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Abstract

There arose one of the most important ecological transitions in Earth’s history approximately

750 million years ago during the middle Neoproterozoic Era (1000 to 541 million years ago,

Ma). Biomarker evidence suggests that around this time there was a rapid shift from a pre-

dominantly bacterial-dominated world to more complex ecosystems governed by eukaryotic

primary productivity. The resulting ‘Rise of the algae’ led to dramatically altered food webs

that were much more efficient in terms of nutrient and energy transfer. Yet, what triggered

this ecological shift? In this study we examined the theory that it was the alleviation of phos-

phorus (P) deficiency that gave eukaryotic alga the prime opportunity to flourish. We per-

formed laboratory experiments on the cyanobacterium Synechocystis salina and the

eukaryotic algae Tetraselmis suecica and examined their ability to compete for phosphorus.

Both these organisms co-occur in modern European coastal waters and are not known to

have any allelopathic capabilities. The strains were cultured in mono and mixed cultures in

chemostats across a range of dissolved inorganic phosphorus (DIP) concentrations to

reflect modern and ancient oceanic conditions of 2 μM P and 0.2 μM P, respectively. Our

results show that the cyanobacteria outcompete the algae at the low input (0.2 μM P) treat-

ment, yet the eukaryotic algae were not completely excluded and remained a constant back-

ground component in the mixed-culture experiments. Also, despite their relatively large cell

size, the algae T. suecica had a high affinity for DIP. With DIP input concentrations resem-

bling modern-day levels (2 μM), the eukaryotic algae could effectively compete against the

cyanobacteria in terms of total biomass production. These results suggest that the availabil-

ity of phosphorus could have influenced the global expansion of eukaryotic algae. However,

P limitation does not seem to explain the complete absence of eukaryotic algae in the bio-

marker record before ca. 750 Ma.

Introduction

Molecular clock data indicate that the Archaeplastida, the major group of autotrophic eukary-

otes comprising of the red algae, the green algae and the common ancestor of all protists,

appeared somewhere around 1900 Ma, while crown group Rhodophyta evolved sometime

between 1,600–1,000 Ma [1]. Despite this, the ratio of steranes to hopanes in ancient sediments

suggests the eukaryotic algae failed to make any significant biological or ecological impact
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until well into the Neoproterozoic Era, ca. 750 Ma [2,3]. The Neoproterozoic Era was charac-

terised by extreme biochemical and climatic volatility, which resulted in dramatic alterations

in the marine redox state and fluctuating surface-ocean oxygen concentrations [4]. Indeed,

during the Neoproterozoic Era, and triggered by three major interconnected events, the Earth

experienced some of the greatest biological and geochemical changes in its history [5]. Firstly,

several massive glaciation episodes occurred, the so called ‘snowball Earth’ events. These glaci-

ations not only altered the Earth’s climate, but they resulted in extensive continental weather-

ing that may have released large quantities of nutrients into the oceans [2,6–8]. Secondly, in

the late Neoproterozoic Era, a shift in ecosystem structure and function resulted in the dra-

matic expansion and diversification of eukaryotic algae, the so called ‘rise of the algae’ [2,3,9].

This ecological transition resulted in irreversibly altered benthic and pelagic ecosystems and

the eventual emergence of metazoan life. Lastly, there was an apparent widespread oxygen-

ation of the Earth’s surface environment [10–14] (Fig 1).

There are several suggestions as to what triggered the ecological shift leading to eukaryote-

dominated productivity. These suggestions range from oxygen concentrations inhibitory to

eukaryotes [15], to an increase in predation pressure from the evolution of protist predators

[16], and as noted above, an increase in P availability [17]. Phosphorus, unlike fixed nitrogen

(nitrate, nitrite, ammonium), cannot be produced biologically [18], and the main source is

from the weathering of continental rocks. Due to its essential role in governing protein synthe-

sis, nucleic acid production, adenosine phosphate transformations and intracellular transport,

phosphorus may have been the main limiting nutrient controlling primary production

through much of Earth’s history since the first rise of atmospheric oxygen known as the Great

Oxidation Event (GOE) [19,20].

It has been argued that during the Mesoproterozoic Era (1600 to 1000 Ma), phosphorus

scavenging by ferrous iron in anoxic deep waters may have led to the removal of phosphorus

from ocean waters, reducing the total phosphorus inventory to concentrations much lower

than today [21]. If true, levels of phosphorus may have been low enough to limit primary pro-

ductivity and thus organic carbon burial, leading to low atmospheric oxygen levels [21–23].

Low phosphate concentrations would have also benefited smaller classes of phytoplankton,

Fig 1. Timeline showing the key geological events during the late Archean and early Proterozoic Eons.

https://doi.org/10.1371/journal.pone.0234372.g001
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including cyanobacteria. With their relatively smaller cell sizes and greater surface area to vol-

ume ratios, cyanobacteria would have a physiological advantage, allowing them to outcompete

larger eukaryotic algae under these low-nutrient conditions [24,25].

During the middle Neoproterozoic Eon (800–650 Ma), fundamental shifts in the phospho-

rus cycle may have resulted in increased marine P concentrations [7,21,26]. Since, the apparent

increase in P concentration occurred around the same time as the first appearance of algal ster-

anes in the biomarker record (780–729 Ma) [3], the two events could be linked [2]. As the

availability of phosphorus is regarded as a critical factor regulating phytoplankton and their

communities [24], the response of different organisms to nutrient availability should ulti-

mately impact overall community structure [27]. However, a better understanding on how the

extent of P-limitation regulates growth and species composition is needed to assess its role in

regulating phytoplankton productivity, diversity and succession in the ancient oceans.

In order to effectively exploit a variable P supply, many phytoplankton species have devel-

oped an array of mechanisms to cope with low P concentrations. These include: the alteration

of cellular P requirements through the substitution of phospholipids with sulphur-based lipids,

altered P uptake rates and intracellular P stores, and the utilisation of organic P sources

through the release of extracellular enzymes like alkaline phosphatase (AP) [28]. Phytoplank-

ton cells monitor their environment through a feedback system that can simultaneous sense

external and internal P concentrations to alter the number and type of cellular P transporters

[29] and AP [28].

To gain insight into how phosphorus limitation could have affected phytoplankton popula-

tion distributions in ancient oceans, we examined the dual hypotheses that: 1) before the rise

of algal phosphorus limitation favoured the dominance of cyanobacteria, and 2) the alleviation

of phosphorus deficiency triggered the global expansion of eukaryotic algae. Therefore, in this

study we examined how cyanobacteria and eukaryotic algae react and adapt to altered phos-

phorus concentrations by culturing them under a range of P availabilities. Our experimental

conditions were chosen to compare and contrast modern ocean conditions with those esti-

mated for the ancient oceans. A green alga and a cyanobacteria were chosen as our model

organisms. Both of these organisms have been found to co-occur in modern European coastal

waters, both are able to withstand low P environments, and neither are known to have any alle-

lopathic capabilities. Experiments were carried out in continuous mixed- and mono- culture

experiments.

Methods

Cultures

Pure, non-axenic (meaning some bacteria are present) cultures of the alga Tetraselmis suecica
(CCMP 904) and the cyanobacteria Synechocystis salina (CCBA MA001) were obtained from

NCMA at the Bigelow Laboratory and the culture collection of Baltic algae, respectively. Both

species were isolated from the British Isles and can tolerate brackish-marine conditions. Both

species were tested for allelopathic abilities using the methods described in [30]. Allelopathy

describes the process where an organism produces chemicals that influence the growth and

survival of another [30]. Both strains were grown in a modified BG-11 medium with additional

L1 vitamins. Strains were cultured at 15˚C under a light intensity of 80 μmol photons m-2 s-1

and a 12 h:12 h light:dark cycle. Cultures were grown in 250 mL flasks in batch mode and

sequentially acclimated to four different external phosphorus concentrations (100, 5, 2 and

0.2 μM P). Cultures were constantly maintained in the exponential growth phase by frequent

subculturing. Cell numbers were taken daily, and the growth rate was calculated during the

exponential growth phase from at least five consecutive time points during the exponential
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phase. Acclimation was considered complete when cultures exhibited a constant and repro-

ducible maximum specific growth rate at least three transfers in a row. To calculate the empiri-

cal growth rate (μ), cells were cultured until they reached their post-stationary death phase.

