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Introduction

Obesity represents an increased risk factor in various diseases 
such as heart disease, type 2 diabetes, and certain types of can-
cer.1,2 This close relationship between obesity and certain diseases 
is based on the fact that obesity preserves a low-grade chronic 
inflammatory state.3,4 Inflammatory links between obesity and 
metabolic diseases are well-known mechanisms for the recruit-
ment of immune cells into adipose tissue.5,6 Orchestrating the 
recruitment of immune cells includes members of the chemokine 
network as a driving force.7 Chemokines are a family of chemoat-
tractant cytokines and consist of four subfamily groups including 
C (XCL1–2), CC (CCL1–28), CXC (CXCL1–17), and CX3C 
(CX3CL1). The main function of chemokines is to regulate 
leukocyte trafficking by their interaction with specific seven-
transmembrane-spanning G protein-coupled receptors that are 
involved in development, inflammation and cancer.8,9

There is increasing evidence that chemokines play a piv-
otal role in obesity-associated diseases. Adipose tissue of obese 
patients elevates monocyte chemotaxis (involving CCL2, 3, 5, 7, 

8, and 11 and receptors CCR1, 2, 3, and 5) and increases mac-
rophage infiltration.10 The CCL2/CCR2 pathway is also likely 
involved in obesity-related metabolic disease.11,12 CXCL14 was 
found to be elevated in white adipocyte tissue of obese mice 
and to attenuate insulin-stimulated glucose uptake in cultured 
myocytes.13 Adipose tissue-derived CXCL5 promoted insulin 
resistance in muscle.14 In another study, the lack of CXCR2 in 
hematopoietic cells was sufficient to protect the development of 
insulin resistance.15

Interestingly, conditioned media from adipocytes stimulated 
production of tumor necrosis factor-α (TNF) in spleen cells, 
indicating the functional role of adipocytes as immune regula-
tory cells.16 Obesity promoted liver inflammation and tumori-
genesis; both processes involved enhancement of TNF expres-
sion.17 TNF is particularly well known as a positive regulator 
for proinflammatory chemokines through NFκB signaling.18,19 
In addition, epidermal growth factor (EGF) is closely related to 
obesity. EGF shows biphasic effects on adipocytes: it inhibited 
differentiation of preadipocytes but promoted adipogenesis in 
differentiated cells.20 EGF was reportedly increased in childhood 
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Obesity is recognized as a low-grade chronic inflammatory state which involves a chemokine network contributing 
to a variety of diseases. As a first step toward understanding the roles of the obesity-driven chemokine network, we 
used a 3T3-L1 cell differentiation model to identify the chemokine profiles elicited during adipogenesis and how this 
profile is modified by epidermal growth factor (eGF) and tumor necrosis factor-α (TNF) as a growth and proinflammatory 
factor, respectively. The chemokine network was monitored using PcR arrays and qRT-PcR while main signaling 
pathways of eGF and TNF were measured using immunoblotting. The dominant chemokines in preadipocytes were 
ccL5, ccL8, cXcL1, and cXcL16, and in adipocytes ccL6 and cXcL13. The following chemokines were found in both 
preadipocytes and adipocytes: ccL2, ccL7, ccL25, ccL27, cXcL5, cXcL12, and cX3cL1. Among chemokine receptors, 
cXcR7 was specific for preadipocytes and cXcR2 for adipocytes. These findings indicate the development of a cXcL12–
cXcR7 axis in preadipocytes and a cXcL5–cXcR2 axis in adipocytes. In addition to induction of ccL2 and ccL7 in both 
preadipocytes and adipocytes, eGF enhanced specifically cXcL1 and cXcL5 in adipocytes, indicating the potentiation 
of cXcR2-mediated pathway in adipocytes. TNF induced ccL2, ccL7, and cXcL1 in preadipocytes but had no response 
in adipocytes. eGFR downstream activation was dominant in adipocytes whereas NFκB activation was dominant in 
preadipocytes. Taken together, the adipocyte-driven chemokine network in the 3T3-L1 cell differentiation model 
involves cXcR2-mediated signaling which appears more potentiated to growth factors like eGF than proinflammatory 
factors like TNF.
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obesity.21 It was involved in inducing obesity in ovariectomized 
mice,22 while genetically engineered obese mice were found to 
have a reduced production of EGF.23 In spite of the controversial 
results related to EGF expression in animal models and humans, 
EGF is also a well-known positive regulator for proinflamma-
tory chemokines through Akt and Erk activation.24 These facts 
suggest that TNF, acting as a proinflammatory factor, or EGF 
as a growth factor, alters an obesity-associated chemokine pro-
file, probably resulting in the modulation of the adipocyte’s 
microenvironment.

