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new insights into cheddar 
cheese microbiota-metabolome 
relationships revealed by 
integrative analysis of multi-omics 
data
Roya Afshari1, christopher J. pillidge1, elizabeth Read3, Simone Rochfort  3, Daniel A. Dias2, 
A. Mark osborn1 & Harsharn Gill1*

Cheese microbiota and metabolites and their inter-relationships that underpin specific cheese quality 
attributes remain poorly understood. Here we report that multi-omics and integrative data analysis 
(multiple co-inertia analysis, MciA) can be used to gain deeper insights into these relationships and 
identify microbiota and metabolite fingerprints that could be used to monitor product quality and 
authenticity. Our study into different brands of artisanal and industrial cheddar cheeses showed that 
Streptococcus, Lactococcus and Lactobacillus were the dominant taxa with overall microbial community 
structures differing not only between industrial and artisanal cheeses but also among different cheese 
brands. Metabolome analysis also revealed qualitative and semi-quantitative differences in metabolites 
between different cheeses. This also included the presence of two compounds (3-hydroxy propanoic 
acid and o-methoxycatechol-o-sulphate) in artisanal cheese that have not been previously reported in 
any type of cheese. integrative analysis of multi-omics datasets revealed that highly similar cheeses, 
identical in age and appearance, could be distinctively clustered according to cheese type and brand. 
furthermore, the analysis detected strong relationships, some previously unknown, which existed 
between the cheese microbiota and metabolome, and uncovered specific taxa and metabolites that 
contributed to these relationships. these results highlight the potential of this approach for identifying 
product specific microbe/metabolite signatures that could be used to monitor and control cheese 
quality and product authenticity.

Cheese microbiota play a pivotal role in the development of cheese flavor and the product quality and safety of 
cheese. These attributes can be achieved by tightly controlled manufacturing conditions, excellent hygiene and 
use of commercial starter cultures (usually strains of Lactococcus lactis). Following manufacture, when starter 
bacteria cease to dominate, cheese must be ripened for full flavour development. This is a highly complex pro-
cess, with successions within microbial communities, and their associated enzymes and biochemical reactions 
occurring over time to release numerous flavoursome organic compounds1. Ripening can be controlled to some 
extent by the addition of known adjunct cultures, usually strains of lactobacilli, but adventitious bacteria from the 
factory environment also contribute to the ripening process and to the composition of the cheese microbiota2.

Advances in DNA sequencing using DNA extracted directly from samples have enabled improved under-
standing of the microbial communities found in cheese, and especially of less-abundant microorganisms which 
can nevertheless have significant impacts on cheese flavour and safety3,4. Although microbial communities vary 
depending on the cheese type, in hard cheeses such as cheddar that undergo ripening, after the starter bacteria 
die off lactobacilli are dominant, and may be found in combination with a number of other genera not belonging 
to the lactic acid bacteria group – for example coagulase-negative staphylococci and Actinobacteria5–7. Little is 
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known about the associations between important flavour compounds in these cheese types and the many different  
bacterial and/or fungal species that arise over time during cheese ripening.

Analysis of metabolites in ripened cheese can be used to identify important flavour compounds (e.g. volatile 
compounds) and indirectly show which types of bacteria are likely to be present. This includes both untargeted 
and targeted chemical analyses to detect specific metabolites or flavour precursor compounds such as amino acids 
and organic acids8–10. A more complete understanding of cheese ripening can now be gained through improve-
ments in analytical techniques such as mass spectrometry combined with untargeted chemical analysis and sys-
tems to handle these very large datasets, with some studies indicating the presence of hundreds or thousands of 
compounds including many not previously reported in cheese11.

Despite these advances, the interrelationships between cheese microbiota and their metabolites remain largely 
unstudied. This type of information could be useful if translated into cheesemaking practice; for example, if rip-
ening conditions or application of adjuncts were adjusted to favour the growth of specific microorganisms associ-
ated with production of desirable flavour compounds. To better understand these interactions, integrative analysis 
of large multiple-omics datasets can now be applied, facilitated by the application of new computational algo-
rithms and high-end computing systems, as we have previously advocated12. Tools that facilitate the integration  
of multiple omics data sets are now becoming increasingly available13.

In this study we have carried out an integrative analysis to investigate interrelationships between cheese 
microbiota and cheese metabolomes in artisanal and industrial cheddar cheeses, using a combination of 16S 
rRNA-based microbiota analysis and untargeted metabolomics analyses using LC-MS/MS and GC-MS with data 
integration via multiple co-inertia analysis (MCIA). MCIA is a multivariate analysis technique that allows system-
atic integration of more than two omics datasets; it identifies co-relationships between multiple high-dimensional 
datasets and explores the variance from within each dataset to facilitate biological interpretation and pathway 
analysis14. We chose two industrial and two artisanal cheddar cheeses and additionally compared microbiota 
and metabolomes at the cheese surface, which is relatively aerobic, and within the cheese (core samples) which 
are highly anaerobic. This is the first time to our knowledge that such integrative analysis has been applied to a 
complex ecosystem in a fermented food.

Results
Variation and composition of the cheese microbiota. Sequencing of PCR-amplified 16S rRNA gene 
amplicons targeting the V4-region from total DNA revealed 159 operational taxonomic units (OTUs) binned at 
97% identity and a threshold of detection of an OTU being present in more than one sample (overall). Principal 
component analysis (PCA) and analysis of similarities (ANOSIM) based on a Bray Curtis dissimilarity matrix, 
showed significant differences between the structure and composition of the bacterial communities between the 
industrial and artisanal cheeses (R = 0.94, significance level = 0.1%) and also between communities from the two 
industrial brands (R = 0.94, significance level = 0.1%) (Fig. 1a). Conversely, microbiota composition did not differ 
between the artisanal brands (R = 0.62, significance level = 0.6%) or between core and surface samples (R = 0.64, 
significance level = 0.5%).

