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The electroencephalography (EEG) is a well-established non-invasive method in

neuroscientific research and clinical diagnostics. It provides a high temporal but low

spatial resolution of brain activity. To gain insight about the spatial dynamics of the EEG,

one has to solve the inverse problem, i.e., finding the neural sources that give rise to the

recorded EEG activity. The inverse problem is ill-posed, which means that more than one

configuration of neural sources can evoke one and the same distribution of EEG activity

on the scalp. Artificial neural networks have been previously used successfully to find

either one or two dipole sources. These approaches, however, have never solved the

inverse problem in a distributed dipole model with more than two dipole sources. We

present ConvDip, a novel convolutional neural network (CNN) architecture, that solves

the EEG inverse problem in a distributed dipole model based on simulated EEG data.

We show that (1) ConvDip learned to produce inverse solutions from a single time point

of EEG data and (2) outperforms state-of-the-art methods on all focused performance

measures. (3) It is more flexible when dealing with varying number of sources, produces

less ghost sources and misses less real sources than the comparison methods. It

produces plausible inverse solutions for real EEG recordings from human participants. (4)

The trained network needs <40 ms for a single prediction. Our results qualify ConvDip

as an efficient and easy-to-apply novel method for source localization in EEG data, with

high relevance for clinical applications, e.g., in epileptology and real-time applications.

Keywords: EEG-electroencephalogram, artificial neural networks, convolutional neural networks (CNN), inverse

problem, machine learning, electrical source imaging

1. INTRODUCTION

1.1. The EEG and the Inverse Problem
Electroencephalography (EEG) is among the most used imaging techniques for noninvasive
measurements of electromagnetic brain activity. Its main advantage over other methods (e.g.,
functional magnetic resonance imaging [fMRI]) is the high temporal resolution, which comes at
the cost of a considerably low spatial resolution (Luck, 2014). As a consequence, EEG was mainly
used to study temporal brain dynamics at fine time scales. In the past decades, however, there
has been a steady growth of interest in the neural sources underlying the EEG signal (Koles,
1998; Pascual-Marqui, 1999; Grech et al., 2008; He et al., 2018; Michel and Brunet, 2019). The
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non-invasive estimations of neural generators, based on their
projections to the scalp electrodes/sensors, constitutes an inverse
problem. Without further constraints, it is ill posed because it
lacks an unique solution, since multiple configurations of neural
sources can produce identical topographies of electrical activity
at the scalp (see e.g., Nunez and Srinivasan, 2006).

Invasive multimodal methods (e.g., using combined EEG
and electrocorticography) help to bridge the gap between scalp
recordings and neural generators, and thus in handling the
inverse problem in this constellation. However, access to these
methods is limited and the conclusions that can be drawn
are constrained by various factors such as placement of the
cortical electrodes or coverage of brain areas that project to
the scalp electrodes. Combined EEG-fMRI has also been shown
as a useful tool in providing insight into the spatiotemporal
dynamics of the EEG (Ritter and Villringer, 2006). However, the
costs of this technique are considerably high and the relation
between electromagnetic and metabolic dynamics is yet not
fully understood.

1.2. Classical Approaches to the EEG
Inverse Problem
Introducing some constraints on the solution, one can solve
the inverse problem or at least reduce the number of possible
solutions. One approach is the equivalent current dipole model,
which is based on the assumption that the source of a signal,
measured with the EEG, can be modeled by a single (or
sometimes few) dipole(s) (Kavanagk et al., 1978; Scherg, 1990;
Delorme et al., 2012). Although single-dipole sized sources are
too small to generate detectable scalp potentials (Nunez and
Srinivasan, 2006), they can produce reasonable results (Ebersole,
1994; Lantz et al., 1996;Willemse et al., 2016; Sharma et al., 2018).

A more physiologically realistic approach is the distributed
dipole model in which activity is expected to extend over larger
areas of the brain (as opposed to tiny dipoles). Distributed
dipole models aim to find the 3D distribution of neural activity
underlying the EEG measurement (Hämäläinen and Ilmoniemi,
1994; Pascual-Marqui et al., 1994). A distributed dipole model
proposes that sources of the EEG are better modeled using
hundreds to many thousand dipoles and therefore aim to find a
distributed activity that can explain the EEG data. This model can
be viewed opposed to single- to few-dipole models, which assume
that EEG data can be sufficiently modeled using point sources.

A popular family of distributed dipole solutions is the
Minimum Norm Estimates (MNE; Ioannides et al., 1990;
Hämäläinen and Ilmoniemi, 1994), which aim to find the
source configuration that minimizes the required power to
generate a given potential at the scalp electrodes. Low
Resolution Electromagnetic Tomography (LORETA) is a famous
proponent of the MNE-family that assumes sources to be
smoothly distributed (Pascual-Marqui et al., 1994). In the
most sophisticated version, exact LORETA (eLORETA, Pascual-
Marqui, 2007) showed zero localization error when localizing
single sources in simulated data (Pascual-Marqui, 2007).

Another popular family of inverse solutions is the
beamforming approach. The linear constrained minimum

variance (LCMV) beamforming approach is a spatial filter
that assumes that neural sources are uncorrelated and in
which portions of the data that do not belong to the signal are
suppressed (Van Veen et al., 1997). Drawbacks of the LCMV
approach are the susceptibility to imprecisions in the forward
model and that correlated sources are often not found.

Growing interest toward a Bayesian notation of the inverse
problem could be observed in the past two decades (Friston et al.,
2008; Wipf and Nagarajan, 2009; Chowdhury et al., 2013). One
prominent Bayesian approach is the maximum entropy on the
mean (MEM) method, which aims to make the least assumptions
on the current distribution by maximizing entropy (Amblard
et al., 2004; Grova et al., 2006; Chowdhury et al., 2013).

1.3. Artificial Neural Networks and Inverse
Solutions
Artificial neural networks (ANN)-based inverse solutions follow
a data-driven approach and were of increasing interest in the past
years (Awan et al., 2019). A large number of simulated EEG data
samples is used to train an ANN to correctly map electrode-space
signals to source-space locations (Jin et al., 2017). Long training
periods are usually required for an ANN to generalize beyond the
training set. After successful training, it is capable of predicting
the coordinates and orientations of a dipole correctly, given only
the measurements at the scalp electrodes without further priors
(Zhang et al., 1998; Abeyratne et al., 2001).

Robert et al. (2002) reviewed the literature on ANN-based
methods to solve the inverse problem of single dipoles and
found that all reports achieved localization errors of <5%.
The low computational time (once trained) and robustness to
measurement noise was highlighted when compared to classical
approaches. However, the classical approaches were capable of
achieving zero localization error in single-dipole simulations
under zero-noise conditions (Hoey et al., 2000).

In an effort to predict source locations of two dipoles, Yuasa
et al. (1998) presented a feed-forward network with two hidden
layers and achieved localization errors in a range between 3
and 9%. They found that if multiple simulated dipoles have a
sufficient distance among each other the localization success of
ANNs even for multiple simulated sources is equal to classical
approaches, making a strong case for the feasibility of ANNs for
the EEG inverse problem, already in 1998. Although ANNs as
such gained popularity in the past decade on other areas (e.g.,
image classification or natural language processing), the idea of
ANN-based solutions to the EEG inverse problem received little
further attention.