Each day 1.5 mL of culture was aseptically removed and fixed in 1% (FC) of acidified Lugol’s

iodine and counted via light microscopy [31]. The empirical growth rate is defined as the num-

ber of divisions per day-1 (Eq 1). The duration of the exponential growth phase is determined

by calculating the maximum achievable R2 when fitting straight lines to the logged plots of cell

density.

mmax ¼
In Nt1

Nt2

� �

t2 � t1

ð1Þ

Here, Nt1 and Nt2 are cell abundances at time 1 (t1) and time 2 (t2), respectively.

Chemostat experiments

Cultures were grown in mono and mixed culture in 1 L chemostats. The inflow and outflow

rates were controlled by peristaltic pump. Fresh medium was provided at two different phos-

phorus concentrations of 0.2 μM and 2 μM. The concentration of 2 μM P approximates P con-

centrations in coastal European waters from where these species were isolated [32]. While

Archean and early Proterozoic Oceans contained an estimated 0.04–0.13 μM P [33] with deep-

water phosphate levels being as high as 0.2 μM P during the Mesoproterozoic Era [21]. The

growth rate was set at 0.1 div day-1 at 0.2 μM P, and 0.2 div day-1 at 2 μM P, equivalent to flow

rates of 69 and 138 μL min-1 respectively. These rates were set based on growth rates calculated

from the batch cultures (see results). In order to examine how both species competed for P,

they were cultured both separately and together. In the mono-culture experiments T. suecica
and S. salina were grown separately, while in the co-culture experiments, they were grown in

the same chemostat.

Inoculums for the experiments were taken from acclimated late-exponential-phase batch

stock cultures. As cell sizes differed between the two organisms, they were inoculated into the

chemostat with the same total biomass. Bacterial contamination was monitored throughout by

staining (DAPI) and with epifluorescent microscopy, following the protocols in [34]. Constant

bubbling of filtered air through the chemostats ensured mixing and gas exchange. The pH was

measured using a pH meter (Radiometer Analytical, Hach, CO, USA) and maintained at 8 +/-

0.3 throughout. All experiments were carried out in triplicate (n = 3).

Every second day, subsamples were removed aseptically from each culture vessel. Aliquots

(1.5 mL) were preserved in Lugol’s iodine (1% FC). Samples containing T. suecica were enu-

merated using a 1 mL Sedgewick Rafter counting chamber, whilst the samples containing S.

salina were enumerated using a hemocytometer (Burker Turk). In both cases, enumeration

was performed using a Leica DM 2000 microscope. The mixed samples were therefore counted

twice, once for each species. In addition, cell size measurements were also taken to calculate

biomass and surface area. For this T. suecica was treated as a prolate spheroid [35].

Surface area : A ¼
pd
2

d þ
h2

ffiffiffiffiffiffiffiffiffiffi
h2� d2
p

� �

sin� 1

ffiffiffiffiffiffiffiffiffiffi
h2� d2
p

h
ð2Þ

Volume : V ¼
p

6
�d2 � h ð3Þ

where d is the diameter and h is the height of T. suecia.
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Synechocystis salina can be found in two forms, where approximately 70% of the cells are

spherical:

Surface area : A ¼ 4 � p � r3 ð4Þ

Volume : V ¼
4

3
� p � r2 ð5Þ

The remaining 30% are an ellipsoid form with a transapical constriction which can be

thought of as a snowman shape. For this, the volume of the two domes were calculated.

Vd ¼
4

3
� p � r3

� �

�
1

3
� p � b2 � 3r � hð Þ ð6Þ

Vd being the volume of the dome, r is the radius, b is the height from the bottom of the

sphere to the constriction. The total volume is then given by:

Vd1 þ Vd2 ð7Þ

The area is given by:

A ¼ 2ð2p � b � hÞ ð8Þ

The cell sizes were corrected for shrinkage caused by the fixative. This was done by measur-

ing live cells, immobilised in glycerol, and by comparing these sizes to those measured on

Lugol’s fixed cells. The shrinkage caused by Lugol’s iodine was between 11–19%.

To determine biomass, as well as extracellular and intracellular nutrient and chlorophyll a
(Chl a) concentrations, subsamples (50 mL) of culture were removed aseptically from each

reaction vessel and filtered through 25 mm diameter pre-combusted (450˚C for 4 h) GF/F fil-

ters [36]. An aliquot (15 mL) of the filtrate was removed for total phosphorus (TP) analysis as

described below. A further 3 mL was set aside and kept at ambient temperature (15˚C) for

alkaline phosphatase activity (APA) determination. The filtrates and filters for nutrient analy-

sis were frozen at -20˚C for subsequent analysis. Particulate organic carbon (POC) measure-

ments were made as described in [37] using a Thermo Fisher Elemental Analyser and

calibrated with isoleucine.

Chlorophyll a analysis

The filters for Chl a analysis were kept in 2 mL Eppendorf1 tubes wrapped in aluminium foil.

For analysis, the filters were transferred to 15 mL centrifuge tubes, and acetone (8 mL, 90%)

was added to each tube. The samples were kept overnight (5˚C) before sonication (30 min) in

a sonication bath and they were then centrifuged (3000 rpm at 6˚C for 5 min). Chlorophyll a
was measured with a Turner TD-700 fluorometer (Turner Design, Sunnyvale, CA, USA). The

fluorometer was calibrated using a Chl a extract from spinach and serial dilutions of a 4 mg L-1

stock standard. A solid-state secondary standard (SSS) was measured every ten samples. The

SSS insert provides a very stable fluorescent signal and is used when measuring Chl a to check

for fluorometer stability and sensitivity. The detection limit was 1 μg L-1.

Phosphorus analysis

Particulate organic phosphorus (POP) was measured in triplicate on frozen filters by the

ammonium molybdate method after wet oxidation in acid persulphate (Hansen & Koroleff

1999). Wet oxidation was accomplished by suspending the filters in 10 mL of Milli-Q water in
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50 mL Teflon Schott bottles and by adding 1.5 mL acid potassium peroxodisulphate for 90

minutes at 121˚C in an autoclave. Pre-combusted filters were oxidised along with the samples

to account for background P concentrations that were subtracted from the sample values. The

samples were then cooled to room temperature. Particulate P was measured as liberated ortho-

phosphate, and its concentration was measured with the standard molybdenum blue tech-

nique after sample handling with the following procedure [37,38]. Briefly, ascorbic acid (0.4

mL) and mixed reagent (ammonium heptamolybdate tetrahydrate, sulphuric acid and potas-

sium antimony) (0.2 mL) were added to 10 mL of the sample and mixed [39]. After 10–30

minutes, the absorbance was measured spectrographically using a 10 cm glass cuvette (Thermo

Scientific Genesys 1OS UV-VIS, Ma USA). The detection limit was 0.015 μmol L-1.

Total phosphorus from the frozen cell-free filtrate (medium) was analysed using the stan-

dard molybdenum blue technique as described above after the samples were thawed.