Of the 159 OTUs, sixteen OTUs were present in all industrial and artisanal cheeses with these OTUs repre-
senting more than 70% of the relative abundance of bacterial taxa found in the samples (Fig. 2a). These sixteen 
OTUs were assigned to the genera Streptococcus, Lactococcus and Lactobacillus. Overall, twenty-four OTUs were 
present in all industrial cheeses (Fig. 2b) and forty-six OTUs were common to all artisanal samples (Fig. 2c). 
Shared OTUs in industrial cheeses were assigned to Streptococcus, Lactococcus, Lactobacillus and in artisanal 
cheeses OTUs were assigned to Streptococcus, Lactococcus, Lactobacillus, Staphylococcus and non-classified taxa.

The prevalence of the ten most abundant genera present within cheese samples is depicted in Fig. 2d. The most 
abundant genera in industrial cheeses for both core and surface samples were either Lactococcus or Lactobacillus 
depending on the origin of manufacture. However, Streptococcus (presumably mostly S. salivarius subsp. thermo-
philus) followed by Lactococcus and Lactobacillus were the most abundant genera in artisanal cheeses for both 
core and surface samples. Other genera were present at much lower relative abundances (the relative abundance 
<1%) in both core and the surface samples of industrial cheeses namely, Streptococcus and Macrococcus. However, 
in one of the artisanal cheese brands Pediococcus was present at low abundance in both core and surface samples.

Cheese GC/MS metabolome profiling. GC-MS untargeted metabolomics identified a total of 46 metab-
olites in which the chemical identity could be confirmed by comparison of their retention times and mass 
spectra data to either in-house libraries and/or authentic standards. These included 22 amino acids or amines 
(AA); 18 organic acids (OA) and fatty acids (FA) or sterols; and 6 sugars or sugar phosphates (Supplementary 
Table S1). PCA of GC-MS metabolome data revealed that industrial and artisanal cheeses were separated along 
PC1 (Fig. 1b). Similarly, each brand of artisanal or industrial cheese was separated along PC2 and for one of the 
artisanal brands, core and surface metabolomes were also separated.

Differences between metabolite response ratios between artisanal and industrial cheeses was determined by 
pairwise t-test with fold changes (in the abundance of metabolites) presented as being relative to abundance 
in industrial cheeses (Supplementary Table S1). Six compounds (GABA, 5-amino-valeric acid, tyramine, 
3-hydroxypropanoic acid, galactonic acid and glutaric acid) were found to be present only in the artisanal cheeses. 
Succinic acid was found to be present at significantly higher abundance in artisanal cheeses in both core and sur-
face samples. However, free fatty acids including heptadecanoic acid, pentadecanoic acid, octadecanoic and deca-
noic were significantly higher in their relative abundance only in the surface of artisanal cheeses when compared 
to industrial cheeses. Conversely, urea and lysine were both present at a significantly higher relative abundance in 
industrial cheeses relative to the artisanal cheeses.
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Cheese LC/MS metabolome profiling. LC-MS untargeted metabolomics analysis revealed over 8000  
features in the cheddar cheeses (4010 in positive ESI mode and 4100 in negative ESI mode). The 1000 most 
dominant peaks were chosen for further analysis. Putative IDs of features were determined using the Human 
Metabolome Database and METLIN. Given the large number of metabolites present, we did not attempt to deter-
mine IDs of all the peaks but only those that were significantly different between cheeses or that were found to 
have significant associations with the microbiota data. When LC-MS metabolites were subjected to PCA analysis, 
consistent with GC-MS metabolome profile, industrial and artisanal cheeses were again separated along PC1 
and each artisanal or industrial brand was separated along PC2 (Fig. 2c). In contrast to the GC-MS metabolome 
profiles, core and surface of artisanal cheeses were separated along PC1; however, separation was not observed 
between the core and the surface metabolomes of industrial cheeses.

Table 1 shows the statistical significance of differential LC-MS-metabolites levels generated using a volcano 
plot along with corresponding effect size and their tentative metabolite identity for core and surface samples. 
Among 1000 features, the abundance of six and nine features differed significantly between industrial and arti-
sanal cheese for core and surface samples, respectively (Table 1). Four compounds in the core of industrial cheeses 
including one amino acid (arginine) and one dipeptide and five compounds in the surface of industrial cheeses 
including dipeptides had significantly higher abundances when compared to artisanal cheeses (P value < 5*10−5). 

Figure 1. Principal component analysis (PCA) of industrial and artisanal cheeses for (a) microbiota, (b) GC-MS 
metabolites and (c) LC-MS metabolites. I: industrial, A: artisanal; C: core, S: Surface; number indicates different 
brand for each artisanal and industrial cheese.
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However, two and four compounds were present in significantly higher abundances in the core and surface 
samples of artisanal cheeses when compared to industrial cheeses. The most pronounced differences between 
industrial and artisanal cheeses was the higher proportion of the nitrogenous compound (putatively identified as 
butyrobetanine) in artisanal cheese compared to industrial cheeses. A putatively identified phenolic compound 
(O-methoxycatechol-O-sulphate) was more abundant in the surface of artisanal cheeses compared to industrial 
cheeses. However, the identities of five features which differed significantly between cheeses could not be determined  
due to the low abundance of associated peaks and inability to capture adequate MS-MS data.