Because of limited reports linking obesity and chemokine net-
work, we attempted to identify, as a first step, the signatures of 
specific chemokines in preadipocytes and adipocytes, using the 
3T3-L1 cell differentiation model. We also compared the dif-
ferential response of the chemokine network to a growth factor 
(EGF) and a proinflammatory factor (TNF) in these cells.

Results

Adipocytes enhance dominantly CXCL13 when compared 
with preadipocytes

We used the 3T3-L1 cell differentialtion model to prepare 
nondifferentiated (preadipocytes) and differentiated cells 
(adipocytes), and performed customized PCR arrays containing 
genes that encode mouse chemokines and chemokine receptors. 
The present study used the nomenclature of chemokines 
approved by the IUIS/WHO Subcommittee on Chemokine 
Nomenclature (2002). The mRNA levels of a panel of 43 
chemokines and 19 chemokine receptors were evaluated. Based 
on a web-based PCR Array Data Analysis protocol provided by 
SABiosciences (Qiagen), the absent, low, and high expression 
levels of chemokines were defined as >35, 30–35, and <30 
average threshold cycles, respectively.

Figure 1. Adipocytes have a predominant increase in cXcL13 and a decrease in ccL8 compared with preadipocytes. (A) comparison of chemokine 
ligands in preadipocytes and adipocytes. After isolating total RNA from nondifferentiated (preadipocytes) and differentiated cells (adipocytes), a PcR 
array was performed using a customized PcR array plate containing complementary sequences for mouse chemokine genes. Different colors indicate 
the average cycle threshold with expressions that ranged from >35 to <25. chemokines with a >2-fold increase (*) or decrease (#) were recognized as 
the major differences between preadipocytes and adipocytes by excluding lowly expressed chemokines with a >30 cycle threshold. (B) confirmation 
of preadipocyte-dominant chemokines by qRT-PcR. (C) confirmation of adipocyte-dominant chemokines by qRT-PcR. After isolating total RNA, qRT-
PcR was performed using primers for ccL2, ccL6–8, cXcL1, cXcL5, cXcL12, and cXcL13. Fold changes were calculated as a relative value after setting 
the first sample of preadipocytes as a control group (1.0). * and # indicate a significant increase or decrease (P ≤ 0.05), respectively (student t test). 
experiments were performed in triplicate and all data are shown as mean ± seM.



©
20

14
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

www.landesbioscience.com Adipocyte 99

Table 1. Primers used in qRT-PcR analysis

Chemokines Accession number Primers (sense/antisense) CDC no.

