Fe) was used as the
iron deficiency condition. The addition of 0.2 mM of the iron chelator bathophenanthroline
disulfonate (BPS) and 0.03 mM FeSO4 to MM–Fe were used as iron starvation and iron
sufficient conditions, respectively. MM was supplemented with 5 or 10 mM FeSO4 to
examine the parameters under conditions of high iron. Growth assays were performed
with 1 µL of conidial suspension (106 spores/mL) inoculated on solid media and incubated
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at 30 ◦C for three days. Growth analyses revealed that the amount of radial growth between
the wild-type and mutant was similar between MM–Fe or MM–Fe+BPS and MM+Fe. The
radial growth of ∆HapX and the wild-type were all reduced following treatment with high
amounts of iron (Figure 11). Furthermore, the relative growth of ∆HapX was dramatically
lower than that of the wild-type, which suggested that the HapX deletion mutant was more
sensitive to high iron conditions compared with the wild-type.
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wild-type isolate NRRL 3357. The phenotypic analyses showed that ΔMetRcom recovered 

Figure 11. Deletion of HapX impairs fungal growth under conditions of high iron. (A) Colonies of
the wild-type strain (NRRL 3357) and ∆HapX strain grown on MM+Fe (0.03 mM FeSO4), MM–Fe
(no Fe), MM–Fe+BPS (0.2 mM BPS, but no Fe) plates, MM+5 mM Fe, and MM+10 mM Fe plates,
respectively. The strains were cultured at 30 ◦C for 3 days. Bar = 1 cm. (B) Relative mycelial
growth of the strains was obtained by measuring the diameter of fungal colonies and normalizing
the data to the growth of wild-type and ∆HapX on MM+Fe, respectively. Error bars represent the
SD. * p < 0.05, significant difference from the wild-type group estimated by a Dunnett test. BPS,
bathophenanthroline disulfonate. MM, minimal media; SD, standard deviation.

3.13. MetR and Methionine Biosynthesis Is Important for the Development of A. flavus

In addition, the MetR mutants are tight auxotrophs that require methionine for fungal
growth. In our study, the deletion of MetR significantly affected its mycelial growth, conidi-
ation, sclerotial formation and aflatoxin biosynthesis. Methionine was added to the culture
to determine whether these phenotypes were owing to a defect of methionine biosynthesis
in ∆MetR. This showed that ∆MetR could restore normal mycelial growth to both PDA
and MM cultures in which L-methionine (L-Met) was added (Figure 12A,B). The mutant
could also restore normal conidiation in which L-Met was added to PDA. However, ∆MetR
produced fewer conidia when L-Met was added to MM and only produced approximately
12% compared with the wild-type (Figure 12C). MM is a basic medium for fungal growth
and contains fewer nutrients than PDA. Our results suggest that MetR may regulate other
metabolic pathways that affect conidiation other than methionine biosynthesis. We studied
the effect of methionine supplementation on the production of sclerotia and AFB1 in culture
in more detail. This showed that the addition of methionine to the mutants could partially
restore approximately 56% and 16.7% of the wild-type, respectively (Figure 12D,E). These
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results suggest that MetR could be involved in the regulation of production of sclerotia and
aflatoxin production in a pathway other than methionine biosynthesis.
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ble-fluorescence gene knockout strategy based on a previously established ATMT system. 
This strategy is available to delete large numbers of genes by enabling the construction of 
highly efficient gene knockouts that result in a reliable and labor-saving screening meth-
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Figure 12. Phenotypic analysis of the ∆MetR and ∆MetRcom strains. (A) Colonies of the wild-type
strain, ∆MetR mutant and complemented strain (∆MetRcom) on different media. Each strain was
inoculated on PDA and MM for 7 days at 30 ◦C and on WKM medium for 10 days at 30 ◦C in
dark. In addition, ∆MetR was inoculated on three other types of media supplemented with 5 mM
L-methionine (L-Met). Bar = 1 cm. (B) Colony diameter of each strain. (C) Conidial production
of each strain. (D) Sclerotial production of each strain. Bar = 5 mm. (E) Aflatoxin B1 production
measured per µg/g of mycelia. (F) A relative expression assay of the MetR gene in ∆MetRcom using
quantitative PCR. Error bars represent the SD. * p < 0.05, significant difference from the wild-type
group estimated by a Dunnett test. MM, minimal media; PDA, potato dextrose agar; SD, standard
deviation; WKM, Wickerham media.