integrative analysis of cheese microbiome and metabolome datasets. Multiple co-inertia anal-
ysis (MCIA) was used to determine whether any inter-omic relationships existed between the three datasets 
(16S rRNA sequences, untargeted GC-MS metabolomics and untargeted LC-MS metabolomics). Figure 3 shows 
the projection of industrial and artisanal cheeses onto the first two principal components (PCs) of MCIA for 
both core and surface data. The artisanal cheeses were separated from industrial cheeses along the horizontal 
axis (PC1). This clustering accounted for 48% and 51% of the variation for the core and surface cheese samples, 
respectively. Similarly, each brand of artisanal or industrial cheese was separated along the vertical axis (PC2) for 
both the core and surface cheese samples, accounting for approximately 18% and 16% of variation, respectively 
(Fig. 3a,b). The pair-wise RV (R-vector) coefficient which is multivariate generalization of the squared Pearson 
correlation coefficient indicated higher global similarity between GC-MS and microbiota datasets (RV score  
for core = 0.8 RV score for surface datasets = 0.91) when compared to the similarities between the LC-MS and 
microbiota datasets (RV score for core = 0.45, RV score for surface datasets = 0.77), and between the LC-MS and 

c)

a)

A1
a

A1
b

A1
c

A2
a

A2
b

A2
c

I1
a

I1
b

I1
c

I2
a

I2
b

I2
c

A1
a

A1
b

A1
c

A2
a

A2
b

A2
c

I1
a

I1
b

I1
c

I2
a

I2
b

I2
c

Lactococcus

Streptococcus
Lactobacillus
Pediococcus
Peptoniphillus

Campylobacter
Prevotella
Anaerococcus
Finegoldia
Macrococcus
Other

I1_C (55)

I2_C (98) I1_S (65)

I2_S (68)
A1_C 
(66)

A2_C 
(77)

A1_S 
(75)

A2_S 
(74)

I (24) A (46)

b)

d)

Figure 2. Venn diagram representing the unique and shared OTUs between all cheeses (a), between industrial 
cheeses (b) and between artisanal cheeses (c). Microbiota composition of the cheddar cheeses at genus level  
(d). The ten most abundant genera are shown. I: industrial, A: artisanal; C: core, S: Surface; a-c: sample 
replicates, 1–2: different brands within each artisanal and industrial cheese.
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GC-MS datasets (RV score for core = 0.53, RV score for surface datasets = 0.81). Also, these similarities were more 
pronounced in the surface samples when compared to core samples.

The OTUs and metabolites with the strongest inter-omic covariance as predicted by MCIA are shown in 
Fig. 4. These OTUs and metabolites were also highly associated with the industrial (negative side of PC1) and the 
artisanal (positive side of PC1) cheeses. This analysis suggested OTUs assigned to Streptococcus and Lactobacillus 
genera and also metabolites including 3-hydroxy propanoic acid, 5-amino valeric acid, tyramine, GABA were 
strongly associated with artisanal cheeses for both core and surface data. Additionally, the presence of Pediococcus 
and Kocuria could be used to differentiate between the two artisanal cheese brands. Moreover, OTUs assigned 
to Lactobacillus and also metabolites including urea, putrescine, proline, sorbose, glycerol-3-phosphate were 
strongly associated with the industrial cheeses for the core samples. For the surface samples, asparagine, lysine, 
putrescine, urea, citrate, asparagine-valine and OTUs assigned to Lactobacillus and Macrococcus were strongly 
associated with the industrial cheeses.

correlation analysis. Having found significant inter-omic correlations between the microbiome 
and metabolome of the cheeses, a Spearman analysis was used to identify the strongest contributors to the 
observed inter-omic correlations. An interaction network is shown in Fig. 5 to display relationships between 
OTUs and GC-MS metabolites. Details of significant correlations between OTUs and metabolites are shown in 
Supplementary Datasets S1–S4.

To identify bacterial genera with the highest number of correlations with metabolites, OTUs were binned at 
genus level and the number of associated (correlated) metabolites quantified. Streptococcus, Lactobacillus and 
Lactococcus displayed the highest frequencies of correlations to metabolites. Lactococcus showed relatively fewer 
correlations with metabolites when compared with the other two genera. In contrast, Streptococcus, Lactobacillus, 
Macrococcus, Leuconostoc and Pediococcus showed a greater number of correlations with metabolites in the 
cheese surface metabolites (LC-MS) when compared to in the cheese core. Notably, Macrococcus and Leuconostoc 
although both present at low relative abundances in the bacterial communities still displayed significant correla-
tions to proline and 5 and 21 other features, respectively. Also, Pediococcus showed a significant correlation to a 
peptide, a branched chain fatty acid and 21 other features, perhaps suggesting its ability to contribute to diverse 
metabolites in the presence of oxygen (q < 0.1) (Supplementary Table S2).

Core cheese samples exhibited more than double the number of correlations between bacterial OTUs and 
amino acids than in surface samples, presumably indicating a greater level of microbial-induced peptidolysis in 
the cheese core (Fig. 5a; Supplementary Dataset S1). Five genera, namely, Streptococcus, Lactobacillus, Lactococcus, 
Macrococcus and Leuconostoc were significantly correlated with amines and amino acids for core samples in 
which Streptococcus, Lactobacillus and Lactococcus had excellent correlation with amino acids (|sim-score| > 09). 
However, for surface samples, only three genera Streptococcus, Lactobacillus, Lactococcus displayed correlations 
with amino acids in which Lactobacillus had the greatest correlations (|sim-score| > 09). Aromatic amino acids 
(phenylalanine, tyrosine), branched-chain amino acids (leucine, isoleucine and valine) and methionine are major 
precursors of cheese aroma compounds. Methionine was negatively correlated to Streptococcus (St. salivarius); and 
positively correlated to Lactococcus (Lc. lactis) on the core and the surface of cheeses, respectively. Phenylalanine 
showed positive correlation to Lactobacillus (Lb. coryniformis). Tyrosine, providing a bitter taste of cheeses, was 