ccL2 Bc145869
5-GcTcAGccAG ATGcAGTTA-3

5-cTGcTGGTGA TccTcTTGTA G-3
67–171

ccL6 Bc002073
5-GGcTGGccTc ATAcAAGAAA-3

5-GATcTGTGTG GcATAGGAGA AG-3
60–175

ccL7 Bc061126
5-AAGAAGGGcA TGGAAGTcTG-3
5-TcAAGGcTTT GGAGTTGGG-3

199–295

ccL8 Bc117101
5-AccTGcTGcT TTcATGTAcT AA-3

5-AcAGAGAGAc ATAcccTGcT-3
91–220

cXcL1 Bc132502
5-GcTGGGATTc AccTcAAGAA-3
5-TGGcTATGAc TTcGGTTTGG-3

118–200

cXcL5 Bc024392
5-GcTGcGTTGT GTTTGcTTAA c-3
5-TAGcTATGAc TTccAccGTA GG-3

150–260

cXcL12 Bc006640
5-GGTTcTTcGA GAGccAcATc-3

5-TcTTcAGccG TGcAAcAA-3
98–194

cXcL13 Bc012965
5-ATTcAAGTTA cGcccccTG-3
5-TTGGcAcGAG GATTcAcAc-3

148–242

cXcR2 Bc051677
5-TGTcGTccTT GTcTTccTG-3
5-GGccTTGTcA ATGTcATcG-3

762–882

cXcR7 Bc015254
5-GGcAccTccA GcTATAAGAA G-3
5-GTATcAGGcA GGGAcAcAAA-3

451–540

β-actin Bc138611
5-cTcccTGGAG AAGAGcTATG A-3
5-ccAAGAAGGA AGGcTGGAAA-3

702–803

cDs, coding DNA sequence.

CCL2, CCL7, CCL25, CCL27, CXCL5, CXCL12, and 
CX3CL1 were highly expressed in both preadipocytes and adipo-
cytes (Fig. 1A). CCL5, CCL8, CXCL1, and CXCL16 were domi-
nant chemokines in preadipocytes whereas CCL6 and CXCL13 
were dominant in adipocytes. Adipogenesis from preadipocytes 
to adipocytes resulted in downregulation of CCL2, 5, 7, and 8, 
CXCL1, 5, 12, and 16 and CX3CL1. We selected CCL2, CCL7, 
CCL8, CXCL1, CXCL5, and CXCL12 as highly downregulated 
chemokines and confirmed their downregulation during adipo-
genesis using qRT-PCR with specific primers (Fig. 1B; Table 1). 
In addition, adipocyte-driven chemokines CCL6 and CXCL13 
were confirmed using qRT-PCR (Fig. 1C). Notably, CXCL13 
was primarily expressed in adipocytes as compared with preadi-
pocytes (Fig. 1A and C).

Adipocytes specifically increase CXCR2 when compared 
with preadipocytes

We then compared chemokine receptors in preadipocytes 
and adipocytes. Almost all of chemokine receptors were absent 
or were seen in trace amounts in both preadipocytes and adipo-
cytes (Fig. 2A). However, CXCR7 was predominantly expressed 
in preadipocytes and CXCR2 was highly induced in adipocytes. 
Based on our qRT-PCR results, adipocytes had a significantly 
increased CXCR2 level when compared with preadipocytes 
(Fig. 2B). On the other hand, preadipocytes expressed higher 
CXCR7 levels than adipocytes (Fig. 2C). These facts indicate the 
potentiation of CXCR7-mediated signaling in preadipocytes and 
CXCR2-mediated signaling in adipocytes.

Adipocytes are more responsive to EGF than TNF when 
compared with preadipocytes

We selected EGF as a growth factor and determined the 
effects of EGF on the chemokine network in preadipocytes and 
adipocytes. Preadipocytes induced CCL2 and CCL7 in response 
to EGF (Fig. 3A). In addition to CCL2 and CCL7, EGF signifi-
cantly enhanced CXCL1 and CXCL5 in adipocytes (Fig. 3B). 
Next we selected TNF as an inflammatory factor and identified 
TNF-responsive chemokines in preadipocytes and adipocytes. 
Preadipocytes induced CCL2, CCL7, and CXCL1 in response to 
TNF (Fig. 4A). Interestingly, it had no or less effect on the che-
mokine network in adipocytes (Fig. 4B). In addition, we defined 
the effects of EGF and TNF on chemokine receptors in preadipo-
cytes and adipocytes. Unlike the chemokine ligands, chemokine 
receptors were less responsive to EGF and TNF in both preadi-
pocytes and adipocytes (Fig. S1). We next confirmed the effects 
of EGF and TNF on CCL2, CCL7, CXCL1, and CXCL5 in pre-
adipocytes and adipocytes using qRT-PCR. Although EGF sig-
nificantly induced CCL2 and CCL7 in preadipocytes, the effect 
of TNF on CCL2 and CCL7 was significantly greater. TNF also 
increased CXCL1 and CXCL5 in preadipocytes (Fig. 5A). In 
adipocytes, EGF significantly enhanced CCL2, CCL7, CXCL2, 
and CXCL5 levels while TNF had no effect on these chemo-
kines (Fig. 5B). These facts indicate a dominant effect of TNF 
on chemokines in preadipocytes and EGF in adipocytes. The dif-
ference in dominant chemokines may be attributed from differ-
ential response of EGF or TNF in preadipocytes vs. adipocytes. 