To confirm that the defects of the mutant were caused by the knockout of the MetR
transcription factor, the mutant ∆MetR was complemented with its native copy from the
wild-type isolate NRRL 3357. The phenotypic analyses showed that ∆MetRcom recovered
from the defects in mycelial growth, conidial and sclerotial development, and the produc-
tion of aflatoxin when compared with ∆MetR and wild-type (Figure 12A–E). These results
were also reconfirmed at the transcriptional level (Figure 12F).

4. Discussion

The construction of mutants based on homologous recombination has been a powerful
tool for functional genomic research in some fungi, such as the yeasts S. cerevisiae and
Schizosaccharomyces pombe and the filamentous fungi N. crassa and M. oryzae. However, in
A. flavus, protoplast transformation has been the primary system for gene-deletion analysis
to date, which is laborious, highly inefficient, and difficult to apply to high-throughput
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gene function analyses. Alternatively, the mycelia and conidia of A. flavus are multinu-
cleate, which is another obstacle for gene-deletion assays. In this study, we developed
a double-fluorescence gene knockout strategy based on a previously established ATMT
system. This strategy is available to delete large numbers of genes by enabling the construc-
tion of highly efficient gene knockouts that result in a reliable and labor-saving screening
methods for transformants. During this procedure, the gene-deletion cassettes were gen-
erated by in vivo recombination in yeast using a yeast–Escherichia–Agrobacterium shuttle
vector pKO, which could also be replicated in E. coli and Agrobacterium cells. A similar
vector construction, pKO1B, was first reported by Jianping Lu, which was successfully
used for the deletion of genes for 104 Zn2Cys6 and 47 Cys2-His2 transcription factors in
M. oryzae [56,59]. The pKO1B vector only used GFP fluorescence as a negative marker to
eliminate ectopic insertion transformants. The null mutants with no fluorescence could
be further distinguished from the wild-type through negative screening double PCR for
the target and β-tubulin genes. In this study, the pKO vector also used GFP fluorescence
as a negative marker to eliminate ectopic insertion transformants. The targeted gene (x)-
deletion cassettes in the pKO-x vector that contained RFPs fused with the resistance gene
ble and were used as a positive marker for putative null mutants to exclude the wild-type.
However, it is more complex to screen for null mutants in this fungus because the conidia
of A. flavus, the receptor for ATMT transformation in our procedure, are multinucleate [60].
It has been estimated that approximately 70% of the cells have two nuclei, and 5% had
even more nuclei in the conidia of A. flavus NRRL 3357 [61]. Although we tried to collect
uninucleate conidia by filtering them through a membrane, there was still a small number
of multinucleate conidia, which resulted in a few putative null mutants that harbored
heterogeneous nuclei (HTN) in which a wild-type nucleus and recombinational nucleus
coexisted in the same strain. The HTN would interfere with the phenotypic identification
of the mutants and functional analysis of the genes. Similar to the null mutants with
homogeneous nuclei (HMN), the mutants with HTN also emit red fluorescence under UV.
However, we could identify the HMN mutants and exclude the HTN mutants through
negative double PCR of the target and β-tubulin genes. In addition, the null mutants with
HMN could be verified by positive PCR of the gene-deletion cassettes. In summary, the
double-fluorescence knockout construction in this procedure provides a more convenient
strategy for the functional analysis of gene deletions in fungi than the mono-fluorescence
one. RFP fluorescence was used as a positive marker to eliminate wild-type stains. For
fungi with uninucleate cells, the transformants that only fluoresce red can be confirmed as
null mutants. This advantage eliminates laborious work and makes it easy to screen null
mutants, particularly for fungi with multinucleate cells.