Alkaline phosphatase activity

Alkaline phosphatase activity (APA) was measured using 4-methylumbelliferyl phosphate

(MUF-P, Sigma-Aldrich) as a fluorogenic substrate following the protocols in [40]. Briefly,

MUF-P (3 μL) was added to 3 mL of the filtrate (100 nM, final concentration). The sample was

mixed, after which 1 mL of 50 mM borate buffer (pH 10.8) was added, and the sample was

mixed again. Fluorescence was measured on a Turner TD-700 fluorometer (Turner Design,

Sunnyvale, CA, USA).

Nutrient uptake

Nutrient uptake experiments were carried out on both T. suecica and S. salina. Phosphorus

uptake was determined by measuring P incorporated into the cells using methods adapted

from [41]. Cells were harvested from dense exponential-phase batch cultures by gentle centri-

fugation (3000 g, 5 min) and were then resuspended and maintained in phosphate-free media

for 48 hours. The 48 hour time period was chosen as in previous experiments it was observed

that growth for both species declined within 48 hours of P limitation (data not shown). Cell

densities were 8 x 104 cells mL-1 for T. suecica and 2.7 x 104 cells mL-1 for S. salina. After the

starvation period, the cells were added to 600 mL of phosphorus-replete media (100, 5, 2 and

0.2 μM). At time intervals of 0, 10, 20, 30, 50, 70, 90 and 120 minutes, 1.5 mL of culture was

removed and preserved in Lugol’s iodine (1% FC) for cell counts as described above. For anal-

ysis of particulate organic phosphorus (POP) and total dissolved phosphorus (TP) concentra-

tions, aliquots (50 mL) of culture were removed and filtered through a 25 mm diameter pre-

combusted (450˚C, 4 h) GFF filters. An aliquot (15 mL) of the filtrate and the resultant filter

were retained and frozen at -20˚C until analysis. Total phosphorus in the cell-free medium,

and POP, were analysed after defrosting the frozen filtrate and filters and analysed as described

above. As the diel light-dark cycle and the daily growth cycle will affect cellular P uptake, all

experiments were carried out at the same time of day (08.30), at 15˚C and a light intensity of

50 μmol photons m-2 s-1. As most phytoplankton divide during the night to protect their DNA

from UV damage [42], the experiments were carried out during the day, and for only 4 hours.

Therefore, we assume that no cell division occurred during these experiments.

Nutrient uptake model

As phytoplankton growth is often limited by nutrient supply, the competitive ability of phyto-

plankton is affected by their nutrient uptake affinity. Thus, we can think of nutrient uptake

affinity as an estimate of their competitive abilities at low nutrient concentrations [43]. There-

fore, in order to directly link growth with nutrient uptake, we must first quantify
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phytoplankton biomass in terms of the amount of limiting nutrient [44]. As phytoplankton

have a variable chemical composition in terms of their nutrient content, we assessed nutrient

uptake across a range of external P concentrations in batch culture as described above. In the

nutrient uptake experiments, we evaluated changes to the internal nutrient store of the cells

over time. We tested a number of equations including those formulated by [45] and [46].

However, as the uptake parameters used to describe uptake affinity are analogous to those

used to describe primary production [47], we found that the expression depicted by [48] and

discussed in detail in [44], created the best fit for our data in terms of the coefficient of deter-

mination (R2 value) (Eq 9). The internal nutrient store is symbolised by Q and was measured

in our experiments as μmol P cell-1. Therefore, Qmax, μmol P cell-1 is the maximum internal P

concentration and Q0 is the subsistence quota, defined as the minimum P concentration

required for survival. When Q > Q0, there is enough P available for reproduction. When plot-

ting Q over time, Q should increase quasi-linearly at the start. The slope of the initial increase

in Q is denoted by1 (μmol P cell-1 min-1), which is the initial uptake rate or the change in

internal phosphorus concentration over time. The time scale for cell quota (Q) to reach Qmax

is defined t. This time was derived from Eq 10. The curve fitting was obtained using the Leven-

berg-Marquardt iteration algorithm used for solving generic curve-fitting problems, with Q0,

/ and Qmax as variable parameters. Curve fitting was performed in OriginPro 7 (originLabs).

Eq 9 provided a very tight fit to our experimental data (R2 ranged from 0.80–0.93).

Q ¼ Qmaxtanh
/ t
Qmax

� �� �

þ Q0 ð9Þ

t ¼
Qmax

/
ð10Þ

Uptake dynamics were then assessed by plotting initial uptake rates (/) at the different P

concentrations. Uptake rate (/) for each P concentration tested were fitted to a Michaelis-

Menten model using the following equation:

Vs ¼
Vmax � S
Ks þ S

ð11Þ

with S being the initial P concentration and Vmax, the maximum uptake rate achieved when S

>> Ks. Here, Ks is the half-saturation constant or the S concentration at which the reaction

rate is half of Vmax. Constants for the models were calculated using the generalised reduced

gradient (GRG) non-linear algorithm in Solver in Microsoft Excel.

The ratio of Vmax/Ks was then used to calculate the nutrient uptake affinity,1max (L cell-1

h-1) [49]. The Vmax/Ks describes the initial slope of the Monod Equation, and therefore a

higher1max provides a competitive advantage at low P concentrations. We then divided

1max by Q0 to get the specific nutrient uptake affinity,1spec (μmol-P-1 h-1) [50].

The maximum growth efficiency was then calculated by:

b ¼ mmax=V
sp
m : ð12Þ

where μmax (div day-1) is the maximum specific growth rate calculated from batch culture

(exquation 1) and Vsp
m is the maximum specific uptake rate or the ratio of Vmax to Q0 when cell

growth is zero [51].
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Statistical analysis

Statistical procedures for the growth data, chemostat experiments and the uptake experiments

were carried out using the Minitab statistical software. Data was initially tested for normality,

and data not normally distributed were log-transformed before statistical analysis. To avoid

time discrepancies, cultures were sampled at the same time with the same time intervals. Data

relating to cell abundance, chlorophyll, biovolume and nutrients were analysed using an analy-

sis of variance (ANOVA). Experiments were carried out in triplicate (n = 3), P<0.05 was con-

sidered significant and variability was measured by standard error of the mean (SEM).

Results

Batch culture

The batch culture experiments were used to calculate the growth rates used in the chemostat

experiments. At 2 μM P, growth rates were 0.24 +/- 0.06 div day-1 for T. suecica and 0.22 +/-

0.05 div day-1 for S. Salina. Therefore, the flow rate of the chemostat was set at 0.2 div day-1. At

0.2 μM P the grown rate was 0.14 +/- 0.04 for T. suecica and 0.13 +/- 0.06 div day-1 for S.

Salina. Therefore, the flowrate of the chemostat was set at 0.1 div day-1.

Chemostat experiments

Cell yields. In the 0.2 μM P mono-culture chemostat experiments, both species reached a

steady state in terms of cell numbers and biomass after 10 days (Fig 2A). The green alga T. sue-
cica reached a maximum cell density of 2.62 x 103 +/- 1.04 x 102 cell mL-1, and the cyanobacte-

rium S. salina reached a maximum cell density of 2.09 x 105 +/- 7.03 x 103 cells mL-1. When

the cell numbers were converted to biomass (μm3) (Fig 2B), total biovolume for S. salina was

6.18 x 105 +/- 4.19 x 104 μm3 which was significantly higher than that of T. suecica 2.12 x 105

+/- 5.85 x 103 μm3 (P< 0.01, F = 645).

In the mixed chemostat cultures 0.2 μM P, a steady state was reached after 8 days; T. suecica
reached a maximum cell density of 1.47 x 103 +/- 1.04 x 102 cell mL-1 and S. salina 2.10 x 105

+/- 6.88 x 103 cell mL-1 (Fig 2C). When the mixed culture cell numbers were converted to bio-

volume, there was a large difference between cultures (Fig 2D), where S. salina had a biovo-

lume of 6.45 x 105 +/- 2.08 x 104 μm3 a value significantly larger than for T. suecica at 1.15 x

105 +/- 1.60 x 103 μm3 (P < 0.01, F = 987).