Only very recently several studies about ANN-based solutions
to the inverse problem have been published. Cui et al. (2019)
showed that a neural network can be trained to reconstruct the
position and time course of a single source using a long-short
term memory (LSTM) recurrent neural network architecture
(Hochreiter and Schmidhuber, 1997). LSTMs allow to not only
use single time instances of (e.g., EEG) data but instead learn
from temporally lagged information.

In a recent work, Razorenova et al. (2020) showed that the
inverse problem for cortical potential imaging could be solved

Frontiers in Neuroscience | www.frontiersin.org 2 June 2021 | Volume 15 | Article 569918

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hecker et al. ConvDip: EEG Source Imaging

using a deep U-Net architecture, once more providing a strong
case for the feasibility of ANNs to solve the EEG inverse problem
(Fedorov et al., 2020).

Tankelevich (2019) showed that a deep feed-forward network
can find the correct set of source clusters that produced a given
scalp signal. To our knowledge, this was the first ANN approach
to calculate distributed dipole solutions.

In the very recent years, convolutional neural networks
(CNNs) have proven to be a useful tool in a steadily increasing
number of domains, like image classification (Krizhevsky et al.,
2012), natural language processing (Kim, 2014), and decoding of
single trial EEG (Schirrmeister et al., 2017). CNNs are capable
of learning patterns in data with a preserved temporal (e.g., time
sequences) or spatial (e.g., images) structure by optimizing filter
kernels that are convolved with a given input. Two famous CNNs
are AlexNet (Krizhevsky et al., 2012) and VGG16 (Simonyan
and Zisserman, 2014) that won the ImageNet classification
competition in 2012 and 2014, respectively.

In the current study, we explored the feasibility of
CNNs to solve the EEG inverse problem. Specifically, we
constructed a CNN, named ConvDip, that is capable of detecting
multiple sources using training data with biologically plausible
constraints. ConvDip solves the EEG inverse problem using a
distributed dipole solution in a data-driven approach. ConvDip
was trained to work on single time instances of EEG data and
predicts the position of sources from potentials measured with
scalp electrodes.

2. METHODS

A Python package to create a forward model, simulate data, train
an ANN, and perform predictions is available at https://github.
com/LukeTheHecker/ESINet.

2.1. Forward Model
To simulate EEG data realistically, one has to solve the
forward problem and construct a generative model (GM). An
anatomical template was used as provided by the Freesurfer
image analysis suite (http://surfer.nmr.mgh.harvard.edu/) called
fsaverage (Fischl et al., 1999).

We calculated the three shell boundary element method
(BEM, Fuchs et al., 2002) head model with 5120 vertices per shell
using the python package MNE (v 19, Gramfort et al., 2013) and
the functionsmake_bem_model andmake_bem_solution therein.
The conductivity, measured by Siemens per square meter, was set
to 0.3 S/m2 for brain and scalp tissue and 0.06 S/m2 for the skull.

The source model was created with p = 5124 dipoles along the
cortical surface provided by Freesurfer with icosahedral spacing.
We chose q = 31 electrodes based on the 10–20 system (Fp1, F3,
F7, FT9, FC5, FC1, C3, T7, TP9, CP5, CP1, Pz, P3, P7, O1, Oz, O2,
P4, P8, TP10, CP6, CP2, Cz, C4, T8, FT10, FC6, FC2, F4, F8, and
Fp2). The leadfield K ∈ R

q×p was then calculated using the head
model with dipole orientations fixed orthogonal to the cortical
surface (see e.g., Michel and Brunet, 2019 for explanation).

Additionally, we created a second forward model that we
refer to as the alternative generative model (AGM). The AGM
will be used to simulate data for the model evaluation and

serves the purpose to avoid the inverse crime. The inverse crime
is committed when the same GM is used to both simulate
data and calculate inverse solutions, leading to overoptimistic
results (Wirgin, 2004). First, electrode positions were changed
by adding random normal distributed noise N (0, 2 mm) to the
X, Y, and Z coordinate of each electrode. This resulted in an
average displacement per electrode of≈ 3.7 mm. Furthermore,
we changed the tissue conductivity in the BEM solution to
0.332 S/m2 for brain and scalp tissue and 0.0113 S/m2 for skull
tissue (values were adapted from Wolters et al., 2010). This
step was done in order to introduce some alterations in the
volume conduction of the brain-electric signals, which are never
known precisely a priori. Importantly, this changes the skull-to-
brain conductivity ratio from 1:50 to 1:25. Last, we changed the
spacing of the dipoles along the cortical sheet from icosahedral to
octahedral with a higher resolution. This resulted in 8,196 dipoles
in the source model of the AGM, all of which were placed at
slightly different locations on the cortex compared to the source
model of the GM. The idea of increasing the resolution of the
source model to avoid the inverse crime was adapted from Kaipio
and Somersalo (2006). All simulations in the evaluation section
were carried out using this AGM, whereas the calculation of the
inverse solutions of cMEM, eLORETA, and LCMV beamformer
was based on the GM. Likewise, data used for training ConvDip
was simulated using only the GM.

2.2. Simulations
Training data for ConvDip were created using the GM, whereas
the data for the evaluation of the model were created using the
AGM. Since AGM and GM have different source models, we
implemented a function which transforms a source vector jAGM
to a source vector jGM . This was achieved by K nearest-neighbor
interpolation, i.e., each value in the target space was assigned the
average value of the K nearest neighbors in the initial space. K
was set to 5 neighbors. Since the source model of AGM contained
almost twice as many dipoles as that of the GM, a source vector
translated from AGM to GM will effectively loose total source
power. We therefore normalized the resulting source vector jGM
to have equal energy (sum of all dipole moments) as jAGM .

In summary, different sets of simulated EEG samples were
generated to (1) create training data for ConvDip and (2) for
evaluation of ConvDip and other inverse solutions.

Each simulation contained at least one dipole cluster, which
can be considered as a smooth region of brain activity. A
dipole cluster was generated by selecting a random dipole in
the cortical source model and then adapting a region growing
approach as described in Chowdhury et al. (2013). In brief,
we recursively included all surrounding neighbors starting from
a single seeding location, thereby creating a larger source
extent with each iteration. The number of iterations define the
neighborhood order s, where the first order s1 entails only the
single selected dipole. Each seed location was assigned a dipole
moment between 5 and 10 Nano-Ampere Meter (nAm). The
neighboring dipoles were assigned attenuated moments based
on the distance to seeding location. The attenuation followed a
Gaussian distribution with a mean of the seeding dipole moment
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and a standard deviation of half the radius of the dipole cluster,
yielding smooth source patches.