©
20

14
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

100 Adipocyte Volume 3 Issue 2

We then compared EGF- or TNF-mediated signaling pathways 
in preadipocytes and adipocytes, including Akt, Erk, and IκB. 
Akt activation was greater in adipocytes whereas Erk was more 
responsive in preadipocytes (Fig. 5C and D). EGF clearly acti-
vated Akt and Erk in adipocytes whereas it activated Erk in pre-
adipocytes, but had only a slight effect on Akt and IκB (Fig. 5C). 
On the other hand, TNF clearly activated IκB (and gradually 
Akt and Erk) in preadipocytes whereas it had no or less effect 
in adipocytes (Fig. 5D). These differential signaling pathways 
support the dominant effect of TNF on chemokines in preadipo-
cytes and the dominant effect of EGF in adipocytes.

Discussion

The primary findings of this study are that the adipocyte-
driven chemokine network has a CXCL5–CXCR2 axis and that 
EGF-induced CXCL1 and CXCL5 may potentiate the CXCR2-
mediated signaling, indicating an alteration in the adipocyte 
microenvironment. Although adipogenesis downregulated 
CXCL5, adipocytes still express CXCL5 in quite low levels as 
compared with preadipocytes. Other authors also demonstrated 
using 3T3-L1 cells that CXCL5 was downregulated during 
adipogenesis.14 The CXCL5 promoter contains several NFκB 
binding sites and TNF was found to induce CXCL5 via NFκB 
activation in human embryonic 293 cells.25 Thus a lower NFκB 
activation to TNF in adipocytes may be associated with down-
regulation of CXCL5. Interestingly, a decrease in the weight of 
epididymal white adipose tissue following castration resulted to 

upregulation of CXCL5 levels.26 On the other hand, obese sub-
jects have a higher serum CXCL5 level than lean subjects.14,27 
The source of this CXCL5 is most likely macrophages in white 
adipose tissue.14,26 This finding suggests that macrophages in 
adipose tissues contribute to the enhanced CXCL5 levels in the 
obese group despite downregulation of CXCL5 during adipo-
genesis. Consistent with our results, human adipocytes highly 
express CXCR2 compared with preadipocytes.28

Other reports indicate the significance of CXCR2-mediated 
signaling in obesity. CXCR2−/− mice are protected against 
obesity-induced insulin resistance.14 Even the lack of CXCR2 
in hematopoietic cells is sufficient to protect adipose macro-
phage recruitment and the development of insulin resistance in 
diet-induced obese mice.15 These facts indicate that CXCR2-
mediated signaling is involved in obesity-related diseases such as 
diabetes and some types of cancer. In comparison to preadipo-
cytes, EGF further induced CXCL1 and CXCL5 in adipocytes, 
thereby probably potentiating the CXCR2-mediated signaling 
that was diminished due to downregulation of the CXCR2 
ligands, CXCL1 and CXCL5, during adipogenesis. Although 
CXCL1 and CXCL5 are NFκB-activated chemokines,18,25 
EGF increased CXCL1 mRNA in ovarian cancer cells24 and 
CXCL5 mRNA in human umbilical vein endothelial cells and 
the ileum.29,30 EGFR-transactivated Akt signaling was involved 
in CXCR2-driven ovarian cancer progression by upregulating 
proinflammatory chemokines CXCL1/2.31 Interestingly, Erk 
activation was not involved in upregulating the proinflamma-
tory chemokines.31 Therefore, higher Akt activation to EGF 