M/Z RT putative identity
Directed Effect Size 
[ART vs. IND] OTU Taxon Association

Core

146.1177 1.27 gamma-Butyrobetaine 1.06E + 08 260 Streptococcus_salivarius Positive

279.16 10.92 ND 277931.66 260 Streptococcus_salivarius Positive

361.20 11.8 ND −323616.7 167 Streptococcus_salivarius Positive

214.05 1.18 ND −5361950 98 Streptococcus_salivarius Negative

173.1 1.15 *Arginine −3.46E + 07 41 Streptococcus_porcinus Negative

232.1293 1.28 ASN-VAl −1.72E + 08 2 Streptococcus_salivarius Negative

Surface

146.117 1.27 gamma-Butyrobetaine 4.58E + 07 72 Streptococcus_salivarius Positive

103.038 2.65 Unknown 2.62E + 07 174 Streptococcus_porcinus Positive

242.012 3.51 Unknown 2.57E + 07 151 Streptococcus_salivarius Positive

203.001 5.28 O-methoxycatechol-O-sulphate 1.37E + 07 174 Streptococcus_porcinus Positive

119.025 15.53 ND −8220653.5 72 Streptococcus_salivarius Negative

247.093 1.27 Threoninyl-Glutamate −2.91E + 07 72 Streptococcus_salivarius Negative

258.145 1.97 Di peptide containing glutamate −4.12E + 07 167 Streptococcus_salivarius Negative

187.108 1.99 ND −4.32E + 07 167 Streptococcus_salivarius Negative

231.134 2.014 Unknown −1.33E + 08 — — —

Table 1. LC/MS features that differed significantly between industrial and artisanal cheeses and their associated 
taxon (q < 0.1). Data represents directed effected size (artisanal cheese vs industrial cheeses) for each cheese 
obtained from volcano plot and significant at P-value ≤ 0.0001 (Bonferroni corrected P value). *Metabolite which 
their putative IDs is validated by comparison of their RT and m/z to an external standard. ND: not detected 
due to the low abundance of associated peaks and inability to capture adequate MS2 data. See Supplementary 
Table S3 for MS2 data associated with each peak. Those correlation between each metabolite and taxon which 
were significant at q value < 0.1 were shown.
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Figure 3. MCIA analysis of core and surface samples of cheddar cheeses. (a,b) The first two axes of MCIA 
represents metabolomics (LC/MS and GC/MS) and microbiota composition of the industrial and artisanal 
core (a) and surface (b) cheeses. Different shapes (df1, diamond: GC/MS data set; df2, triangle: microbiota 
data set; df3, square: LC/MS data set) represent the different variables connected by lines, the length of these 
lines is proportional to the divergence between the data. Lines for each sample are joined at a common point, 
at which the covariance derived from the MCIA analysis is maximal. Color shows the 4 brands of cheeses. (c,e) 
Psedo-eigenvalue space representing the percentage of variance explained by each of the MCIA component for 
core (c) and surface (e) datasets. (d,f) Pseudo-eigenvalues space of all datasets for the core (c) and the surface 
(f), showing overall co-structure between three datasets and shows which dataset contributes more to the total 
variance.

Figure 4. The coordination of GC/MS metabolites (a), OTUs (b), and LC/MS metabolites (c) for the core 
samples and the coordination of GC/MS metabolites (d), OTUs (e) and LC/MS metabolites (f) for the surface 
samples are shown. The OTUs and metabolites at the positive end of PC1 are associated with the artisanal cheese 
and at the opposite side are associated with the industrial cheeses, also these features show strongest covariance. 
P120: tyramine, N40: citrulline, P242: unknown peptide, P11: Proline, P155: unknown (m/z = 628.55, 
RT = 19.14), P262: Unknown (m/z = 631.491 = , RT = 17.80), N19: 1-formyl pentanedioic acid, P80: dipeptide 
(asparagine-valine), N43: unknown (m/z = 268.15, RT = 6.76). (See putative formula and MS2 features in 
Supplementary Table S3). Abbreviations for metabolites are shown in Supplementary Table S1. Identity of OTUs 
is shown in Supplementary Dataset S5.
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positively correlated to Lactococcus (Lc. lactis). Glutamic acid, which confers umami flavour15 was positively cor-
related with Lactobacillus (Lb. crispatus, Lb.coryniformis). Ornithine which is the product of arginine deiminase 
pathway was positively correlated to Streptococcus (sim-score > 0.9) and Lactococcus (|sim-score > 0.8). Moreover, 
GABA, a bioactive compound in cheese, was correlated to Streptococcus (St. salivarius) (sim-score > 0.7); 
and more importantly to Lactobacillus (Lb. ginsenosidimutans and Lb.sakei) (sim-score > 0.9). Putatively 

Figure 5. Inter-omic Spearman correlation networks. Pairwise Spearman correlation was performed for each 
OTU and GC/MS metabolites for the core (a) and the surface (b) samples; Any resulting correlations with 
q > 0.1 were removed. Red line shows positive and blue line shows negative correlation. Circles indicate taxa and 
diamonds indicate metabolites. Stronger correlations are shown as line thickness increases. Thicker line shows 
strangest correlations. Taxa keys: red nodes: Streptococcus, purple nodes: Lactococcus, cyan nodes: Lactobacillus, 
blue nodes: Macrococcus, green nodes: Leuconostoc, gray nodes: unassigned genus. Abbreviations for metabolites 
are shown in Supplementary Table S1.
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identified dipeptides in the cheeses were positively correlated to Lactobacillus, Lactococcus and Macrococcus and 
Leuconostoc; and negatively correlated with Streptococcus.