After generating this spatial pattern, we added a temporal
dimension to the data as follows. We considered an epoch length
of 1 s at a sampling frequency of 100 Hz (i.e., t = 100 time
points). The time course was modeled by a central peak of 100
ms temporal extension using half a period of a 5 Hz sinusoidal,
surrounded by zeros. Each dipole moment was then multiplied
by this time course. The simulated source J ∈ R

p×t of p = 5,124
dipoles was then projected to q = 31 EEG electrodes M ∈ R

q×t

by solving the forward problem using the leadfield K ∈ R
q×p:

M = KJ (1)

To generate realistic training data, we added real noise from
pre-existing EEG recordings, conducted with the same set of
electrodes as described above. Therefore, from a set of different
raw EEG recordings, we extracted 200 random segments. These
EEG segments were filtered beforehand using a band-pass
between 0.1 and 30 Hz. Each segment contained 1 s of EEG
data. The sampling frequency was reduced from 1,000 to 100
Hz. Baseline correction was applied based on the first 100 ms,
and the resulting data were re-referenced to common average.
For each sample, we then created 20 EEG trials by adding a
randomly selected noise segment to the simulated EEG. Prior to
this, the noise was scaled to yield a signal-to-noise ratio (SNR) of
1 within single trials. The average of these 20 trials, i.e., the event-
related potential, should therefore exhibit a theoretical SNR of 4.5
(1×

√
(20)) at the ERP peak.

The extent of the sources was defined between two (s2) and
five (s5) neighborhood orders, which corresponds to diameters
between≈ 21 and≈ 58 mm (or 19–91 dipoles).

2.2.1. Training Data
For training ConvDip, we simulated in total 100,000 samples
using the GM as described above. Each sample contained
between 1 and 5 source clusters of extent between 2 and 5
neighborhood orders. Since ConvDip operates on single time
instances of EEG or ERP data, we only used the EEG at the signal
peak as input.

2.2.2. Evaluation Data
Two separate sets of simulations of 1,000 samples each were
created for the evaluation. The first set contained samples of
single source clusters with varying extents from two to seven
neighborhood orders, which we will refer to as single-source
set. The second set contained samples with varying numbers of
source clusters from 1 to 10 and with varying extents from 2 to
7 neighborhood orders or diameters from ≈ 21 to ≈ 58 mm (or
16–113 dipoles in the AGM). We will refer to this as the multi-
source set. Source extents have different diameters for different
source models, especially in our case where the source model
of GM has roughly half the number of dipoles compared to
AGM. This explains why s7 for the AGM has approximately as
many dipoles as s6 in the GM. Note that both sets were created
using simulations of brain-electric activity based on an AGM that
differs from that used in the inversion/training process. This was

done in order to avoid the inverse crime (for details, see Methods
section 2.1).

2.3. ConvDip
In this section, the architecture of ConvDip, a CNN which solves
the inverse problem, is described and a mathematical description
in the classical notation of inverse solutions is given.

2.3.1. I/O of ConvDip
Since ConvDip was designed to operate on single time instances
of EEG data, we extracted from each simulated data sample
only the time point of the peak source activity. The EEG data
at this time frame was then interpolated on a 2D image of
size 7 × 11. This is necessary, given that the architecture of
ConvDip (Figure 1) requires a 2Dmatrix input to perform spatial
convolutions on. Note that this interpolation procedure does not
add information to the EEG data. The output of ConvDip is a
vector of size 5,124 corresponding to the dipoles in the source
model (see Figure 1).

2.3.2. ConvDip Architecture
The design and training of the neural network was accomplished
using the Tensorflow (Abadi et al., 2016) and Keras (Chollet,
2015) libraries, which are based on Python 3. Training was
partially accomplished on a Nvidia Titan V graphical processing
unit (GPU) and an Nvidia RTX 2070.

The architecture of ConvDip (Figure 1) is inspired by CNNs
for image classification, in which the input layer is forwarded
to a series of convolutional layers followed by a series of fully
connected layers followed by the output layer (e.g., AlexNet;
Krizhevsky et al., 2012). In typical CNNs, the convolution layers
are followed by pooling layers to reduce dimensionality and to
promote invariance to an object’s position Deru and Ndiaye
(2019). Notice that in ConvDip no pooling layers were used
since spatial information would get lost or at least blurred.
While invariance to the position of an object is desirable in
image classification tasks (what-task), it would be detrimental
in the case of source localization problems (where-task). Finally,
we decided for a moderately shallow architecture with a single
convolution layer followed by a fully connected layer and an
output layer.

We decided to use Rectified Linear Units (ReLUs) as activation
functions after each layer (Nair and Hinton, 2010; Glorot et al.,
2011). ReLUs have shown to exhibit the best performance in
our preliminary tests compared to alternatives (e.g., sigmoid
function). After each of the inner layers, we added a batch
normalization layer (Ioffe and Szegedy, 2015) in order to speed
up training and to reduce internal covariance shifts. In the
current version of ConvDip, the output layer consists of 5,124
neurons, which equals the number of voxels in the modeled
brain. ReLU activation functions were used in the output layer.
Typical CNNs for regression use linear activation functions,
however, since predictions are by definition non-negative in our
application, ReLUs appeared to us as an appropriate alternative.

ConvDip can be described as a function φ :M 7→ ĵ,M ∈
R
7×11, ĵ ∈ R

p, with p = 5124 that maps a single time instance
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FIGURE 1 | ConvDip architecture. The values from a single time point of EEG data were interpolated to get a 7 × 11 matrix as an input (see illustration on the bottom

left). The subsequent convolution layer has only 8 convolution kernels of size 3 × 3 pixels. The convolution layer is followed by a fully connected (FC) layer consisting

of 512 neurons. Finally, the output layer contains 5124 neurons that correspond to the voxels in the brain (plotted on a cortical surface on the right) (This diagram was

created using a web application at http://alexlenail.me/NN-SVG/).

of 2D-interpolated EEG dataM to a source vector ĵ:

ĵ = φ(M) (2)

The architecture of ConvDip starts with a convolution layer with
only 8 filters Fi, i = {1, . . . 8} of size 3 × 3. The weights of these
filters are determined during the training period. In the forward
pass, the padded input EEG dataM are convolved with each filter
Fi, resulting in one feature map Gi ∈ R

7×11.

Gi = M ∗ Fi (3)

The feature maps Gi, i ∈ {1, . . . , 8} are stacked to a tensor G ∈
R
7×11×8 and reshaped to a vector g̃ ∈ R

616 (also called flattening)
to enable a connection to the next FC Layer. The flattened vector
g̃ consists of 616 output nodes. Each node is connected to every
neuron of the following FC Layer.

For each of the 512 neurons in the hidden fully connected
layer, we transform its input g̃ using the weight vector w, bias
b, and the activation function h:

z = h(wT g̃+ b) (4)

The hidden layer is finally connected to the output layer of
5,124 neurons.

2.3.3. Optimization and Loss Function
Convolution filters, weights, and biases were optimized using
adaptive momentum estimation (ADAM, Kingma and Ba, 2014)
with default settings as suggested by the authors (learning_rate =
0.001, β1 = 0.9, β2 = 0.999, ǫ = 108).