Figure 2. Adipocytes have a significantly increased expression of cXcR2 and a decreased expression of cXcR7 relative to preadipocytes. (A) comparison 
of chemokine receptors in preadipocytes and adipocytes. After isolating total RNA from preadipocytes and adipocytes, a PcR array was performed 
using a customized PcR array plate containing complementary sequences for mouse chemokine receptor genes. (B) confirmation of increased cXcR2 
mRNA in adipocytes by qRT-PcR. (C) confirmation of decreased cXcR7 mRNA in adipocytes of the by qRT-PcR. After isolating total RNA, qRT-PcR was 
performed using primers for cXcR2 and cXcR7. Fold changes were calculated as a relative value after setting the first sample of preadipocytes as a 
control group (1.0). * and # indicate significant increase or decrease (P ≤ 0.05), respectively (student t test). experiments were performed in triplicate and 
all data are shown as mean ± seM.
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in adipocytes may contribute to EGF-induced CXCL1 and 
CXCL5, rather than that seen in preadipocytes.

In addition to CXCL5, CCL2, CCL5, CCL7, CCL8, CXCL1, 
CXCL12, CXCL16, and CX3CL1 are decreased during adipo-
genesis. Because chemokines such as CCL2,32 CCL5,33 CXCL1,18 
CXCL16,34 and CX3CL135 are regulated by NFκB, the smaller 
response to TNF in adipocytes may be involved in downregu-
lating these particular chemokines. In particular, CCL2 is one 
of chemokines studied intensively in obesity. CCL2 was found 
to be highly expressed in obese subjects.10,36,37 Consistent with 
our results, CCL2 levels have been shown to be higher in preadi-
pocytes than adipocytes.28,38,39 Also, downregulation of CXCL1 
during adipogenesis has been supported in another report.15 
Obesity has been found to be associated with decreased CXCL16 
levels.40 Because CCL718 and CCL841 are induced by TNF, the 
downregulation of these chemokines during adipogenesis may 
result again, from the smaller response to TNF in adipocytes.

In comparison, the preadipocyte-driven chemokine net-
work is the CXCL12–CXCR7 axis, based on high expression of 
CXCL12 and CXCR7 in these cells. Although CXCL12 binds 

to two specific receptors (CXCR4 and CXCR7), CXCR4 is not 
expressed in preadipocytes or adipocytes despite intensive atten-
tion on CXCL12–CXCR4 axis in the cancer field.42 The down-
regulation of CXCL12 during adipogenesis is supported by the 
decrease in CXCL12 levels in diet-induced obese mice.27

Interestingly, NFκB and Erk activation was attenuated while 
Akt activation was potentiated during adipogenesis. Similarly 
LPS-induced NFκB and Erk activation was found to decrease 
as differentiation of human adipocytes increased.43 Particularly, 
TNF has been reported to suppress adipocyte-specific genes such 
as Akt and GLUT4 in 3T3-L1 adipocytes44 and inhibit adipocyte 
differentiation,45 indicating a preadipocyte preference for TNF 
actions. As NFκB is important for TNF-induced lipolysis in 
human adipocytes,46 many studies indicate that TNF has a clear 
impact in both adipocyte biology47 and obesity.48

CCL6 and CXCL13 were found to be significantly increased 
in adipocytes. This finding will require further study, if these 
two chemokines are critical to adipogenesis. Thus far the roles 
of CCL6 and CXCL13 in obesity have not been clarified. 
CCL6 is a rodent-specific chemokine and plays critical roles in 

Figure 3. eGF-responsive chemokines in preadipocytes and adipocytes. (A) In preadipocytes, eGF significantly increases ccL2 and ccL7. (B) In adipo-
cytes, eGF resulted in significant increase in not only ccL2 and ccL7 but cXcL1 and cXcL5. cells were treated with eGF (10 ng/ml) for 1 h. After isolat-
ing total RNA from preadipocytes and adipocytes, a chemokine PcR array was performed. Different colors indicate the average cycle threshold with 
expression ranges from >35 to <25. chemokines with a >2-fold increase (*) were recognized as the major effects of eGF by excluding lowly expressed 
chemokines with >30 cycle threshold.
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IL-13-induced lung inflammation through CCR149 and macro-
phage infiltration.50 B cells from ob/ob mice have a greater pro-
pensity to migrate to the liver through a CXCL13-mediated sig-
naling pathway.51 These facts suggest that CCL6 and CXCL13 
likely are involved in macrophage and lymphocyte infiltration in 
obesity, leading to chronic inflammation.