For hydroxylic acids and fatty acids positive correlations were found to be associated with the presence and the 
abundance of genera including Lactococcus, Streptococcus and Lactobacillus. Succinic acid providing savoury fla-
vour in cheddar cheeses displayed positive correlations to Streptococcus in the core of cheeses. Furthermore, two 
putatively identified compounds (3-hydroxy propanoic acid and methoxy catechol) which have not been reported 
in cheese previously displayed significant correlations. 3-hydroxy propanoic acid was positively correlated to 
Streptococcus and Lactobacillus and methoxy catechol was positively correlated to Streptococcus.

Discussion
By integrating three different omics datasets, this study reveals new interrelationships between the 
cheese-microbiota and -metabolome and identifies metabolites not previously described in cheddar cheese. This 
multi-omics approach coupled with integrative analysis of multiple datasets also represents a highly sensitive 
tool for differentiating and testing closely related foodstuffs for their provenance and authenticity. Based on the 
integrative analysis of three omics datasets, cheddar cheeses could be clustered according to cheese type (Fig. 3). 
More importantly, two highly similar industrial cheddars that were of identical age and appearance, but different 
brands, could also be discriminated by MCIA plots. Similarly, the two artisanal cheeses were highly distinguish-
able in these plots. This shows that where individual omics are unable to detect differences between cheeses, the 
concatenated information from multi-omics platforms can detect even fine differences. MCIA also uncovered 
strong relationships that existed between the cheese microbiota and metabolome, as reflected by the dataset and 
the correlation-based analysis of paired microbiome-metabolome datasets, and indicated specific contributors 
(OTUs and metabolites) to these relationships.

The composition of cheese microbiota based on sequencing of 16S rRNA-genes was broadly consistent with 
previously reported findings3,16,17. Lactococcus, or a combination of Lactococcus and Lactobacillus, were found to 
dominate the microbiota of the industrial cheddars (>90%), while Streptococcus (presumably S. thermophilus) 
dominated the artisanal cheeses. Although the identity of the starter cultures used and manufacturing conditions 
for each cheese type was not known a priori, it seems highly likely that these organisms would have been used as 
starter or adjunct cultures. However, the possibility that some of these may have come from the factory environ-
ment cannot be discounted. It is well known that flavour and other organoleptic properties of cheese are not solely 
determined by starter and/or adjunct cultures but also by adventitious microbiota2. In our study, Pediococcus and 
Leuconostoc (in the artisanal cheeses) and Macrococcus (in the industrial cheeses) were present at less than 1% 
but were strongly correlated to the presence and abundance of a number of cheese metabolites (Supplementary 
Table S2). In particular, in surface samples, Macrococcus was correlated to 13 metabolites including two dipep-
tides and an amino acid (proline), possibly due to Macrococcus being able to outcompete anaerobic lactic acid 
bacteria (LAB) in the presence of oxygen. Pediococcus was correlated to 21 metabolites including an unidentified 
peptide and a branched chain fatty acid (BCFA), 1-formyl-pentadioic acid. Organisms present in low abundance 
could be significant in cheese production if they have unique metabolic activities that result in the release of 
potent flavour compounds, and/or other compounds with implications for health. For example, Brevibacterium 
was shown to be present in low amounts in the rinds of Irish soft and hard cheeses, yet was suggested to signif-
icantly affect the flavour profiles of the cheeses3. Also, Pediococcus, normally a low-abundance component of 
the cheese microbiota, is known to metabolise amino acids to a variety of compounds important in quality and 
flavour development, including diacetyl18, α-aminobutyrate and alanine19. The association between Pediococcus 
and BCFA metabolism warrants further investigation as it could have important cheese flavour consequences. 
Macrocococcus caseolyticus is also known to contribute positively to cheese ripening, due in part to its high prote-
olytic activity releasing peptides (some with bioactive properties) and amino acids20.

Metabolic profiling using untargeted GC-MS and LC-MS revealed an extensive diversity of compounds in 
both industrial and artisanal cheddar cheeses. This included two compounds (3-hydroxy propanoic acid and 
putatively identified methylcatechol-O-sulfate) that, to our knowledge, have not been previously reported in any 
food. However, a limitation with LC-MS untargeted profiling is that the identity of many metabolites cannot be 
resolved due to the non-standard ionization and fragmentation that occurs during LC-MS, which makes it diffi-
cult to use or build metabolite-specific spectral databases for compound identification21. Therefore, in our study, 
relatively few compounds were able to be identified (tentatively or otherwise) using this platform. In addition, 
while associations between metabolites and OTUs revealed by correlation-based analyses (as used here) do not 
prove cause and effect, they do provide a basis for further hypothesis-based targeted studies in combination with 
pathway analyses.

3-hydroxy propanoic acid (3-HP) that was detected only in artisanal cheeses was positively correlated to 
Lactobacillus and Streptococcus (Fig. 5). This compound (3-HP) has important industrial applications, particu-
larly as a precursor for the synthesis of a range of chemicals, and several microorganisms including Lb. reuteri are 
known to possess biochemical pathways for its production22,23.