In the chemostat receiving 2 μM P, the mono-culture treatments for both species reached a

steady state after 6 days (Fig 2E). Tetraselmis suecica reached a maximum cell density of 6.2 x

103 +/- 1.90 x 102 cell mL-1 while S. salina reached a cell density of 2.54 x 105 +/- 1.02 x 104 cell

mL-1. When the mixed culture cell numbers were converted to biovolume (μm3) (Fig 2F), S.

salina reached a total biovolume of 8.53 x 105 +/- 2.23 x 104 μm3, which was significantly

higher than the biovolume of T. suecica at 4.93 x 105 +/- 1.51 x 104 μm3 (P < 0.01, F = 70).

In the mixed culture 2 μM P chemostat experiments, a steady state in cell numbers was

reached after 8 days (Fig 2G), where T. suecica reached a maximum cell density of 9.13 x 102

+/- 1.36 x 102 cells mL-1 and S. salina had a cell density of 1.5 x 104 +/- 7.92 x 103 cells mL-1.

When the mixed cultures cell densities were converted to biovolume, the total biovolume for

S. salina was 4.48 x 105 +/- 2.96 x 104 μm3 which was marginally larger than that of T. suecica
at 3.11 x 105 +/- 2.42 x 104 μm3 (P < 0.05, F = 199).

Chlorophyll a. The co-culture data has not been included in our Chl a analysis as we

could only perform bulk chlorophyll measurements, so no data is available for the individual

species in these experiments. For the 0.2 μM P treatment, Chl a concentrations per cell for T.

suecica remained relatively constant, ranging between 2.02 x 10−6 μg cell-1 and 4.72 x 10−6 μg
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cell-1 with no clear trend (Fig 3A). Cellular Chl a concentrations for S. salina started high at

9.08 x 10−7 μg cell-1 before declining to 1.72 x 10−7 μg cell-1 by day 8, after which concentra-

tions remained steady. When chlorophyll concentrations were calculated relative to corrected

biovolume, concentrations were initially significantly higher for S. salina (P < 0.01, F = 103)

with a maximum of 2.97 x 10−4 μg chl until day 8, after which concentrations became statisti-

cally similar between the two species (P>0.05, F = 102) (Fig 3C). Chlorophyll a concentrations

for T. suecica fluctuated between a maximum of 5.9 x 10−5 μg chl and a minimum of 2.54 x

10−5 μg chl.

In the 2 μM P treatment, chlorophyll concentrations for S. salina ranged from a high of

9.26 x 10−8 μg cell-1 on day six to a minimum of 3.61 x 10−8 μg cell-1 on day 10 (Fig 3B). Con-

centrations for T. suecica ranged from a minimum of 8.41 x 10−7 μg cell-1 on day 4 to a maxi-

mum of 1.72 x 10−6 μg cell-1 on day 14. When adjusted for biovolume (Fig 3D), S. salina had a

significantly higher Chl a concentration (P < 0.01, F = 233) compared to T. suecia, with the

exception of days 14–16 when T. suecica had a slight but significantly higher Chl a content

Fig 2. Total biomass for the chemostat experiments over time (Day-1) expressed as either cell ml-1 or total

biovolume (μm3) for the mono-culture and mixed-culture experiments for S. salina (●) and T.suecica (▲), at

0.2 μM P, Figs (a-d) and 2μM (e-h). Cell numbers are expressed as cell ml-1 on the primary axis for S. salina and on

the secondary axis for T.suecica (a, c, e and g). Cell numbers were converted to total biovolume (μm3) at 0.2μM P (Figs

b and d) and 2μM P (Figs f and h). Error bars represent SEM.

https://doi.org/10.1371/journal.pone.0234372.g002
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(P< 0.05, F = 12.5). The maximum concentration for S. salina was 1.65 x 10−4 μg chl on day 4,

and this declined to a minimum of 1.53 x 10−5 μg chl on day 18. Chlorophyll a concentrations

for T. suecica fluctuated between a maximum of 6.3 x 10−5 μg chl-1μm-1, to a minimum of 2.83

x 10−5 μg chl-1μm-1.

Chlorophyll concentrations are commonly correlated to internal and external phosphorus

concentrations [52–55]. However, we found no direct relationship between Chl a concentra-

tion for either internal cell quota Q or external P concentrations using a Pearson product-

moment correlation coefficient (P> 0.05).

Internal P concentrations. For both nutrient treatments, the green alga T. suecica had a

significantly higher internal P pool compared to S. salina, both when calculated per cell and

when adjusted to biovolume (Fig 4). For the 0.2 μM P treatment, concentrations per cell ran-

ged from 2.39 x 10−6 μmol P cell-1 to 1.41 x 10−4 μmol P cell-1 for T. suecica and 9.07 x 10−7

μmol P cell-1 to 1.67 x 10−7 μmol P cell-1 for S. salina (Fig 4A). When adjusted for biovolume,

and after the cells reached a steady state (day 10), T. suecica had a higher internal P concentra-

tion compared to S. salina at all time points with exception of days 10 and 12, where internal P

concentrations were similar (Fig 4A). The same was observed in the 2 μM P treatment, where

T. suecica had a significantly higher internal P concentration per biovolume compared to S.

salina at all time points except at day 0 (P < 0.05, F = 11.5). Internal P concentrations ranged

from 6.94 x10-5 μmol P cell-1 to 1.55 x 10−5 μmol P cell-1 for T. suecica and 1.2 x10-6 μmol P

cell-1 to 2.84 x10-4 μmol cell-1 for S. salina (Fig 4D).

External P concentrations. After initial inoculation, the concentration of dissolved P in

the chemostat experiments decreased to low concentrations through uptake for all treatments,

although it was never completely depleted from the media. Minimum values are shown in

Table 1. These values were not statistically different from one another (P > 0.05, F = 1.42).

Alkaline phosphatase activity. Alkaline phosphatase activity (APA) increased over time

for both species in all treatments (Fig 5). For the 0.2 μM P treatment, APA activity started at

0.4 nmol L-1 min-1 for T. suecica and 0.6 nmol L-1 min-1 S. salina. The green alga then reached

a maximum rate of 5.14 nmol L-1 min-1, which was significantly higher than for S. salina with

Fig 3. Chlorophyll concentrations per cell-1 (a and b) and per unit biovolume (μm3) (c and d) per day-1 for the mono-

culture experiments for S. salina (●) and T.suecica (▲) at 0.2μM P (a) and 2μM P (b). Error bars represent SEM.

https://doi.org/10.1371/journal.pone.0234372.g003
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a rate of 2.9 nmol L-1 min-1 (P< 0.05, F = 62). The APA for the co-culture treatment fell

between the two individual species at 3.69 nmol L-1 min-1 (Fig 5A). APA activity was lower in

the 2 μM P treatment (Fig 5B), where T. suecica reached a maximum of 1.9 nmol L-1 min-1

while S. salina reached a maximum of 1.2 nmol L-1 min-1 (P> 0.05, F = 1.19). The APA in the

mixed-culture treatment closely mirrored the trends for T. suecica, with a similar maximum at

1.9 nmol L-1 min-1.

Phosphorus uptake following starvation

The uptake rate of P into the cells was examined at four different dissolved phosphate concen-

trations following phosphorus starvation. Uptake was measured as μmol P cell-1 over time for

the four-hour incubation period. The response seen in the uptake curves (Fig 6) can be

described as follows: at time t0 the starved cells have an internal phosphorus concentration

described by Q0 (μmol P cell-1), which is the subsistence quota for P. This is the minimum P

concentration required for growth, below this value no growth can occur. Due to this, the

uptake curve does not pass through the origin (see Fig 6). As phosphate is re-introduced into

the media, the internal P concentration (Q) increases quasi-linearly with a slope denoted by1

(μmol P per cell min-1). This initial uptake rate is the initial change in internal phosphorus

concentration over time. The slope of the curve then decreases progressively until it plateaus.