We tried out various loss functions for the training of
ConvDip. The mean squared error loss is a classical loss for
regression tasks. For EEG inverse solutions, however, it is not

appropriate since it operates pixel-wise, i.e., the error does not
provide information on how close a wrong prediction is to the
true source. This is especially problematic when ConvDip is
designed to find focal sources. Various approaches exist to tackle
this issue, e.g., by solving an optimal transport problem (e.g.,
using Wasserstein metric) or by calculating the distance between
two sets of coordinates (e.g., Hausdorff distance). We decided
for the weighted Hausdorff distance (WHD) as described by
Ribera et al. (2019)1.

The WHD has shown to perform well on image segmentation
tasks and allowed for a fast convergence of ConvDip compared to
MSE. Note that WHD requires a normalization of the prediction
and target to ensure all values are between 0 and 1. Therefore,
only positional information is regarded in this loss. The rationale
for this is to disentangle the problem of estimating absolute
dipole moments and that of estimating dipole positions.

As mentioned above, ConvDip predicts source locations
without correct global scaling (see also Equation 2). To obtain
the true amplitude of the sources, we used Brent’s method (Brent,
1971) to find a scalar ŝ that minimizes the mean squared error
between the forward solution (x̂) of the predicted sources (ĵ) and
the unscaled EEG vector x:

ŝ = argmin
s

1

m

m∑

j=1

(x̂j · s)− xj (5)

The scalar ŝ can then be used to scale the prediction.

1Implementation was adapted from https://github.com/N0vel/weighted-

hausdorff-distance-tensorflow-keras-loss/.
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2.4. Implementation of cMEM, eLORETA,
and LCMV
To evaluate ConvDip, we calculated inverse solutions on the
same set of simulations using eLORETA, LCMV beamformer,
and cMEM, and compared the different methods with each other.

eLORETA and LCMV were carried out by the
implementations in the Python library MNE. Using the
same head model as described in section 2.1, each inverse
algorithm was subjected to each sample of the evaluation set
as described in section 2.2. The first 400 ms of each trial were
used to estimate the noise covariance matrices. Regularization
of the noise covariance was established using the standard MNE
procedure as described in Gramfort et al. (2014). We choose
the regularization parameter for eLORETA inverse solutions at
λ2 = 1

9 and for LCMV beamforming we set the data covariance
regularization to λ = 0.05, which both correspond to MNE’s
default parameters. Dipole orientations were restricted to be
fixed orthogonal to the cortical surface.

cMEM inverse solutions were calculated with Brainstorm
(Tadel et al., 2011), which is documented and freely available for
download online under the GNU general public license (http://
neuroimage.usc.edu/brainstorm). The same template brain
(fsaverage) was used to calculate a forward model in Brainstorm.
Furthermore, the BEM solution was calculated using the same
parameters as in MNE. cMEM inverse solutions were calculated
using a neighborhood order of 4 with temporally stable clusters.
Precomputed noise covariance matrices were imported from
MNE Python to ensure that inverse solutions were calculated
under the same conditions in Brainstorm and MNE. After
calculating all inverse solutions, the files were exported again for
further evaluation in Python.

2.5. Evaluation Metrics
We calculated a number of performance metrics to assess the
quality of an inverse solution. Note that for each sample in the
evaluation sets, we only analyzed the central peak activity.

1) Area under the ROC curve: We calculated the area under the
receiver operator curve (ROC) to assess the ability to estimate
the correct spatial extent of sources. We adapted a similar
procedure as described in Grova et al. (2006) and Chowdhury
et al. (2013) with minor changes to the procedure. The
dipole clusters in the target source vector j have a Gaussian
distribution of dipole moments in our simulations. Therefore,
we had to normalize all members of all dipole clusters (i.e. the
target source vector) to unit amplitude (i.e. values between 0
and 1). The estimated source vector ĵwas normalized between
0 and 1 by division of themaximum. The AUCmetric requires
equal as many positives as there are negatives in the data.
However, in our simulations only few dipoles were active
(positives) compared to those not being active (negatives).
Therefore, we adapted the procedure as described by Grova
et al. (2006) and Chowdhury et al. (2013) by calculating two
types of AUC: Both AUCs included all positives and only
differ in the selection of negatives.AUCclose contained negative
examples that closely surrounded the positive voxels by
sampling randomly from the closest 20% voxels. This metric

therefore captures how well the source extent is captured.
AUCfar on the other hand sampled the negatives from voxels
far away from true sources, therefore capturing possible false
positives in the estimated source vector ĵ. Far negatives were
sampled from the 50% of the farthest negatives to the next
active dipole. The overall AUC was then calculated by taking
the average of AUCclose and AUCfar .

2) Mean localization error (MLE): The Euclidean distance
between the locations of the predicted source maximum and
the target source maximum is a common measure of inverse
solution accuracy as it captures the ability to localize the
source center accurately. MLE was calculated between the
positions of the maxima of ĵ and j. This metric is only suitable
for calculating MLE when a single source patch is present.

For multiple sources, we adapted the following procedure.
First, we identified local maxima in both the true source
vector j and the estimated source vector ĵ. First, local maxima
were identified where a voxel value is larger than all of its
neighboring voxels. This then yields many local maxima,
which had to be filtered in order to achieve reasonable results.
First, we removed all maxima whose neighbors were not
sufficiently active (< 20% of the maximum). This takes
care of false positive maxima that do not constitute an active
cluster of voxels. Then, we removed those maxima that had a
larger maximum voxel in close neighborhood within a radius
of 30 mm. These procedures result in a list of coordinates
of maxima for both j and ĵ. We then calculated the pairwise
Euclidean distances and between the two lists of coordinates
of maxima. For each true source, we identified the closest
estimated source and calculated the MLE by averaging of
these minimum distances. We further labeled those estimated
sources that were≥ 30mm away from the next truemaximum
as ghost sources. True maxima that did have an estimated
source within a radius of 30mm were labeled as found sources,
whereas those true maxima that did not have an estimated
maximum within a radius of 30mm were labeled as missed
sources. Finally, we calculated the percentage of found sources,
i.e., the ratio of the number of correctly identified sources and
the number of all true sources.

3) Mean squared error (MSE): The MSE is calculated voxel-
wise between the true source vector j and the predicted source
vector ĵ:

MSE = 1

p

p∑

i=1

(ji − ĵi)
2 (6)

4) Normalized mean squared error (nMSE): The nMSE is
calculated by first normalizing both ĵ and j to values
between 0 and 1. Then, the voxel-wise MSE is calculated as
described above.

2.6. Statistics
Statistical comparison between the outcomes of different inverse
solutions was done using an unpaired permutation test with
106 permutations. The rationale behind this choice is that most
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TABLE 1 | Comparison of inverse algorithm performance for samples containing a single source cluster.