A propanediol utilisation protein (PduP) has been suggested to be a key enzyme in the production of 3-HP in 
glycerol-fermenting microorganisms24. A search of the NCBI database (www.ncbi.nlm.nih.gov) showed the pres-
ence of genes putatively encoding PduP in many Lactobacillus species although this protein is not yet classified 
in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (www.genome.jp/kegg). The production of 
3-HP by genetically-engineered microorganisms including Lactobacillus25 and yeast26, and by endophytic marine 
fungi27 has also been reported. The latter authors found that 3-HP had antimicrobial activity against Salmonella 
typhi and Staphylococcus aureus, two important food borne pathogens. Further studies are needed to determine 
the origin and significance of 3-HP in cheese (for example by nuclear magnetic resonance) where it could have a 
role in food protection and/or preservation.
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Methoxycatechol O-sulphate is another compound that was detected in higher abundance in the surface of 
artisanal cheeses and was positively correlated with Streptococcus species. Genes and corresponding proteins 
involved in the biosynthesis of O-methoxycatechol-O-sulphate have yet to be reported. To our knowledge, this 
also has not been reported previously in cheese or any other food. The presence of this compound in human 
plasma and urine, as a result of metabolic processing of dietary phenolics, has been previously reported28,29, 
and a positive relationship between dietary polyphenols and human health is well documented. Further studies 
are needed to confirm the presence of this compound in cheese and its significance. The ability of some phe-
nolic compounds originating from the catabolism of aromatic amino acids to produce off-flavours has also been 
observed30.

Other metabolites that were significantly associated with the artisanal cheeses (both in core and surface 
samples) were GABA, a non-protein amino acid which in cheese is associated with a sour flavour note31 and 
also has neurotransmission and antihypertensive activities32; tyramine, a biogenic amine frequently found in 
cheese as a result of tyrosine decarboxylase activity of microorganisms, and 5-amino valeric acid, a delta amino 
acid, rarely found in cheese and associated with negative flavour effects in hard cheese33. LAB, including various 
non-starter lactic acid bacteria (NSLAB), isolated from cheeses, have been shown to synthesize GABA from 
L-glutamate through glutamate decarboxylase activity34,35. In our study, the presence of GABA was positively 
correlated with both Lactobacillus and Streptococcus. Analysis of KEGG pathways for GABA formation showed 
multiple Lactobacillus and Streptococcus species contain genes encoding enzymes that produce GABA, including 
the enzyme glutamate decarboxylase [EC:4.1.1.15]. This enzyme is involved in alanine, aspartate and glutamate 
metabolism. Furthermore, we observed a higher relative abundance of citrulline and a lower abundance of argi-
nine in the artisanal cheeses compared with the industrial cheeses. This was probably due to arginine deiminase 
pathway activity in Streptococcus and Lactococcus. The arginine deiminase (ADI) pathway, which is widely dis-
tributed among lactic acid bacteria, is suggested to serve as a source of energy and a mechanism for enhanced acid 
tolerance. However, a recent study has highlighted that ADI may not be present in Streptococcus thermophilus36.

The presence of other amino acids including lysine and proline, asparagine, arginine and various short 
dipeptides (asparagine-valine, threonyl-glutamate and one containing glutamate) was strongly associated with 
the industrial cheeses. Asparagine and lysine are biosynthetically produced following arginine and glutamate 
metabolism and are then catabolised to flavoursome fatty acids in cheese37. Higher levels of these amino acids, 
therefore, may contribute to the distinctive flavour profile of industrial cheeses. Free amino acids were correlated 
with Lactobacillus which is consistent with relatively high proteolytic activity of this genus compared to most 
other LAB. Also, reduced urea levels in the artisanal cheeses is consistent with the presence of urease-positive 
Streptococcus38. Accumulation of galactonic acid (an oxidised form of galactose) in artisanal cheeses is also con-
sistent with the dominance of S. thermophilus since most strains of S. thermophilus are gal-negative39. Succinic 
acid, which produces umami flavour15, was relatively more abundant in the artisanal cheeses; it is known to 
be produced by citrate-fermenting strains of LAB40. Citrate was positively correlated with Lactococcus, and its 
relatively higher abundance in the industrial cheeses suggests that a higher proportion of the lactococci in these 
cheeses were non-citrate-fermenting strains. Higher relative levels of fatty acids including heptadecanoic acid and 
a branched chain fatty acid on the surface of artisanal cheeses could be due to lipase activity (fungal or bacterial) 
and/or catabolism of branched chain amino acids.

conclusion
This study demonstrates, for the first time, that the application of integrative analysis to multi-omics datasets 
could be a highly sensitive and reliable tool to distinguish between closely-related industrial and artisanal ched-
dar cheeses and brands thereof. Additionally, this approach helped identify new relationships between the cheese 
microbiota and myriads of metabolites, including those that are likely to influence product quality and sen-
sory properties. This could also inform selection of cheese starter and/or adjunct cultures to specifically enhance 
cheese flavour and characteristics. Furthermore, this approach has potential application for investigating prov-
enance, authenticity and discovering biomarkers that could be used to monitor and predict cheese quality. This 
provides a valuable basis for experiments for targeted studies investigating linkages between microbiota, metab-
olome and cheese quality, yielding key information that will be of great benefit in future cheesemaking practice. 
This approach could be extended further to population-level genomic (and metagenomic) studies to link metab-
olite production to genetic analysis of biochemical pathways within cheese microbiota.

Materials and Methods
Sampling. Four different types of age-matched (1 yr ± 1 month) cheddar cheeses including two industrial 
(large mechanised cheese manufacturer) and two artisanal brands (obtained from the super market or local pro-
ducers) were analysed in this study. For each brand, triplicate individual cheeses were analysed. Cheeses were 
sampled aseptically both at the surface and from the inner core to allow analysis of each environment. On sam-
pling, each cheese subsample (surface or core) was further split into two sub-samples; one of these was frozen at 
−80 °C for subsequent analysis of the cheese microbiota, while the second was immediately homogenized using a 
mortar and pestle with liquid nitrogen and then freeze-dried for subsequent metabolomics analysis.