In this study, we identified 17 bZIP transcription factors in A. flavus and finally gener-
ated 15 bZIP TF gene-deleted null mutants out of 17 selected bZIP genes. The phenotypes
of 15 bZIP TF null mutants indicated that these bZIP transcription factors participated in
many critical cellular processes in this fungus, such as mycelia growth, conidiogenesis,
sclerotial development, aflatoxin biosynthesis and defense against oxidative, cell wall,
osmotic and acid and alkali stresses and pathogenicity in A. flavus. The TF MetR was
simultaneously involved in nine tested biological process, two genes (AtfA and bZIP4) were
involved in seven processes, three TF genes (bZIP1, bZIP2 and LziP) were involved in six
processes, five genes (AtfB,CpcA, HapX, JlbA and MeaB) were involved in five processes,
and four genes (bZIP5, bZIP6, Ap1 and Fcr3) were involved in three processes (Table 1
and Table S3). Another two bZIP TF genes, bZIP3 and HacA, were only obtained in HTN
mutants by two rounds of transformations with MM selection media and one round of
transformation with PDA selection media. HacA, an ortholog of Hac1 in S. cerevisiae [62], is
a master transcriptional regulator of the unfolded protein response (UPR) that originates
in the endoplasmic reticulum (ER) and coordinates protein folding, secretion, phospho-
lipid biosynthesis and protein degradation [25,63]. The deletion of HacA did not seriously
affect fungal growth in such species as A. fumigatus [64], A. oryzae [27], and Trichophyton
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rubrum [28]. The unavailability of HMN in the HacA mutants in our study suggested that
this gene is essential for fungal growth in A. flavus.

Among the 15 bZIP TFs, MeaB, AP1 and Fcr3 (AflRsmA ortholog) have been identified
in A. flavus and were also included in our knockout assay. A previous study showed that
the deletion of MeaB did not affect conidiation, the production of sclerotia and AFB1, and
pathogenicity [40]. The mutant ∆MeaB displayed a statistically significant reduction in
conidiogenesis, and the production of AFB1 and did not produce any sclerotia, although it
remained pathogenic. AP1 has been reported to play a key role in the regulation of oxidative
stress and aflatoxin production in A. flavus [50]. In contrast, the deletion of AP1 did not
significantly affect the production of aflatoxin. In addition, we proved that AP1 is involved
in the formation of sclerotia, which has not been reported to the best of our knowledge. All
the divergency in mutant phenotypes could owe to the differences in wild-type isolates or
experimental conditions. AflRsmA is another bZIP TF from A. flavus that has recently been
reported. It is highly homologous with Fcr3 in this study. The AflRsmA gene in A. flavus
was found from the start codon of AFLA_133570 to the stop codon of AFLA_133560 and
consisted of 1070 bp with two introns (47 and 102 bp). It encodes a 305 aa protein [51]. The
AFLA_133560 gene is annotated as Fcr3 in the NCBI, which indicates that Fcr3 is one part
of the AflRsmA gene structure. Nevertheless, we deleted Fcr3 based on the NCBI data and
showed that the ∆Fcr3 mutant had attenuated conidiation, sclerotia and virulence, which
was consistent with ∆AflRsmA.

AtfA and AtfB have been confirmed to be involved in conidial development, stress
responses, and secondary metabolism in other species of Aspergillus, such as A. nidulans [65],
A. fumigatus [66], and A. parasiticus [67–69]. This study revealed that the deletion of these
two genes led to attenuated conidiation, more sensitivity to H2O2 stress and a decrease in
AFB1. Furthermore, sclerotial development and virulence were also affected in ∆AtfA and
∆AtfB. Impressively, ∆AtfA did not produce sclerotia and produced the fewest number of
conidia on maize kernels.