Inverse solution AUC [%] (SD) MSE (SD) nMSE (SD) MLE [mm] (SD)

ConvDip 98.31 (3.41) 3.9 · 10−19 (2.9 ∗ 10−19) 0.0033 (0.0015) 11.05 (4.96)

cMEM 90.99 (7.88) 4.3 · 10−13 (3.2 · 10−12) 0.0087 (0.0045) 18.80 (7.37)

eLORETA 85.06 (6.22) 6.4 · 10−08 (1.1 · 10−07) 0.0436 (0.0122) 13.26 (6.22)

LCMV 94.96 (4.04) 0.4 (0.1) 0.1274 (0.0356) 20.52 (6.83)

Source clusters were of varying spatial extents from two to seven neighborhood orders. AUC: Area under the receiver operator curve. MSE: Mean squared error, nMSE: normalized

mean squared error, MLE: mean localization error. Best performances are highlighted in bold font.

distributions did not meet the criteria for parametric and rank-
based tests. Additionally, Cohens d is given for each statistical
test (Cohen, 1992).

2.7. Evaluation With Real Data
To evaluate the performance of ConvDip and the other inverse
algorithms in a more realistic set-up, we used data of a real
EEG recording. The data were recorded while a single participant
(first author of this article) viewed fast presentations of faces
and scrambled faces. The participant had to indicate whether a
face was presented by button press. The duration of a stimulus
presentation was 600 ms, followed by 200 ms of black screen.
Note that 300 trials of both faces and scrambled faces were
presented, which corresponds to a total of 4min.

The EEG was recorded with 31 electrodes of the 10–20 system
using the ActiCap electrode cap and the Brain Vision amplifier
ActiCHamp. Data was sampled at 1, 000Hz and filtered online
using a band-pass of 0.01–120 Hz. The EEG data were imported
to MNE Python and filtered using a band-pass filter between
0.1 and 30 Hz. Data were re-referenced to common average.
The trials in which faces were presented were then selected and
baseline corrected by subtracting the average amplitude in the
interval –0.06 to 0.04 s relative to stimulus onset.

3. RESULTS

In this section, we evaluate the performance of ConvDip
and compare it to state-of-the-art inverse algorithms, namely
eLORETA, LCMV beamformer, and cMEM. Note that the
evaluation set was not part of the training set of ConvDip, hence
it is unknown to the model. Furthermore, all samples in the
evaluation set were created using the AGM in order to avoid the
inverse crime. Exemplary and representative samples are shown
in Appendices A, B.

3.1. Evaluation With Single Source Set
3.1.1. Evaluation of Source Extents
We will now evaluate the ability of ConvDip to estimate the
correct size of sources and to correctly localize sources with
varying depth. For this purpose, we used the data samples from
the single-source set. An exemplary and representative sample is
shown in Appendix–A.

One of the advantages of inverse algorithms such as cMEM
over minimum norm solutions is their capability to estimate
not only the position of a source cluster but also its spatial
extent. This can be tested using the AUC metric. Chowdhury

et al. (2013) suggested that an AUC of 80% and above can be
considered acceptable.

This criterion is met by all inverse algorithms in the present
evaluation (Table 1). ConvDip achieves the best scores in this
comparison with an overall AUC of 98%, closely followed by
LCMV (95%) and cMEM (91%). Furthermore, ConvDip inverse
solutions show the highest global similarity with nMSE at
0.0033, which is less than half of the error yielded by cMEM.
Moreover, the other two methods are far behind (Table 1). MLE
of ConvDip is lowest with 11.05 mm, which is remarkably small
considering the variance introduced by the AGM. eLORETA
yields significantly larger MLE than ConvDip (diffmedian =
2.21mm, p = 10−6, d = 0.34).

3.1.1.1. AUC

In Figure 2 (left graph), the AUC for each inverse algorithm is
depicted per simulated source extent. ConvDip is able to reach
best performance for extents of s3 and s4 (AUCconvdip,s3 ,s4 = 99%)
with attenuated AUC especially for larger sizes (AUCconvdip,s7 =
94%). The AUC drops by≈ 5.2% from s3 to s7. cMEM, an inverse
algorithm aiming at estimating both location and size of source
clusters, shows similar properties. cMEM shows it is best AUC at
s2 (AUCcMEM,s2 = 93%). The AUC decreases by ≈ 5.5% from
the smallest to the largest source extent, which is comparable to
ConvDip. We conclude that while ConvDip yields significantly
higher AUC overall (p ≤ 10−6, d > 0.40), its behavior to
varying source sizes is similar to that of cMEM. The other inverse
algorithms perform significantly worse (Figure 2).

3.1.1.2. MLE

MLE of ConvDip is affected by source extent, as MLEconvdip,s2
is 39% higher compared to MLEconvdip,s7 . This observation does
not apply to the MLE yielded by inverse solutions of cMEM,
which is fairly stable (7% variation). Overall, MLE was smaller
for ConvDip inverse solutions compared to the other three
inverse algorithms. One particular exception is the case of small
source clusters (s2), for which eLORETA yields the most accurate
estimates (MLEeLORETA,s2 = 10.34mm, see Figure 2).

3.1.2. Evaluation of Source Eccentricity
Next, we evaluated the ability of ConvDip to correctly localize
source clusters of different eccentricity (i.e., distance from all
electrodes). The further away a source is from the electrodes, the
harder it is to localize due to volume conduction.
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FIGURE 2 | Area under the curve and mean localization error for each inverse solution algorithm grouped by the source extent. AUC reflects capability of finding

source at correct location, estimating its size and reducing false positives. MLE reflects the capability to correctly localize the center of the source cluster. Simulations

used for this analysis contained only a single source cluster per sample with varying size from two to seven neighborhood orders.

3.1.2.1. AUC

In Figure 3 left, the AUC metric is shown for each inverse
algorithm grouped by bins of eccentricity. Bins were defined
from 20 mm (deep source clusters) to 80 mm (superficial source
clusters). Since deeper sources are harder to localize accurately,
AUC is expected to be correlated with eccentricity. However,
this could be verified only for ConvDip (r = 0.27, p < 10−16)
and cMEM (r = 0.31, p < 10−23). For LCMV beamformer,
depth is barely associated with AUC (r = 0.07, p < 0.05) and
for eLORETA no such association could be found (r = 0, p >

0.9). Despite these interesting dynamics, ConvDip shows for all
eccentricities higher AUC compared to almost all other inverse
algorithms. Only the LCMVbeamformer shows a non-significant
tendency (p < 0.1, d = 0.2) for a higher AUC for low eccentricity
of 20mm (median = 93.39% ± 3.19) than ConvDip (median =
93.44%± 5.35).

3.1.2.2. MLE

MLE is also affected by source depth as can be seen in
Figure 3 right. We calculated the ratio between the MLE of the
deepest source clusters (eccentricity = 20 mm) to the MLE of
superficial source clusters (eccentricity = 80 mm) in order to
calculate depth sensitivity of each inverse algorithm, henceforth
called drop-off. cMEM shows a drop-off of 64%, eLORETA has
a drop-off of 23%, and LCMV beamformer has a drop-off of
18%. ConvDip shows the lowest MLEs across eccentricities,
compared to the other inverse methods. Moreover, ConvDip
shows an inverted U-shaped behavior, with lowest MLE for the
deepest and most superficial source clusters. MLE of ConvDip
decreases slightly with depth of the source cluster and are not
correlated with eccentricity (r = −0.02, p > 0.5), whereas
this relation was found for all other inverse algorithms: cMEM
(r = −0.30, p < 10−21), eLORETA (r = −0.15, p < 10−5), and
LCMV beamformer (r = −0.09, p < 0.01).