16S rRNA-based cheese microbiota analysis. Total DNA was extracted from each cheese sample using 
a PowerSoil® DNA Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA, USA) following the manufacturer’s 
instructions. The V4 region of DNA was amplified using PCR with the 16S rRNA primers 515F and 806R41 with 
cycle conditions of 95 °C for 3 min followed by 25 cycles of: 95 °C for 30 s, 55 °C for 30 s, 72 °C for 30 s and final 
extension at 72 °C for 5 min. Purification of the amplified 16S rRNA samples and incorporation of indices were 
conducted according to the 16S Metagenomic Sequencing Library Preparation instructions using Nextra® XT 
Index Kit (Illumina, San Diego, CA, USA). A second PCR was performed to anneal indices to the 16S rRNA 
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amplicon with the following conditions: an initial denaturation at 95 °C for 3 min, followed by 8 cycles of: 95 °C 
for 30 s, 55 °C for 30 s, 72 °C for 30 s and an extension at 72 °C for 5 min. A final clean-up of indexed 16S rRNA 
amplified samples was performed as according to the 16S Metagenomic Sequencing Library Preparation instruc-
tions (Illumina, San Diego, CA, USA). The concentrations of the purified PCR products were determined using a 
ND-1000 UV-Vis spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). Amplicons were pooled 
in equal concentrations and sequenced on an Illumina MiSeq platform (Illumina, San Diego, CA, USA).

Bacterial 16S rRNA gene sequences were analysed using a GHAP v2.1 (Greenfield Hybrid Amplicon Pipeline, 
developed by Paul Greenfield, 2017) which is based on USearch tools42. In brief, the demultiplexed reads were 
quality and length filtered, and then clustered at 97% similarity to generate a set of represented Operational 
Taxonomic Unit (OTU) sequences using USearch v8.1.1812 tools. OTU sequences were classified by using the 
RDP Classifier (v2.10.2)43 to provide a taxonomic classification for each sequence down to level of genus (where 
possible); and additionally, by using Usearch-global to find the best match with a curated set of 16S reference 
sequences, to provide (where possible) a species level classification. The relative abundance of each taxon in 
each sample was summarised using the vegan package Rv.3.4.344. Analysis of similarity (ANOSIM) and Principal 
Component Analysis (PCA) was performed using Primer v7 (Primer-E, Plymouth, United Kingdom)45.

Metabolome analysis. Extraction of cheddar cheese metabolites. Unless stated otherwise, all chemicals 
were obtained from Merck (Sydney, Australia). The protocol for metabolites extraction was carried out accord-
ing to Dias et al.46 with minor modifications. Metabolites were extracted from freeze-dried cheese (60 mg) in a 
lysing tube containing ceramic beads (1.3 mm) and 500 μL of MeOH/H2O/CHCl3 (2.5:1:1, vol/vol/vol). Internal 
standards (100 μL of 13C6-sorbitol/13C5

15N-valine in water, 0.2 mg mL−1) were then added to this mixture. The 
mixture was homogenized using a MP homogeniser (FastPrep®) (1 min, 4.5 m/s) and vortexed and incubated 
(37 °C for 15 min) in a thermomixer at 850 rpm. Then, the mixture was centrifuged at 13000 rpm for 15 min. 
The supernatant was transferred to a new Eppendorf tube, and 500 μL of MeOH/H2O/CHCl3 was added into the 
first lysing tube containing the previously freeze-dried sample. The samples were again vortexed and centrifuged 
at 13000 rpm for 15 min. The resulting supernatant was then transferred into the tube containing the original 
supernatant from the previous centrifugation. Pooled samples were then vortexed for 30 s and 50 μL aliquots of 
supernatant were transferred into separate glass inserts and dried in vacuo for subsequent trimethylsilyl (TMS) 
polar metabolite derivatisation using GC-MS and LC-MS analysis, as described below.

Metabolite derivatization and analysis by GC-MS. Cheese extracts were re-dissolved in 10 µL of 30 mg/mL 
methoxyamine hydrochloride in pyridine and derivatized at 37 °C for 120 min by mixing at 500 rpm in the 
presence of both 20 µL N,O-bis-(trimethylsilyl) trifluoroacetamide (BSTFA) and 1 µL of a retention time stand-
ard mixture [comprising 0.029% (v/v) n-dodecane, n-pentadecane, n-nonadecane, n-docosane, n-octacosane, 
n-dotriacontane, n-hexatriacontane dissolved in pyridine]. Each derivatized sample was allowed to rest for 60 min 
prior to injection of samples into into a GC-MS system comprised of a Gerstel PAL3 Autosampler, a 7890B 
Agilent gas chromatograph and a 5977B Agilent quadrupole MS (Agilent, Santa Clara, USA) using either split 
(1:20 split ratio) or splitless mode. The MS was adjusted according to the manufacturer’s recommendations using 
tris-(perfluorobutyl)-amine (CF43). A J&W Scientific VF-5MS column (30 m long with 10 m guard column, 
0.25 mm inner diameter, 0.25 µm film thickness) was used. The injection temperature was set at 250 °C; the MS 
transfer line at 290 °C, the ion source adjusted to 250 °C and the quadrupole at 150 °C. Helium (UHP 5.0) was 
used as the carrier gas at a flow rate of 1.0 mLmin−1. The following temperature program was used; injection at 
70 °C, hold for 1 min, followed by a 7 °C/min oven temperature, ramp to 325 °C and a final 6 min heating at 325 °C. 
Mass spectra were recorded at 2 scans s−1 with a 50–600 m/z scanning range.