We summarize the characteristics of the chemokine network 
in preadipocytes and adipocytes, and describe the development of 
expected chemokine network for cell–cell communication in the 
preadipocyte and adipocyte microenvironments (Fig. 6). CCL2, 
CCL7, CCL25, CCL27, CXCL5, CXCL12, and CX3CL1 are 
commonly expressed in both preadipocytes and adipocytes. 
CXCR7 expression in preadipocytes and CXCR2 in adipocytes 
can drive to establish CXCL12–CXCR7 axis in preadipocytes 
and CXCL5–CXCR2 axis in adipocytes. Common chemokines 
(CCL2, CCL7, CCL25, CCL27, CXCL12, and CX3CL1), 
preadipocyte-driven chemokines (CCL5, CCL8, CXCL1, 
and CXCL16) and adipocyte-driven chemokines (CCL6 and 
CXCL13) can communicate with other cells containing spe-
cific receptors for these chemokines. TNF and EGF commonly 
induce CCL2 and CCL7. Additionally TNF induced CXCL1 

in preadipocytes, and EGF enhanced CXCL1 and CXCL5 
in adipocytes. Further induction of CXCR2 ligands such as 
CXCL1 and CXCL2 by TNF and EGF may lead to potentia-
tion of CXCR2-mediated signaling in adipogenesis, adipocyte 
biology, and obesity.

This study represents the first step to clarify the role of the 
identified chemokines on adipogenesis for future direction. In 
conclusion, the CXCL1/5–CXCR2 axis is a central adipocyte-
driven chemokine network and growth factors like EGF poten-
tiate CXCR2-mediated signaling rather than proinflammatory 
factors like TNF, in the adipocyte microenvironment.

Materials and Methods

Reagents
Recombinant human EGF (236-EG-200) and TNF (210-

TA-020) were obtained from R&D Systems. Antibodies for IκB 
(8219), Akt (8200), Erk (8201) and their phosphorylated forms 
were purchased from Cell Signaling Technology. The PCR 
array for customized mouse chemokines (CAMP10242) and 
SYBR® Green Master Mix (330503) came from SABiosciences/

Figure 4. TNF-responsive chemokines in preadipocytes and adipocytes. (A) TNF resulted in a significant increase in ccL2, ccL7, and cXcL1 in preadi-
pocytes, while (B) TNF had no significant effect on chemokines in adipocytes. cells were treated with TNF (10 ng/ml) for 1 h. After isolating total RNA 
from preadipocytes and adipocytes, a chemokine PcR array was performed. Different colors indicate average cycle threshold with expression ranges 
from >35 to <25. chemokines with a >2-fold increase (*) were recognized as the primary effects of TNF by excluding low expressed chemokines with 
>30 cycle threshold.
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Qiagen. Specific PCR primers for chemokines or chemo-
kine receptors were obtained from Eurofins MWG Operon. 
Chemiluminescent detection kits (sc-2048) were from Santa 
Cruz Biotechnologies. 3- Isobutyl- 1- methylxanthine (IBMX, 
I-7018), insulin (I-5500), and dexamethasone (D-4902) were 
purchased from Sigma-Aldrich. All liquid culture media such 
as FBS (26140) and Dulbecco’s modified Eagle’s medium 
(DMEM, 11965) were acquired from Invitrogen.

Cell culture and differentiation
The mouse fibroblast cell line 3T3-L1 (CL-173) was pur-

chased from the American Type Culture Collection. Cells were 
cultured in Dulbecco’s modified Eagle’s medium (DMEM) 
with 10% calf serum (16010159, Invitrogen) at 37 °C in a 
water-saturated atmosphere of 95% air and 5% CO

2
, avoid-

ing situations in which the cells became too confluent (>70%) 
before the initiation of differentiation. Differentiation was 
initiated, however, in confluent 3T3-L1 preadipocytes by 

stimulation with induction media (10% FBS/DMEM with 
115 μg/ml IBMX, 1 μg/ml insulin and 1 μmol/l dexametha-
sone). After 2 d of incubation, cells were maintained in insulin 
media (10% FBS/DMEM with 1 μg/ml insulin); media was 
changed every other day thereafter. Differentiated cells (adipo-
cytes) were maintained in 10% FBS/DMEM. Before treatment, 
the medium was removed and fresh medium without FBS was 
added to remove the effects of ingredients contained in serum. 
After at least 4 h of incubation in serum-free media, vehicle 
(phosphate-buffered saline, PBS), 10 ng/ml EGF or 10 ng/ml 
TNF was added, and incubations continued for the indicated 
time periods. Adipogenesis experiments were carried on dupli-
cate or triplicate as appropriate.