This plateau is described by Qmax, and at this point the cell is saturated with P. The time scale

for cell quota (Q) to reach Qmax is defined T (min).

For all phosphate concentrations, most of the uptake occurred within the first hour, after

which the uptake began to level off and no further uptake was observed after two hours (Fig 6).

Table 1. Mean minimum P concentrations (μM P) in the medium for the 0.2 and 2 μM P treatments for S. salina
and T suecica.

0.2 μM P 2 μM P

S. salina 0.027 +/- 0.01 0.04 +/- 0.01

T. suecica 0.035 +/- 0.02 0.05 +/- 0.02

https://doi.org/10.1371/journal.pone.0234372.t001

Fig 4. Intracellular phosphorus concentrations per cell-1 (a and c) and per unit biovolume (μm-3) (b and d) per day-1

for the mono-culture experiments for S. salina (●) and T.suecica (▲) at 0.2μM P (a and b) and 2μM P (c and d). Error

bars represent SEM.

https://doi.org/10.1371/journal.pone.0234372.g004
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Using Eq 9, the parameters Q0 (subsistence quota),/ (initial uptake rate) and Qmax (the maxi-

mum internal phosphorus concentration) were simultaneously calculated (see Methods) from

the experimental data for each phosphate concentration. The parameters derived are shown in

Table 2. As P was completely removed from the medium at the three lowest P concentrations,

in these instances Qmax represents the maximum intracellular P concentration that could be

Fig 5. Alkaline Phosphatase activity (APA) for the mono-culture experiments for S. salina (●) and T. suecica (▲) and

mixed culture experiments (□) at 0.2μM P (a) and 2μM P (b). Error bars represent SEM.

https://doi.org/10.1371/journal.pone.0234372.g005

Fig 6. Temporal dynamics of intracellular P representing P uptake for S. salina (a) and T. suecica (b) over a four-hour

time course experiment. Experimental data is shown with symbols while the modelled data is shown by lines.

Extracellular nutrient concentrations ranged from 100 μM P (●), 5 μM P (▲), and 2 μM P (◆) and 0.2 μM P (□).

https://doi.org/10.1371/journal.pone.0234372.g006
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attained in the face of P limitation. The true Qmax was only achieved during the 100 μM treat-

ment, with values of 2.71 x 10−6 μmol P cell-1 for T. suecica and 6.76 x 10−8 μmol P cell-1 for

S. salina.

The time at which the initial uptake began to slow (T) varied between species and phos-

phate concentrations and ranged between 71.8 min and 18 min for S. salina and 47.45 min

and 24 min for T. suecia. At the highest phosphate concentrations (100 μM), T occurred earlier

for T. suecica than for S. salina. At 5 μM, uptake slowed at a similar time for both species, and

at 2 and 0.2 μM, uptake slowed earlier for S. salina (Table 2).

We then assessed uptake dynamics by plotting uptake rates (1) at the different P concen-

trations. Uptake rate was described using the Michaelis-Menten equation (Eq 11) (Fig 7). Tet-
raselmis suecica had a half saturation constant (Ks) of 0.4 μM and a maximum uptake rate

(Vmax) of 0.16 pmol P cell h-1. While S. salina had a Ks of 0.02 μM and a Vmax of 0.05 pmol P

cell h-1. The differences were significant between the two species (P < 0.05). The uptake rate

1 increased with increasing P concentration until it plateaued at 7 μM for T. suecia, after

which uptake was at its maximum. For S. salina maximum uptake rate was attained at a P con-

centration of 4.3 μM. Michaelis-Menton parameters are summarized in Table 3. As the ratio of

Vmax/Ks better reflects nutrient affinity and uptake rates at low nutrient concentrations com-

pared to Ks alone, we examined the nutrient uptake affinity,1max (L cell-1 h-1) and the specific

nutrient uptake affinity,1spec (μmol-P-1 h-1) for both species (Table 3). The Vmax/Ks was

0.025 and 0.04 L cell-1 h-1 for S. salina and T. suecica respectively. The specific nutrient uptake

affinity,1spec was calculated by dividing1max by the cell quota, Q0. The1spec was calculated

individually for the 0.2 μM P and 2 μM P treatments. As the1spec describes the ability of each

species to supply itself with nutrients, a higher1spec, will provide a competitive advantage

when nutrients are limiting. In this case S. salina had a1spec approximately 29 times higher

than T. suecica at 0.2 μM P, 17 times higher at 2 μM P, 10 times higher at 5 μM P and 9.5 times

higher at 100 μM P.

On average, T. suecica was 32 times larger in terms of volume than S. salina, and owing to

its greater cell size, it had a larger internal nutrient store (Q) and initial uptake rate (1)

(Table 2). As we cannot compare parameters such as Q0 and Qmax between the two species due

to their different sizes, we evaluated the efficiencies of nutrient uptake on the basis of their cell

subsistence quota (Qo). This was done by examining the maximum specific uptake rate Vsp
m ,

which is the ratio of Vmax to Q0. The Vsp
m was 8.18 h for T. suecica and 5.68 h for S. salina.

These times represent the minimum time taken to take up the amount of P that is equal to Q0,

Table 2. Initial conditions, uptake parameters values used for Eq (9) and output parameters for T. suecica and S.

salina.

T. suecica 100 μM 5 μM 2 μM 0.2 μM

Qmax (μmol P cell-1) 2.71 x 10−6� 2.55 x 10−6 1.8 x 10−6 1.04 x 10−6

Q0 (μmol P cell-1) 8.7 x 10−7 2.75 x 10−7 4.3 x 10−7 1.33 x 10−7

1 (μmol P cell min-1) 1.8 x 10−8 1.6 x 10−8 1.41 x 10−8 1.40 x 10−8

T (min) 47.45 34.2 30.38 24

S. salina

Qmax (μmol P cell-1) 6.76 x 10−8� 4.78 x 10−8 2.43 x 10−8 1.87 x 10−8

Q0 (μmol P cell-1) 1.19 x 10−8 1.69 x 10−8 1.63 x 10−8 2.85 x 10−9

1 (μmol P cell min-1) 5.56 x 10−10 4.78 x 10−10 4.58 x 10−10 4.56 x 10−10

T (min) 71.8 35.56 26.6 18

�The Qmax value at 100 μM is the true Qmax.

https://doi.org/10.1371/journal.pone.0234372.t002
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or the minimum amount of time needed to take up enough P to produce one daughter cell. In

order to compare the efficiency of P uptake, the maximum growth efficiency β was calculated

(Eq 12). This ratio was 1.26 x 10−1 +/- 1.2 x 10−2 for T. suecica and 1.9 x 10−1 +/- 1.6 x 10−2 for

S. salina. The higher maximum growth efficiency of the cyanobacteria means that S. salina is

more efficient at taking up and utilising P and turning it into biomass compared to T. suecia.

Discussion

This study examines the dual hypotheses that phosphorus limitation accounted for the domi-

nance of cyanobacteria before the expansion of algae during mid-Neoproterozoic times, and

that this expansion could have resulted from an increase in phosphorus availability. To address

these hypotheses, we studied two phosphate-limited conditions meant to simulate both severe

phosphorus limitation and phosphorus replete conditions. Chemostats were chosen as they

are well suited for the physiological characterisation of microorganisms, especially when

Fig 7. Uptake rates1 (μmol P cell min-1) plotted against external P concentration (μM) for S. salina (a) and T. suecica
(b). So that fine detail can be observed, Figs are only plotted until just after the uptake rate plateaued.

https://doi.org/10.1371/journal.pone.0234372.g007

Table 3. The maximum uptake (Vmax,) and the half saturation constant (Ks) described by Eq 11 and the nutrient uptake affinity1max and specific uptake affinity

1spec.