Concluding, we find no drop-off in localization accuracy with
depth of source clusters when using ConvDip, highlighting a

systematically more robust behavior of ConvDip compared to
all other inverse algorithms. With depth, however, the ability to
estimate the extent of a source cluster is reduced.

3.1.3. Evaluation of Dipole Moments
Finally, we utilized the single-source set to evaluate how well
the moments of the dipoles was reconstructed by ConvDip and
the other inverse algorithms. We calculated the MSE between
each true and predicted source vector (as described in section
2.5). We find that the scaled predictions of ConvDip yielded the
lowest MSE (3.93 · 10−19 ± 2.91 · 10−19), followed by cMEM
(4.32·10−13±3.24·10−12) and eLORETA (6.40·10−8±1.05·10−7).
We excluded LCMV beamformer since the approach does not
yield dipole moments that can be interpreted in this way. This
result is less surprising in the light of the aforementioned results
since ConvDip is able to estimate the extent of sources well, which
facilitates the estimation of correct dipole moments through the
scaling process (refer to section 2.3.3 for an explanation of our
scaling approach).

3.2. Evaluation With Multiple Sources
In a realistic situation, the EEG may pick up signals originating
from many regions in the brain simultaneously, aggravating
the inversion process. Due to the low spatial resolution
of the EEG, not all sources can be identified reliably.
To evaluate the performance of the inverse algorithms in
reconstructing more challenging samples of the multi-source set,
we calculated the aforementioned metrics that are summarized
in Table 2.

3.2.1. AUC
Overall, the AUC for the multi-source set is low since the
desirable 80% AUC is undercut by each inverse algorithm.
ConvDip achieved the highest AUC of 78%, thereby surpassing
the next best competitor LCMV by≈ 7.2%.
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FIGURE 3 | Area under the curve and mean localization error for each inverse algorithm grouped by the source eccentricity. Simulations used for this analysis

contained only a single source cluster per sample of varying size from two to seven neighborhood orders.

TABLE 2 | Comparison of inverse algorithm performance for samples containing multiple source clusters.

Inverse solution AUC [%] (SD) MSE (SD) nMSE (SD) MLE (SD) % of sources found (SD)

ConvDip 78.29 (9.39) 1.6 · 10−18 (4.4 · 10−19) 0.0087 (0.0042) 28.18 (12.10) 62.71 (22.38)

cMEM 70.76 (8.95) 1.2 · 10−12 (3.9 · 10−12) 0.0139 (0.0057) 38.61 (16.11) 50.12 (24.02)

eLORETA 69.94 (7.54) 1.9 · 10−07 (1.6 · 10−07) 0.0559 (0.0152) 29.51 (8.98) 60.71 (22.60)

LCMV 71.13 (10.30) 0.4 (0.1) 0.1592 (0.0415) 28.09 (5.50) 62.36 (23.67)

Samples contained between one and ten source clusters of varying spatial extent. Each cell contains the median and mean absolute deviation of the medians over all samples in the

multi-source set. For the “percentage of sources found” metric, the mean was calculated instead of median. AUC: Area under the receiver operator curve; nMSE: normalized mean

squared error, MLE: mean localization error, Percentage of sources found: The percentage of sources whose maxima was correctly localized. Best performances are highlighted in

bold font.

3.2.2. nMSE
nMSE is substantially smaller for ConvDip inverse solutions
compared to all other inverse algorithms with 60% lower nMSE
compared to the next best performing algorithm cMEM.

3.2.3. MLE
LCMV beamforming is the only inverse solution (of the tested
ones) with lower MLE than ConvDip (Table 2), albeit the
absolute difference of the median MLEs is small (diff_MLE ≈
0.1mm, p = 10−6, d = 0.22).

3.2.4. Percentage of Found Sources
The percentage of sources found was fairly similar for ConvDip,
eLORETA, and LCMV and 10% lower for cMEM (Table 2).
Figure 4 shows the results for the metrics AUC and nMSE
grouped by the number of sources present in the samples. It
is apparent that the accuracy of all inverse solutions depends
strongly on the total number of sources that contribute to the
EEG signal on the scalp since for each inverse algorithm, the
results worsen with increasing numbers of source clusters present
in the sample. Pearson correlation between AUC and the number
of present source clusters was strong and statistically significant
for each inverse algorithm: ConvDip (r = 0.70, p < 10−147),

cMEM (r = 0.60, p < 10−97), eLORETA (r = 0.73, p < 10−163),
and LCMV (r = 0.73, p < 10−167).

This relationship was also found to exists between MLE and
the number of source clusters. For large numbers of source
clusters (≥ 5), LCMV shows the lowest MLE (29.41mm) or
4.24mm less than ConvDip (p = 10−6, d = 0.60, Figure 5). This
may be a result of the inherent noise-suppressing properties of
the LCMV beamformer.

A core result of this analysis is that although ConvDip was
trained with samples containing between 1 and 5 source clusters,
it is capable of inverting more challenging samples as well
(Figure 4).

Furthermore, we showed that discrepancies between the
assumed GM and the true bio-physical properties underlying
an EEG measurement (e.g., tissue conductivity, precise electrode
locations, spacing of the discrete dipole model) can be handled
by ConvDip.

ConvDip provides inverse solutions that are valid for samples
generated with the AGM and different configurations (namely,
different numbers of source clusters). This shows that ConvDip
is able to generalize well beyond samples within the training
set. This in turn confirms the validity of this purely data-driven
approach to solve the EEG inverse problem.
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FIGURE 4 | Area under the curve and normalized mean squared error for each inverse algorithm grouped by the number of present source clusters. The right-most

columns in each of the graphs display the results for samples containing between 5 and 10 source clusters.

4. DISCUSSION

4.1. Overview
We have presented ConvDip, a CNN that aims to find extended
sources of EEG signals. The approach of using a neural network
to solve the inverse problem is distinct from classical methods,
mainly because it works purely data driven. All constraints on
the solution of ConvDip are given implicitly. The performance
of ConvDip was evaluated and tested against commonly used
inverse algorithms cMEM, eLORETA, and LCMV beamforming.
In the following, we discuss the significance of these results.

4.2. Using ANNs to Solve the Inverse
Problem
One major result of this work is that the CNN ConvDip was
capable to reliably find the locations of neural sources that give
rise to the EEG. ConvDip transforms a 7 × 11 image to a
large vector of 5,124 voxels. In image classification, CNNs are
utilized to do the opposite: To extract hidden information from
a large input matrix and output, a single value that indicates
some property, e.g., the presence of a cat or a dog. Our work
verifies that CNNs are capable to solve an underdetermined
problem. This issue was already addressed by Lucas et al. (2018),
who demonstrated the advantages of ANNs over analytical
approaches to solve the inverse problem.