PCR array and qRT-PCR
After isolating total RNA and eliminating genomic DNA, 

reverse transcription reactions were performed at 42 °C for 15 min 
followed by 94 °C for 5 min. According to the manufacturer’s 

Figure 5. confirmation of eGF- and TNF-responsive chemokines and comparison of signaling pathways in response to eGF and TNF. (A) In preadipocytes 
and (B) adipocytes, confirmation of eGF- and TNF-responsive chemokines. After isolating total RNA, qRT-PcR was performed using primers for ccL2, 
ccL7, cXcL1, and cXcL5. Fold changes were calculated as a relative value after setting the first vehicle-treated sample of preadipocytes and adipocytes 
as a control group (1.0), respectively. *, **, and # indicate significant increases and decrease (P ≤ 0.05), respectively (student t test). experiments were 
performed in triplicate and all data are shown as mean ± seM. (C) eGF- and (D) TNF-responsive signaling pathways in preadipocytes and adipocytes. 
cells were treated with eGF (10 ng/ml) or TNF (10 ng/ml) for 0, 5, 15, 30, 60, and 120 min. The whole cell lysates were prepared and western blots were 
performed using antibodies specific to IκB, Akt, erk, and their phosphorylated forms. experiments were performed in duplicate and a representative 
result is shown.
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instructions, a real-time PCR was performed using a Bio-Rad 
CFX96 under the following two-step cycling program: 1 cycle 
at 95 °C for 10 min, 40 cycles at 95 °C for 15 s and at 60 °C 
for 1 min. Data analysis was performed based on a web-based 
PCR Array Data Analysis protocol (http://pcrdataanalysis.sabio-
sciences.com/pcr/arrayanalysis.php) provided by SABiosciences/
Qiagen. Values for PCR array are the means from duplicate 
experiments. Primers used in qRT-PCR are described in Table 1. 
Experiments for qRT-PCR were performed at least in triplicate.

Western blot
Cell lysates were prepared, fractionated on SDS-

polyacrylamide gels and transferred to nitrocellulose membranes 
according to established procedures. Blocking of nonspecific 
proteins was performed by incubation of the membranes with 
5% nonfat dry milk in Tris buffered saline Tween-20 (TBST 
containing 10 mM Tris, 150 mM phosphate buffered saline, 
0.05% Tween 20, pH 8.0) for 2 h at room temperature. Blots 
were incubated with primary antibodies at 1:1,000 dilution 
in blocking solution overnight at 4 °C. The membranes were 
washed 3 times with TBST for 10 min and followed by incu-
bation for 1 h with horseradish peroxidase conjugated second-
ary antibody according to primary antibody, used at 1:2500 in 

5% milk/TBST. The membranes were then rinsed 3 times with 
TBST for 10 min and the bands were visualized by enhanced 
chemiluminescence.

Statistical analysis
Data were expressed as mean ± SEM. Difference between 

two groups were analyzed by the paired Student t test with sta-
tistical significance of P ≤ 0.05.
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Figure 6. schematic proposal for chemokine networks between preadipocytes and adipocytes. (A) chemokine networks during 3T3-L1 cell adipogen-
esis and TNF- and eGF-responsive chemokines between preadipocytes and adipocytes. (B) Differential development of chemokine networks between 
preadipocytes and adipocytes and TNF- and eGF-potentiated chemokine-receptor axes. Black letters, common chemokines for both preadipocytes and 
adipocytes; blue letters, preadipocyte-derived chemokines; red letters, adipocyte-derived chemokines; gray letters, expected chemokine receptors for 
chemokines.
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