Ks (μM) Vmax (pmol P cell h-1) 1max (L cell-1 h-1) 1spec (μmol P-1 h-1)

0.2 μM 2 μM 5 μM 100 μM

S. salina 0.020 5x10-4 0.025 8.8x106 1.53x106 1.5 x106 2.1x106

T. suecica 0.40 0.016 0.04 3.0x105 9.3x104 1.45x105 2.2 x105

https://doi.org/10.1371/journal.pone.0234372.t003
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investigating the effect of changing cultivation parameters. In this case we explored the role of

P concentration on cell performance. The chemostats were fed with fresh medium containing

either 0.2 μM P or 2 μM P at dilution rates generating growth rates of 0.1 d-1 (for the 0.2 μM P

treatment) and 0.2 d-1 (for the 2.0 μM P treatment). The concentration of 2 μM P approxi-

mates P concentrations in coastal European waters from where these species were isolated,

here P concentrations can range from: <0.5 to 4.0 μM [32]. While Archean and early Protero-

zoic Oceans contained an estimated 0.04–0.13 μM P [33] with deep-water phosphate levels

being as high as 0.2 μM P during the Mesoproterozoic Era [21]. In addition, the growth rates

in our chemostats can be compared to those measured in the ocean [56,57], where the lower

growth rate is typical for algae in modern oligotrophic waters [58]. While the higher growth

rate is similar to those found for both algae and cyanobacteria in higher productivity regions,

as for example found in the South Atlantic Ocean [59].

As cells were inoculated into chemostats containing either 0.2 or 2 μM P, nutrients were in

excess before the chemostats reached equilibrium. This period of time until equilibrium is

reminiscent of an early spring bloom with a plentiful supply of nutrients. After the nutrients

were utilised and a steady state was reached, growth rates then reflected the rate of nutrient

supply [60] as described by the Monod equation [61,62]. This open system then allows for con-

tinuous exponential growth under constant conditions.

Mono and mixed-culture experiments

We undertook both mono- and mixed-culture experiments in order to examine the full spec-

trum of physiological behaviour of both species. The mono-culture experiments were used to

establish the basic growth parameters for the different species under different levels of phos-

phate limitation, while the mixed-culture experiments demonstrated how these two organisms

compete for phosphate as a limiting nutrient. Theoretically, in the absence of any other inter-

actions or processes such as grazing or cell death, the outcome of competition at a given dilu-

tion rate and substrate concentration depends on the relationship between specific growth

rate, substrate concentration and internal nutrient store [62], and these specific characteristics

of growth vary between species. For this reason, different species will likely dominate in eco-

systems depending on rates of nutrient supply [63–65].

A clear finding from our experiments is that phosphorus loading has the potential to influ-

ence the composition of a phytoplankton community. Thus, in our 0.2 μM P mixed-culture

experiments, the cyanobacterium S. salina dominated in biovolume by about a factor of six

over the alga T. suecia. T under these were our most phosphate limiting conditions (Fig 2D).

Indeed, the maximum cell yield for S. salina was unaffected by the mixed community condi-

tions, as it was able to achieve the same peak biomass as it did in mono-culture. However, the

total biomass for T. suecica in the mixed culture was approximately half when compared to

mono-culture. Yet despite having a lower biomass, T. suecica was not outcompeted to com-

plete exclusion and it remained a low yet constant background component.

When we increased the nutrient input to the chemostats to 2 μM P, concentrations close to

the modern coastal P values from where the test organisms were isolated [32], the difference in

total biomass between species in the mixed culture was reduced compared to the 0.2 μMP

treatment (Fig 2H). However, the green alga did not outcompete the cyanobacteria. As neither

of the species has been shown to have any allelopathic ability, the greater mean cell and bio-

mass yield that was achieved by S. salina at all phosphorus concentrations indicates a more

efficient uptake and utilisation of P. This is most likely due to its smaller cell size, giving the

cyanobacterium favourable phosphorus acquisition and uptake abilities as discussed in detail

below.
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Impact of cell size

Many physiological traits such as growth rate, metabolism, light utilisation, access to resources

and susceptibility to grazing are significantly correlated to cell size [43]. Therefore, as cell size

can affect ecological niches, shape community structure and diversity [24,66,67], it is often

termed a ‘master trait’ [47]. In the modern ocean, phytoplankton communities often experi-

ence a trade-off between top-down and bottom-up controls related to cell size, such as nutrient

uptake abilities vs size-selected grazing. While nutrient limitation drives communities towards

smaller cell sizes, grazing pressure pushes the community towards larger cell sizes [67,68]. This

means that phytoplankton communities are not static and will change their composition in

response to changing nutrient availability and other environmental factors such as light, tem-

perature and grazing pressure [25]. This will result in communities selecting for a different

trait depending on environmental conditions [25,69].

In modern temperate oceans there is a pronounced seasonality in relation to cell size and

community structure. In winter, nutrient availability and grazing pressure have little influence

over algal community structure as nutrients are plentiful and grazing pressure is low. However,

in the spring when nutrient concentrations are still high, the impact of grazing pressure

becomes more evident, which results in a population containing larger cells [70]. Our system

did not account for grazing pressure, but the higher P input in our high P treatment was better

able to support a greater population of the larger T. suecica cells.

As nutrients become utilised over the summer, nutrient availability becomes more impor-

tant and the resultant community is comprised of smaller cells [25,68,71]. In contrast, in tropi-

cal regions, the stable mixing layer and more constant environmental conditions results in a

balance between grazing and nutrient uptake, creating a community with a more stable mean

cell size throughout the year [68]. Our low P treatment, while designed to represent conditions

during the Mesoproterozoic and early Neoproterozoic Eras, is also reminiscent of conditions

experienced in modern oligotrophic waters, where low nutrient availability and the increased

importance of nutrient uptake from a limited supply favours a dominance of small organisms

such as the picophytoplankton [25,71].

Physiological adaptations to low P environments

When the growth rate and biomass of phytoplankton is restricted by a limiting nutrient, the

ability for a species to compete for a limiting resource is an important determinant of the com-

munity composition. Different organisms will have different strategies for dealing with P limi-

tation. Such strategies can include different uptake abilities, metabolic restructuring of cellular

metabolites [72], use of internal P stores, the utilisation of DOP by hydrolytic enzymes, the

substitution of sulphate for phosphate in membrane lipids [73] and the use of alternative low P

enzymes [74].

Perhaps the most important mechanism for coping with low P availability is the utilisation

of dissolved organic phosphorus (DOP) [18,24]. Whilst phytoplankton have a preference for

orthophosphate, they are able to utilise other forms such as DOP by hydrolysing the labile frac-

tion into orthophosphate. The process is facilitated by the enzyme alkaline phosphatase. This

enzyme has a wide substrate specificity and hydrolyses ester bonds between P and organic

molecules [28], and overall, alkaline phosphatase concentrations have become a proxy for the

state of P limitation in phytoplankton communities [75,76]. The production of AP by phyto-

plankton is regulated by both external and internal P concentrations [77]. In our experiments,

the onset of P limitation could be tracked by the increase in APA with declining P concentra-

tions in the media, with APA activity increasing until the cessation of the experiment. Alkaline

phosphatase activity was higher in the 0.2 μM P conditions signifying a greater level of
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nutritional stress. APA also varied between the two species and was higher for T. suecica com-

pared to S. salina, suggesting T. suecica was experiencing a higher level of P stress [78].