CpcA, a homolog of Gcn4 in S. cerevisiae and Cpc1 in N. crassa [70,71], has been reported
to act as a novel regulator of the anabolism of amino acids in filamentous fungi, such as
A. nidulans [72], A. fumigatus [24], and A. niger [73]. The disruption of CpcA resulted in
sensitivity to amino acid deprivation generated by the histidine analog 3-aminotriazole
(3AT), which is an inhibitor of amino acid biosynthesis. JlbA, another jun-like bZIP gene,
has also been found to have a similar function in amino acid biosynthesis [23,74]. In our
study, the wild-type itself was sensitive to 3AT, and there was almost no growth in the
culture supplemented with 1 mM of 3AT. When the strains were grown with <1 mM 3AT,
there was no significant difference in mycelial growth and conidiation between ∆CpcA,
∆JlbA and the wild-type. However, ∆JlbA mutant strains produced less aflatoxin and had
an increased resistance to oxidative stress. In addition, the production of sclerotia by the
two mutants, ∆CpcA and ∆JlbA, was dramatically reduced compared with the wild-type.

In this study, we also demonstrated that HapX was not only an important regulator
of fungal conidiation, sclerotial development, aflatoxin biosynthesis and oxidative stress,
but it was also involved in iron metabolism in A. flavus. ∆HapX produced fewer conidia
and lower amounts of AFB1, and it was more sensitive to H2O2 stress. Impressively, the
sclerotial production of the mutant increased, but the sizes of the sclerotia were 0.45 mm.
This was a dramatic decrease in size when compared with 0.78 mm for the wild-type. In
addition, previous studies have revealed that the HapX transcription factor is a major
regulator of iron homeostasis, enabling adaptation to both low and excessive amounts of
iron [30,34,58]. However, we demonstrated that the HapX deletion mutant of A. flavus only
showed an increased sensitivity to excessive amounts of iron and not to iron deficiency
(MM–Fe) and iron starvation (MM+BPS) conditions. Notably, ∆HapX displayed a strong
growth defect compared with the wild-type in the presence of 10 mM Fe, which suggests
that the regulatory mechanism of HapX transcription factor may differ in various strains.

The MetR transcription factor is a positive regulator of sulfur metabolism in A. nidu-
lans [39]. It plays an important role in inorganic sulfur acquisition and is functionally
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similar to Met4 in S. cerevisiae [75] and Cys3 in N. crassa [76]. As expected, the deletion of
MetR in A. flavus resulted in methionine auxotrophy in MM cultures that only contained
sulfate. Although the growth of ∆MetR can be restored by supplementation with exogenous
methionine, this was not the case with conidiogenesis on the MM media. In A. fumiga-
tus [36] and M. oryzae [13], the MetR deletion mutant exhibited similar responses. Except for
fungal growth and conidiation, MetR has also been found to be involved in oxidative stress
and virulence in Alternaria alternata [37]. In Serratia marcescens, a Gram-negative bacterium,
MetR was also found to be related to tolerance to H2O2 [77]. In this study, ∆MetR displayed
defects not only in resistance to oxidative stress and virulence but also in sclerotial devel-
opment and aflatoxin biosynthesis. Notably, the defects in sclerotia and AFB1 production
were not fully recovered by exogenous methionine, which indicated that MetR may regulate
the asexual development and aflatoxin biosynthesis beyond the biosynthetic pathway for
methionine in this fungus. In addition, we also found that ∆MetR was more sensitive to cell
wall, osmotic and alkali stresses. When the media were supplemented with methionine,
∆MetR was restored to its normal phenotype under cell wall and osmotic stress but not
under alkali stress. ∆MetRcom recovered under all three types of stress (unpublished data).
This suggests that MetR regulates the resistance to alkali stress and is not related to the
metabolism of methionine in this fungus.

In the A. flavus genomic database, the gene AFLA_083100 was annotated as LziP, which
has been characterized in humans and mice, and found that the leucine zipper of LZIP was
slightly longer and different from other members of the bZIPs family [78,79]. However,
there was no characterized ortholog in plants and fungi until now. Our results indicated
that LziP of A. flavus is involved in conidiation, sclerotial development, oxidative stress
and pathogenicity. In particular, the deletion of LziP led to an increase in the production of
sclerotia, which were approximately 1.5-fold higher than those produced by the wild-type.
However, the size of sclerotia did not differ from those of the wild-type.