We trained ConvDip on data generated by GM and
subsequently evaluated ConvDip on simulated samples that were
generated by the AGM in order to avoid committing the inverse
crime. Overall, the performance of ConvDip was sometimes
comparable but in most cases better than the classical inverse
solutions cMEM, eLORETA, and LCMV beamformer. This
provides evidence that ConvDip learned to generalize beyond
samples in the training data and remains robust to deviations
from the training data. This holds for small deviations in the
position of the electrodes (±3.7 mm), tissue conductivities, but
also in the configuration of sources (number and size of clusters,

FIGURE 5 | Mean localization error for each inverse algorithm grouped by the

number of present source clusters. The rightmost column displays the results

for samples containing between 5 and 10 source clusters.

deviations from the GM source model grid), and provides
another remarkable advantage of these data-driven approach.

We evaluated the performance of ConvDip and the alternative
inverse algorithms concerning multiple objectives, the results of
which we will discuss in the following.

4.3. Estimating Source Extent
The ability to estimate not only the location of a neural source
but also its extent was tested for all inverse algorithms on the
single-source set using the AUC and nMSE performance. We
find that ConvDip reaches a nearly perfect AUC of ≈ 98%,
which is not met by any other inverse algorithm. nMSE, a
measure of global similarity between the true and estimated
source, was smallest using ConvDip, with less than half the
error compared to the next best inverse solutions yielded
from cMEM (Table 1). ConvDip furthermore estimated different
source sizes appropriately (Figure 2) with higher AUC than all
other inverse algorithms. Although these findings are remarkable
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we have to regard that the shape and size of the sources was
rather predictable for ConvDip. All sources in the training
and evaluation set had a more or less circular shape due the
region growing approach we chose. It may be presumably
a large challenge for ConvDip to estimate ellipitical shapes
or shapes that are even more deviant to a circle. Despite
this caveat, it is remarkable how well ConvDip performs
in this comparison considering the variability introduced by
the AGM.

4.4. Localizing Deep Sources
A further surprising result for us during the evaluation was
that for ConvDip the MLE did not depend on the depth of
the source cluster, i.e., ConvDip is capable to correctly localize
even deep sources with nearly no drop-off (see Figure 3). This
finding was a strong contrast to the findings from other inverse
algorithms, which all tend to mislocate deeper sources more than
superficial ones. Although source depth did not influence the
MLE of ConvDip, we find that the AUC is indeed compromised
by depth. This holds also true for cMEM but not for eLORETA
and barely for LCMV beamformer. Overall, ConvDip achieved
comparable AUCs andMLEs for various depth of source clusters,
compared to other inverse solutions, rendering it a viable option
for localizing deep sources.

4.5. Performance With Multiple Active
Source Clusters
In section 3.2, we evaluated how ConvDip performs when
many source clusters are simultaneously active. We observed
a drop-off in AUC with increasing numbers of active source
clusters from ≈ 99% with single sources to ≈ 73% when 5
or more sources were active simultaneously. Similar behavior
was observed for all inverse algorithms tested (see Figure 4).
But, ConvDip achieved the highest AUC compared to all
alternatives tested, surpassing the best competitor LCMV by
≈ 7.2%. Furthermore, ConvDip also outperformed all other
inverse algorithms concerning nMSE (Table 2). Only when five
or more source clusters are present, we find slightly lower MLE
using LCMV beamformer compared to ConvDip. This increased
localization ability of LCMV beamformer could be due to the
active suppression of noise signals in the beamforming process.
Another reason could be that ConvDip was never trained with
samples that contained more than five active source clusters,
therefore struggling to accurately localize at least a subset of the
source clusters.

4.6. Computation Speed
As already pointed out by Sclabassi et al. (2001), ANNs naturally
yield faster inverse solutions than classical methods. On our
workstation (CPU: Intel i5 6400, GPU: Nvidia RTX 2070, 16 Gb
RAM), one forward pass of ConvDip took on average ≈ 31 ms
on the GPU. When all necessary preprocessing steps (such as
re-referencing, scaling, and interpolation to 2-D scalp maps) are
taken into account, we reached ≈ 32 ms of computation time on
average. In comparison, it takes≈ 129ms (≈factor 4) to calculate
the eLORETA inverse solution using MNE,≈ 98msms (≈factor
3) for LCMV beamforming and astonishing 11.55 s (≈factor

360) to calculate the iterative cMEM inverse solution using
brainstorm. Additionally, one has to provide the noise covariance
matrix, which takes on average ≈ 45 ms to compute using the
empirical estimation of MNE. In practical terms, ConvDip is
capable to compute 31.25 inverse solutions per second (ips) on
a GPU, whereas eLORETA reaches 7.75 ips LCMV beamformer
10.20 ips on a CPU. Possibly, implementations of eLORETA and
LCMV beamforming that can be run on a GPU achieve lower
computation times compared to CPU. The short computation
times of ConvDip are at a distinct advantage over other inverse
solutions, e.g., in real-time applications as in neurofeedback
experiments or in the development of brain–computer interfaces.
When comparing our approach to the existing literature on
ANN-based inverse solutions, we can now confirm that an
ANN not only provides competitively accurate single dipole
locations but also a distributed dipole model of the brain-electric
activity, taking into account more than one dipole. This can
be attributed mostly to the rapid developments in the machine
learning domain such as the introduction of convolutional
layers (LeCun and Bengio, 1995) and the improvements of
GPUs that render the training of large ANNs possible in
acceptable time.

4.7. Realistic Simulations
The simulation of EEG data in this study was based on
different assumptions on the number, distribution, and shape
of electromagnetic fields, which is inspired by Nunez and
Srinivasan (2006). The validity of predictions of any inverse
solution is only granted if the assumptions on the origin of
the EEG signal are correct. This is indeed one of the critical
challenges toward realistic inverse solutions in general, both
for data-driven inverse solutions (such as ConvDip) as well as
classical inverse solutions with physiological constraints (e.g.,
eLORETA). Therefore, when interpreting the applicability of
ConvDip to real data, it is important to specify and justify these
assumptions. We show that the knowledge about brain-electric
activity underlying EEG signals is emulated by ConvDip after
it was trained. However, it is evident from the present work,
how critical the particular choice of parameters is with respect
to the performance, as ConvDip produces solutions that closely
resemble the training samples (see Appendices A, B). A more
sophisticated approach to this problem would be to diversify the
training data, e.g., by changing the region-growing procedure
to produce sources with higher variety of shapes beyond simple
spheric source clusters. Nonetheless, ConvDip finds reasonable
source clusters when presented with real data (see Appendix–C
for an example).