The chemical form of phosphorus used in the medium was potassium phosphate, but some

chemical forms of organic phosphorus in the aquatic environment, such as phosphonates and

phosphites, can only be utilised by bacteria and cyanobacteria [79–81]. As phosphonates

account for a significant proportion (25%) of the marine DOP pool, the ability to utilise these

alternative sources of phosphorus could provide species such as S. salina an advantage during

P limiting conditions. As our medium was made using aged natural seawater, we cannot

exclude that small concentrations of these organic phosphorus compounds were present in the

medium. Also, we do not know if S. salina, specifically, can utilise such alternative P sources,

but closely related marine picocyanobacteria Synechococcus and Prochlorococcus can use them,

and they express phnD, the gene encoding the phosphonate binding protein [80,81] while Pro-
chlorococcus also possess ptxD, the gene encoding phosphite dehydrogenase [82].

In a study by [83], a number of different adaptive strategies were described among freshwa-

ter phytoplankton for dealing with variable supplies of phosphorus. In their study, under vari-

able P conditions, species were either described as being velocity-adapted, where high rates of

P uptake are employed, or storage-adapted where there is a net accumulation of intra-cellar P.

Both species of phytoplankton explored in the current study are capable of luxury P uptake,

where uptake and storage of P go beyond the levels of immediate growth [84]. The ability to

store phosphorus allows short-term uncoupling of growth rate from both external phosphorus

concentrations and uptake. Phosphorus is stored as polyphosphate (polyP), which consists of

linear chains of phosphate residues lined by phosphoanhydride bonds [85]. The stored P can

contain 1.5–9 times the minimum cell quota (Q0) (Table 2) and can therefore theoretically sus-

tain 1–4 subsequent doublings without taking up additional P [84,86].

The cell quotas, Q0 and Qmax varied between treatments in the uptake experiments. This

variation is most likely due to growth rate-dependent changes in the maximum carbon quota,

which have an impact on regulating the minimum and maximum cell quotas [87]. The green

alga T. suecica had a larger internal P pool and could store more P in relation to its minimum

cell quota compared to S. salina, both per cell and when adjusted to biovolume (Fig 5B). Our

results (Table 2) were similar to those estimated by [88] who calculated a cell quota of 2.9 x

10−7 μmol P cell-1 for T. suecia, as well as those estimated by [89] for the cyanobacterium Syne-
chococcus who calculated quota values between 1.91 x 10−9 and 3.96 x 10−9 μmol P cell-1. As

the stored P can be used to support population growth for multiple generations after the onset

of P limitation [24], this physiological difference in cell quota could provide T. suecica with an

important adaption in regions with a variable P supply.

Uptake kinetics

The uptake rate of DIP by cells is controlled by a number of different constraints. These con-

straints include the affinity of the enzymes and transporters used to bind the phosphate and

deliver it into the cell [24], the density of transporters at the cell surface, the ambient P concen-

tration, as well as the cell size and shape of the organism. The organism’s size and shape gov-

erns both the cell’s surface to volume ratio and the thickness of the diffusive boundary layer

[25]. As P diffuses through an aqueous boundary layer which surrounds the cells before reach-

ing the cell surface [90], larger cells can experience greater diffusion limitation compared to

smaller cells [91].

Once P reaches the cell surface it is transported into the cell by binding to uptake proteins.

Here, the maximum potential of a cell to uptake nutrients is described by Vmax, the value of

which is related to the number of nutrient uptake sites situated across the membrane,
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integrated with the rate of intracellular transport, and with the rate of substrate release within

the cell [24,92]. Once nutrients reach the cell surface, nutrient uptake can be described by

Michaelis-Menten-like kinetics (Eq 11), where, in addition to Vmax, the half-saturation constant,

Ks, provides a measure of the binding affinity of the phosphate uptake system. Transport pro-

teins yield Ks values that are usually categorised as either low or high affinity [24,29]. The higher

affinity proteins have lower values of Ks, while the lower affinity proteins have higher values.

The synthesis of high and low-affinity transporters is regulated by the internal cell quota, Q,

and the maximum uptake rate, Vmax [24,93]. The expression of high-affinity transporters

occurs when Q is low, whereas low-affinity transporters are upregulated when there is a high

environmental P concentration, such as after a nutrient pulse, or at such times where a fast

response to environmental concentrations would be an advantage [93,94]. A number of

marine cyanobacteria have both high and low-affinity transporters [95,96], while eukaryotic

equivalents of low-affinity transporters have also been identified, including the P transporter,

IPT, and the sodium or sulphate dependent P transporter SPT [24]. Screening of cDNA librar-

ies have revealed only a few eukaryotic high-affinity transporter equivalents [24]. These

include the high-affinity transporter (PHO) identified in Tetraselmis chui by [97]. This trans-

porter is transcriptionally upregulated under P-limited conditions. Identifying whether T. sue-
cica has a similar transporter was beyond the scope of this study, but its relatively low Ks

(Table 3) suggests that it most likely has a high-affinity transporter similar to that of T. chui
[97].

Traditionally it was thought that species that possess high-affinity phosphorus uptake sys-

tems will also have lower Ks and Vmax values making them more efficient at low nutrient con-

centrations [24]. In turn, phytoplankton with low affinity uptake systems with high Ks and

Vmax values are thought to be better suited to high nutrient concentrations [24,29]. These ideas

are formalize by introducing the nutrient uptake affinity,1max [49], which combines Ks and

Vmax into one index. The ratio of Vmax/Ks describes the initial slope of the Monod equation

and therefore, accurately reflects uptake at low nutrient concentrations [43,49,98], where a

higher ratio indicates a higher rate of uptake at low nutrient concentrations. Both species have

small Ks values but markedly different Vmax values, and these differences yield different nutri-

ent uptake affinities at low concentrations.

Indeed, the cyanobacterium S. salina possessed a specific nutrient uptake affinity,1max

that was approximately 30 times greater than T. suecica at the low P concentration (Table 3),

indicating that it’s ability to supply itself with nutrients is 30 times greater at low P concentra-

tions. At 2 μM P the difference had almost halved to 16.5 times and at 5 and 100 μM P the spe-

cific uptake affinity for S. salina was approximately ten times greater than T. suecia.

As the green algae T. suecica was on average 32 times larger in biovolume than the cyano-

bacteria S. salina, we calculated the maximum specific uptake rate, Vsp
m and the maximum

growth efficiency (β) (Eq 12). These parameters provide an estimate of how proficiently each

cell takes up and utilises P regardless of cell size. The Vsp
m can be used to evaluate how long it

takes a cell to fill its subsistence quota, Q0, in order to produce one daughter cell. While, (β) is

used to compare the efficiency of P uptake in proportion to growth. Tetraselmis suecica had a

greater maximum specific uptake of 8.18 h compared to 5.68 h for S. salina. So, in order to

take up enough P to divide once it would take T. suecica 8.18 h, while it would only take S.

salina 5.68 h. This indicates that T. suecica has a higher P demand compared to S. salina, and

therefore it would be unlikely to dominate when P is deficient. Our Vsp
m value for T. suecica is

lower that the value calculated for the closely related species Tetraselmis subcordiformis by

[51], which was 20 h-1, but this could be explained by the slightly larger size of T. subcordifor-
mis compared to T. suecia. However, our Vsp

m value for T. suecica is similar to those calculated
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for the coccolithophore Emiliania huxleyi at 8.90 h-1 and the diatom Thalassiosira pseudonana
7.80 h-1 [99]. Having a low Vsp

m appears to be an important adaptation to P limited conditions.

We would, therefore, expect species that live in oligotrophic conditions to have a lower Vsp
m

and thus adapted to have a higher capacity for nutrient utilisation, compared to those living in

nutrient-replete environments.