Metabolite analysis by LC-MS. HPLC separation of metabolites was carried out using a Thermo Hypersil col-
umn (C18, 150 cm × 0.2 cm, 1.9 uL) on a Vanquish UHPLC system (Thermo Scientific, Waltham, MA, USA) 
equipped with a chilled autosampler (15 °C), heated column compartment (30 °C) and PDA (spectra collected 
from 190 nm to 680 nm). The mobile phase was comprised of water containing 0.1% formic acid and acetonitrile 
containing 0.1% formic acid. The injection volume was 3 μL. The flow rate was 0.3 mL min−1 with a gradient 
elution of 2–100% acetonitrile over 18 min with a re-equilibration time of 2 min. Analytes were detected by mass 
spectrometry using Q Exactive Plus (Thermo Scientific, Bremen, Germany), with a heated electrospray ionisation 
(ESI) source. The capillary temperature was 300 °C and the sheath, auxiliary and spare gases set at 28, 15 and 4 
units, respectively. Source voltage was 3.6 kV for positive mode and 3.3 kV for negative mode. The mass spec-
trometer was operated in positive negative switching mode with full scan (90–1350 m/z) at 35,000 resolutions in 
both modes.

Data processing and statistical analyses of data. Chromatograms and mass spectra from GC-MS platform were 
processed using the Agilent MassHunter Workstation Software, Quantitative Analysis, Version B.07.01/Build 
7.1.524.0. Mass spectra of eluted compounds were identified by comparison to the commercial mass spectra 
library NIST 08 (http://www.nist.gov), the public domain mass spectra library of Max-Planck-Institute for Plant 
Physiology, Golm, Germany (http://csbdb.mpimp-golm.mpg.de/csbdb/dbma/msri.html) and an in-house mass 
spectral library at RMIT University. All matching mass spectra were additionally verified by comparing their 
retention time to authentic standards. Resulting relative response ratios (area of analyte divided by area of the 
internal 13C6 –sorbitol standard and sample dry weight) for each analysed metabolite were calculated. For the 
metabolome datasets, zero values were replaced with half of the lowest positive value in the metabolome dataset 
for all analyses. Differences in the relative abundance of metabolites between the industrial and artisanal samples  
were validated by the Student’s t-test. Differences were considered significant with a t-test value P < 0.05 
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(Bonferroni corrected P value). If a specific metabolite had multiple trimethyl silyl derivatives the metabolite with 
the greater detector response and better peak shape within the dynamic range of the instrument was selected.

The MS data from the LC-MS platform were separated between positive and negative modes of ionization and 
converted to the mzXML format using ProteoWizard 3.0.6002 package on the MSConvert software (Proteowizard 
Software Foundation). Data were processed by MZmine 2.10 (MZmine 2 project) to undertake peak detection, 
peak filtering, chromatogram construction, chromatogram deconvolution, isotopic peak grouping, chromato-
gram alignment, gap filling and the search for adducts. Online databases such as the Human Metabolomics data-
base (HMDB; http://www.hmdb.ca/) and Metabolomics Workbench (http://www.metabolomicsworkbench.org)  
were used to determine tentatively the identities of significant metabolites. The processed data were then sub-
jected for further analyses in Gene Data Expressionist® (GeneData, Basel, Switzerland). PCA analysis was per-
formed in SIMCA 15.0.1 (Umetrics AB, Umea, Sweden).

Multiple co-inertia Analysis (MciA). A Multiple Co-Inertia Analysis (MCIA), using the language and 
statistical environment R together with the omicade4 package6914 was performed in order to integrate multiple 
omics datasets where the same samples have been analysed using multiple platforms, in this case 16S rRNA gene 
sequence data and LC-MS metabolomic and GC-MS metabolite data. Prior to analysis, OTUs and metabolites 
with zero values in more than 90% of the samples were removed. MCIA is a two-step process. Firstly, a one-table 
ordination method (PCA) was applied to each multidimensional-omics dataset (GC/MS metabolomics, LC/MS 
metabolomics and 16S rRNA gene sequence dataset) to transform these into comparable lower dimensional 
spaces by finding axes maximising the sum of the variances of the variables. In the second step, the variance 
structure analyses were combined into a single analysis to find new axes on which the omics datasets could be 
projected by maximizing the square covariance. MCIA produces graphical outputs where different colours can 
be used to represent different sample datasets and different shapes can be used to represent different analysis 
variables (in this case bacterial OTUs and cheese metabolites). Each shape is connected by lines whose length is 
proportional to the divergence between the data derived from the same sample.

correlation analysis. All inter-omic (16S rRNA gene sequence data, and GC-MS and LC-MS based metab-
olomics) analysis was performed in R. Microbiota and metabolomics data were thresholded such that OTUs and 
metabolites, which are present in less than three samples, were removed. The reasoning for this cut-off, which was 
applied separately to core and surface samples, was to avoid the effects of significant inter-omic correlations being 
enriched due to rare taxa and metabolites. Correlations were computed using the CCREPE (Compositionality 
corrected by renormalization and permutation package) R package (v.22.1.0) (http://huttenhower.sph.harvard.
edu/ccrepe)47. CCREPE provides compositionality-corrected p-values, q-values and the N-dimensional check-
board score (NC-Score), which is a novel similarity measure, for all correlations between two datasets. The results 
were filtered to remove non-statistically significant relationships (q-value < 0.1). Cytoscape 3.6.0 was used to 
generate correlation networks48.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author upon reasonable request.
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