The remaining unannotated six bZIPs (bZIP1~bZIP6) in A. flavus were first studied here.
Except for bZIP3 without the HMN mutant, the phenotypes of the other five bZIP mutants
were all analyzed. The deletion of bZIP6 only affected sclerotial development in this study,
which suggested that it could function as a local regulator of fungal development. Other
bZIPs, including bZIP1, bZIP2, bZIP4 and bZIP5, were all involved in conidiation, sclerotial
development, aflatoxin biosynthesis and oxidative stress. Notably, their mutants all had
a dramatic decrease in the amount of aflatoxin produced. ∆bZIP1 and ∆bZIP4 did not
produce sclerotia; ∆bZIP2 displayed an increased resistance to oxidative stress, and ∆bZIP4
had reduced virulence. These results suggest that these bZIPs may be upstream regulators
or located on critical nodes of regulatory network. They clearly play an important role in
multiple biological processes in A. flavus.

A. flavus is the dominant fungus that produces aflatoxins. It has been confirmed that
the genes for aflatoxin biosynthesis are located in the 70 kb gene cluster of this fungus. The
expression of genes in the cluster is positively regulated by aflR and aflS [80]. However,
the exact regulatory mechanism for aflatoxin biosynthesis has not yet been completely
elucidated. For example, the deletion of the regulators NsdC and NsdD resulted in a decline
in aflatoxin production, but the expression of aflR was normal [81]. In our study, 10 bZIP
gene mutants produced significantly lower amounts of AFB1. Among them, four bZIPs
(bZIP1, bZIP4, AtfA and AtfB) could be AflR/AflS-dependent regulatory factors. However,
aflR/aflS were normal or upregulated in six other bZIP mutants, which suggested that
these genes may regulate the biosynthesis of aflatoxin in A. flavus in an unknown manner.
We speculated that there might be two reasons: (1) the post-translational regulation of
phosphorylation of AflR [82], which is quicker than the expression of AflR; (2) multiple
function of AflR, which is involved in the fungal growth and development in addition to
aflatoxin biosynthesis [5].

It has been reported that the regulation of secondary metabolism in filamentous fungi
is closely linked with the cellular response to oxidative stress [83–85]. In Aspergillus, bZIP
transcription factors, such as AP1, AtfA, and AtfB, have been confirmed to contribute
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to the co-regulation of aflatoxin biosynthesis and oxidative stress. Our results showed
that, among the 10 bZIPs in which the production of aflatoxin was affected, all except for
∆bZIP5 could also respond to oxidative stress. ∆bZIP2 and ∆JlbA were more resistant to
H2O2 compared with the other seven bZIPs mutants that were more sensitive to H2O2
stress. This suggests that these bZIP TFs might co-regulate the biosynthesis of aflatoxin and
the response to oxidative stress in different manners. In addition, the mutants deleted in
AP1 and LziP were more sensitive to H2O2, but this did not significantly affect their AFB1
production. This suggests that the response to oxidative stress may not arbitrarily affect
the biosynthesis of aflatoxin.

5. Conclusions

In this study, 15 bZIP transcription factors in A. flavus were characterized by a high-
throughput knockout strategy based on an ATMT genetic transformation system. Gene
knockout construction by yeast recombinational cloning and the screening of null mutants
by double fluorescence provide an efficient way to construct gene-deleted mutants for this
multinucleate strain. We generated 15 bZIPs gene-deleted null mutants with homogeneous
nuclei. These bZIP transcription factors function as important regulators that are involved
in many cellular processes, such as mycelial growth, conidiogenesis, sclerotial development,
aflatoxin biosynthesis, nutrient utilization, defenses against oxidative, cell wall, osmotic
and acid and alkali stresses, and pathogenicity in A. flavus. These studies will help us
to further investigate the regulatory mechanism of bZIP TFs in A. flavus and uncover
respective sites in the regulatory network.
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fragments of the targeted genes in knockout. (B) Primers used to amplify the targeted genes in
negative PCR. (C) Primers used to amplify a unique recombinational DNA fragment of null mutants
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