Synechocystis salina had a greater maximum growth efficiency β, indicating that it has a

lower requirement for P and can reach its maximum specific growth rate at a lower phospho-

rus concentration [86]. However, growth efficiency is likely to be affected by environmental

variables such as temperature, the diel light-dark cycle, irradiance conditions and the associ-

ated daily growth cycle [51]. It is common that P uptake rates increase during the day due to

the higher demand for P for photosynthetic biomass production. Kinetic analysis of uptake

parameters by other authors [24,100,101] have indicated that diel changes in uptake rates will

alter the Vmax but will have no impact on the Ks value, suggesting that nutrient uptake rates

can fluctuate, but the overall affinity for nutrients remains fixed. Environmentally induced

fluctuations in the maximum nutrient uptake rate by the more efficient or superior competitor

will lead to fluctuations in the ambient nutrient concentration which could positively or nega-

tively impact competing species and thus community compositions. So, if the maximum nutri-

ent uptake rate for S. salina declined due to unfavourable environmental conditions, such as

altered light and/or temperature regimes, it would make more P available for T. suecica or

another competing organisms, allowing for an increase in biomass by these competing

organisms.

Impact of P limitation

Phosphorus deficiency limits phytoplankton productivity by disrupting electron transport to

photosystem I (PSI) [102], thus reducing intracellular concentrations of compounds such as

ATP, NADPH, nucleic acids, sugar phosphates and phospholipids, all of which are essential in

chlorophyll production and ultimately photosynthesis [103]. Chlorophyll a is the major photo-

synthetic pigment of most phytoplankton species and can be used as an index for primary pro-

duction rate and standing biomass abundance in aquatic ecosystems [104]. The relationship

between Chl a and phosphorus is a fundamental relationship, with Chl a concentrations often

having a positive log linear function of total dissolved organic P in both coastal marine [52,53]

and fresh water environments [54,55]. However, work by [105] indicated that the chlorophyll

a content of phytoplankton is not directly related to the external nutrient concentration but

rather the internal cell quota, Q.

In our study, P concentrations had no impact on Chl a concentration which remained con-

stantly low. However, we also could not find a relationship between internal cell quota, Q, and

Chl a concentration for either species. As Chl a concentrations are regulated by the balance of

energy supplied to PSII and by light harvesting, plus the energy demand for photosynthesis

and growth, we can hypothesise that despite P starvation, photosynthesis rates and pigment

synthesis remained stable and cell division rates were low enough to maintain a stable chloro-

phyll concentration [106,107]. This was observed by [108,109] for Dunaliella tertiolecta which

had a growth rate of 0.24 div day-1 in P replete conditions, which is higher than the growth

rates used in this study.

Geobiological implications and concluding remarks

We conducted a series of chemostat-based growth experiments to test the competition for

phosphorus between the cyanobacterium S. salina and the eukaryotic alga T. suecia, represent-

ing both different Domains in the tree of life and, importantly, different cell sizes as would be
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typical when comparing cyanobacteria to eukaryotic algae. Ultimately, our experiments were

designed to test whether phosphorus availability and changing phosphorus concentrations could

explain the history of cyanobacterial versus algal dominance through the Proterozoic Eon.

The organisms we studied coexist in nature, and our chemostat experiments were con-

ducted at growth rates that may be considered typical for these types of organisms in nature.

Our experiments explored how these two organisms responded both individually and in co-

culture to a range of nutrient limitations. In one case, the organisms were fed with phosphate

at near-modern bottom water concentrations, and in another case, they were fed with much

more limited phosphorus concentrations, believed to represent bottom water levels from the

Mesoproterozoic and early Neoproterozoic Eras. In addition, we conducted a series of batch

experiments at different phosphorus levels, and under cell starvation, to calculate the growth

kinetics of these organisms relative to phosphorus concentration, as well as how each of these

organisms internally stores phosphorus. We also monitored APA in our chemostat experi-

ments as an independent measure of phosphorus stress.

Our results showed that that the competitive outcome of cyanobacteria and eukaryotic

algae are heavily influenced by phosphorus concentrations. The cyanobacterium outcompeted

the alga at both low and high P treatments, yet the eukaryotic algae were never completely

excluded even in the low P treatment. In the higher P treatment, T. suecica was able to increase

its biomass but was still unable to outcompete the cyanobacteria. This suggests that no matter

the P concentration, S. salina was consistently the superior competitor for P. This is supported

by the higher specific nutrient uptake affinity and calculated for S. salina, indicating that it pos-

sess a higher affinity for P compared to T. suecia. This combined with its low maximum spe-

cific uptake rate (Vsp
m ) and higher maximum growth efficiency (β), further demonstrates that

the cyanobacterium has a higher capacity for nutrient utilisation. Despite also having a high

affinity for P, the alga T, suecica was impacted by its larger cell size and thus, experienced

greater nutritional stress, highlighted by its enhanced alkaline phosphatase activity.

Ultimately, our results reinforce already existing ideas that nutrient availability can have an

important bearing on the dominant cell size of phototrophs in nature [25,91,110–113]. Clearly,

the cyanobacteria S. salina could outcompete the eukaryotic alga T. suecica under severe nutri-

ent limitation and all of the kinetic parameters we determined (Ks, Vmax,1max,1spec, Vsp
m and

β), support this observation. If S. salina represents a typical cyanobacterium of its size, and T.

suecica represents a typical alga of its size, then our observations are consistent with the idea

that phosphorus limitation before the “rise of algae” could have favoured a cyanobacteria-

dominated ecosystem. Still, even under severe nutrient limitation, the eukaryotic alga we

explored was not excluded from our co-culture chemostats. This would be consistent with

observations from the modern ocean where small phototroph sizes are selected under nutrient

limitation [25,67,91], but there are no known areas in the modern ocean, even under the most

extreme nutrient limitation, where eukaryotic algae are excluded [114–116]. Therefore, our

results do not completely match with the biomarker record before about 750 Ma, where ster-

anes are not found, suggesting that eukaryotic algae were nearly absent from the marine eco-

system. Indeed, steranes are not found even under a variety of depositional conditions

(represented by sedimentary rocks of varying organic matter content) likely representing dif-

ferent degrees of nutrient availability [2,3,117–122].

Our results, would, however be consistent with the finding of various acritarchs through

the late-Neoproterozoic and the Mesoproterozoic Eras that are believed to be resting stages of

eukaryotic algae [123–127]. Thus, our results would be consistent with cyanobacterial domi-

nance, but not eukaryotic algal exclusion in the Proterozoic oceans. Our results, however, are

also consistent with the idea that the “rise of algae” could have been initiated by enhanced
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phosphorus availability. Indeed, there are some suggestions that phosphorus may have become

more available through the Neoproterozoic Era as discussed above. We also note that other

aspects of the marine ecosystem were evolving through the same time. For example, grazing

ciliates began to occupy the oceans [2,128], and these could have selectively grazed the small

-sized cyanobacteria [129–131], providing another avenue towards eukaryotic algal dominance

in the Neoproterozoic Era.

Therefore, our results are consistent with enhanced phosphorus availability leading to the

“rise of algae” through the Neoproterozoic Era, but our results do not exclude other viable

hypotheses for algal dominance in the marine ecosystem. Our results also do not cover the

possible role of picoeukaryotes [115,132] (< 2–3 μm in diameter) and their potential ability to

have competed with cyanobacteria in the Mesoproterozoic oceans. Indeed, in modern marine

environments picoeukaryotic phototrophs prove adept at competing with cyanobacteria under

nutrient limitation [112,115,132], although we are unaware of any experiments where photo-

trophic pico- and nano-plankton have been compared in their ability to compete with nutri-

ents in the manner that we have presented here.
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