An important observation in real EEG data is the inter-
individual variability, which is in part a direct result of individual
brain anatomies. For ConvDip application to real EEG data,
particularly with group data, it is thus advised to collect
anatomicalMRI brain scans of each individual subject. Individual
neural networks then need to be trained based on each subjects’
individual anatomy provided by the MRI data. This may help to
achieve accurate group-study source estimations. This, however,
raises the problem of computation time, since training individual
CNNs is time consuming. A solution to this is an inter-individual
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transfer learning approach, where ConvDip is trained on one
subjects’ anatomy and fine-tuned for each additional subject with
new training data of the individual anatomies. Fine tuning could
be achieved by replacing the output-layer, lowering the learning
rate and retraining for only few epochs. Training time per se is
another important topic, when considering CNNs to handle the
inverse problem.

4.8. Training Time
Although the availability of high-performing hardware resources
(e.g., high performing graphic cards) is growing rapidly, the
training of the presented neural network architecture requires a
considerable amount of processing power and processing time.
The version of ConvDip shown in this work required ≈ 10.5 h
of training for 500 epochs and 100,000 samples of data using a
NVIDIARTX 2070GPU. Improving the architecture of ConvDip
to shorten training time is an important task for future research,
especially when individualized models are required. Limiting the
solution space to fewer voxels may be one way to decrease the
computation time since most trainable parameters are located
at the final fully connected layers. The easiest way would be
to reduce the number of parameters of the neural network,
e.g., by targeting a CNN with volumetric output of the ANN
corresponding to a volumetric source model of the brain. This
could spare the computationally expensive fully connected layers
and reduce the number of weights in the network. Another
possibility is to segment the cortical surface into parcels, i.e.,
clusters of neighboring dipole positions. This would reduce the
size of the output layer by one to two orders of magnitude and
thereby reduce the number of trainable parameters dramatically.
The feasibility of such a dimension reduction is to be investigated
in future developments.

Another computationally expensive processing step is the
generation of realistic artificial training data. In this study, we
projected neural activity using a three-layer BEM head model.
Generating 100,000 simulations of neural activity took 12 min
using a PCwith CPU@ 4× 4.3 GHz and 16GB of RAM. Software
that enables EEG researchers to perform physiologically realistic
simulations of neural activity for their own ConvDip application
is available from different resources, e.g., from the MNE library
in Python (Gramfort et al., 2014).

4.9. Further Perspectives for Improvement
The present version of ConvDip is trained on single time
instances of EEG data. From a single EEG data point, it
is, however, not possible to estimate a noise baseline. As a
consequence, such a baseline has not yet been taken into account
in ConvDip, which leaves room for improvements toward more
regularized and adaptive solutions that are computed flexibly
depending on noise conditions. In contrast, LCMV, eLORETA,
and cMEM explicitly make use of a noise covariance matrix,
which is used to regularize the inverse solution. ConvDip could
be improved by extending the data input to an EEG time series,
allowing the neural network to learn spatiotemporal patterns.

Possible further advances could be made by preserving the
3D structure of the output space by, instead of a flattened
output layer. This can be realized using a deconvolutional neural

network for 2D-3D projections (Lin et al., 2018) or by using
spatiotemporal information with a LSTM network (Cui et al.,
2019). One obvious further way to improve the performance of
ConvDip may be to increase the capacity of the neural network,
e.g., by adding more layers. In our initial testing phase, we
tried different neural architectures without observing significant
improvements by adding more layers that justify the increase in
training time. Neural architecture search should be used to find a
compact, well-performing architecture to solve the EEG inverse
problem (Liu et al., 2018).

Finally, the development of a both meaningful and
computationally inexpensive loss function, which makes
training faster and allows for faster convergence, is key for
ANN-based approaches to the inverse problem that can run on
ordinary PC within a reasonable amount of time.

4.10. Outlook
We showed that ConvDip, a shallow CNN, is capable of solving
the inverse problem using a distributed dipole solution. The
association between single time points of EEG measurements
and underlying source distributions can be learned and used
to predict plausible inverse solutions. These inverse solutions
were, furthermore, shown to globally reflect the topology of the
brain-electric activity given by the training data.

Predictions yielded from ConvDip are in rare cases
comparable to but in the majority of cases better than the
here tested existing inverse algorithms in the measures we
focused on. Furthermore, the application of ConvDip to real
EEG data yields reasonable results. The fully trained ConvDip
requires only little computational costs of 32 ms, which makes
it a promising tool for real-time applications where only single
time points of EEG data are available.

We want to emphasize the importance of realistic simulations
of real neural activity that can be measured by EEG. Although
a lot of knowledge about the generation of scalp potentials
was implemented in our EEG simulations, including more
physiological constraints can further reduce the complexity
of the inverse problem. One example is the estimation of
cortical column orientation (Bonaiuto et al., 2019) or the
incorporation of empirical knowledge about region-specific
activity from in-vivo (e.g., electrocorticogram) studies. Taking
into account these additional aspects may further improve
ConvDip’s performance.

The current ConvDip version was based on single time points
of artificial EEG data. Exploiting temporal aspects of brain
dynamics (neighboring time points) may provide additional
valuable information and increase the predictive power that may
further refine future ConvDip versions.
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A. APPENDIX

FIGURE A1 | Inverse solution of a simulation containing a single source cluster. An exemplary, representative sample of inverse solutions for a single source cluster.

(A) The ERP at each of the 31 channels containing both signal (central peak) and realistic noise from real recordings. (B) The scalp map at the central ERP peak (as

indicated by the vertical red line in A). (C) The dipole moments plotted on the white matter surface of the template brain in lateral view of the left hemisphere. On the

left, the ground truth source pattern is depicted with a source cluster in the frontal cortex of the left hemisphere. Various inverse solutions that aim to recover this

pattern are depicted next to it. Voxels below 25% of the respective maximum are omitted for a clearer representation of the current distribution.
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B. APPENDIX

FIGURE A2 | Inverse solution of a simulation containing four source clusters. An exemplary, representative sample of inverse solutions for four source clusters.

(A) The ERP at each of the 31 channels containing both signal (central peak) and realistic noise from real recordings. (B) The scalp map at the central ERP peak

(vertical red line in A). (C) The dipole moments plotted on the white matter surface of the template brain in lateral view of the left hemisphere. On the left, the ground

truth source pattern is depicted with a source cluster in the motor cortex, supplementary motor area, insula and the middle temporal lobe of the left hemisphere.

Various inverse solutions that aim to recover this pattern are depicted next to it. Voxels below 25% of the respective maximum are omitted for a clearer representation

of the current distribution.
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C. APPENDIX

FIGURE A3 | Inverse solution of real face-evoked data. All inverse algorithms were subjected to real EEG data recorded from a single participant containing 150 trials

of face-evoked potentials. (A) The ERP at each of the 31 channels. (B) The scalp map at a N170-like component (vertical red line in A, 211 ms after stimulus onset).

(C) The dipole moments plotted on the white matter surface of the template brain in ventral view of the right hemisphere to reveal the inferior temporal cortex (ITC).

Various inverse solutions show activity in the ITC. Notably, ConvDip and cMEM recover a focal source cluster close or within the fusiform face area, a region known to

be involved in face processing (e.g., Kanwisher and Yovel, 2006; Joos et al., 2020). Voxels below 25% of the respective maximum are omitted for a clearer

representation of the current distribution.
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