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Abstract: Catalytic transfer hydrogenation reactions, based on hydrogen sources other than
gaseous H2, are important processes that are preferential in both laboratories and factories.
However, harsh conditions, such as high temperature, are usually required for most transition-metal
catalytic and organocatalytic systems. Moreover, non-volatile hydrogen donors such as
dihydropyridinedicarboxylate and formic acid are often required in these processes which increase the
difficulty in separating products and lowered the whole atom economy. Recently, TiO2 photocatalysis
provides mild and facile access for transfer hydrogenation of C=C, C=O, N=O and C-X bonds by
using volatile alcohols and amines as hydrogen sources. Upon light excitation, TiO2 photo-induced
holes have the ability to oxidatively take two hydrogen atoms off alcohols and amines under room
temperature. Simultaneously, photo-induced conduction band electrons would combine with these
two hydrogen atoms and smoothly hydrogenate multiple bonds and/or C-X bonds. It is heartening
that practices and principles in the transfer hydrogenations of substrates containing C=C, C=O, N=O
and C-X bond based on TiO2 photocatalysis have overcome a lot of the traditional thermocatalysis’
limitations and flaws which usually originate from high temperature operations. In this review,
we will introduce the recent paragon examples of TiO2 photocatalytic transfer hydrogenations used
in (1) C=C and C≡C (2) C=O and C=N (3) N=O substrates and in-depth discuss basic principle,
status, challenges and future directions of transfer hydrogenation mediated by TiO2 photocatalysis.
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1. Introduction

Hydrogenation of organic compounds is one of the basic transformations in organic synthesis [1–3].
In both laboratories and industries, hydrogenation processes are irreplaceable for producing
bulk-chemicals, fine-chemicals, pharmaceuticals, agrochemicals and fragrances [4–6]. According
to the types of hydrogen donor, hydrogenation can be roughly divided into two main categories:
(i) Hydrogenation using gaseous dihydrogen [6]; (ii) transfer hydrogenation using hydrogen donors
other than dihydrogen [7,8]. In consideration of the hazard and inconvenience to apply explosive
gaseous dihydrogen cylinder, using safer hydrogen sources such as alcohols and amines is especially
desired. Moreover, the activation of gaseous dihydrogen often requires expensive and toxic
transition-metal complexes. These catalytic systems often need harsh conditions such as high reflux
temperature and hydrogen pressure. Compared with hydrogenation using dihydrogen, transfer
hydrogenation using alcohols and amines as hydrogen donor compounds (HDC) is safer and
more convenient. Although the atom efficiency of hydrogenation using dihydrogen is higher than
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transfer hydrogenation, the advantage in safety and mildness made the latter a more preferential
choice in laboratory and industry for the reduction of organic compounds. Recently, transfer
hydrogenations have been greatly developed. Among all of the current transfer hydrogenations,
catalytic transfer hydrogenations have overwhelmingly come to dominate the field in place of
stoichiometric transformations. Catalytic hydrogenation processes based on both use of H2 and
other HDC can be briefly described as Scheme 1 [9,10]. In Scheme 1a, transition-metal complexes
such as the Ru complex heterolytically cleaves the dihydrogen H-H bond and the in-situ generated
Ru-H complex attacks the carbonyl C=O in a nucleophilic manner yielding a Ru-alkoxide species.
The following solvatolysis provides the alcohol product and regenerates the Ru complex. In Scheme 1b,
both the non-transition-metal mediated direct hydrogen transfer and the transition-metal catalyzed
hydridic route for transfer hydrogenation is shown. The original version of the former (the top
half of Scheme 1b) was the aluminum isopropoxide mediated transfer hydrogenation named as
Meerwein-Ponndorf-Verley (MPV) reduction [11–13]. In this case, the reaction mechanism is
proposed to proceed through a six-membered transition state, without the involvement of metal
hydride intermediates (the top half of Scheme 1b). The process can also be run in the opposite
direction, which is the well-known Oppenauer oxidation [14]. In the transition metal case (the
bottom half of Scheme 1b), it is believed that the reaction involves the formation of a metal
hydride intermediate. In this case, the transition-metal complex catalyst facilitates the formation
of metal-alkoxide with alcohol substrate. The alkoxide then undergoes a β-hydride elimination to
give a metal-monohydride, which attacks another substrate ketone in a nucleophilic manner to realize
the transfer hydrogenation [10,15]. Such a hydride intermediate has indeed been isolated in some
transition-metal catalyzed transfer hydrogen reactions. Furthermore, according to the property of
catalysts, catalytic transfer hydrogenations can be divided into homogeneous and heterogeneous
categories. The former has garnered considerable success in the control of chemo-, regio- and even
enantioselectivity [7,16]. As a significant branch of catalytic transfer hydrogenations, heterogeneous
catalysis owns its distinct advantages: Easier separation and recyclization, less catalyst residue and
non-decreased catalytic reactivity after multiple uses [17–21]. Heterogeneous catalysts play a pivotal
role in the production of fine- and bulk-chemicals applying transfer hydrogenation. Specifically,
heterogeneous catalytic systems have occupied a prominent status for transfer hydrogenation [22].

As a typical heterogeneous photocatalyst, TiO2 nanoparticle has been thoroughly investigated
and applied in a broad range of energy and environmental fields [23]. For example,
TiO2 nanocrystal materials have been widely applied in photocatalytic water-splitting process [24],
dye-sensitized-solar-cells [25], perovskite solar-cells [26] and photocatalytic detoxification of water
systems and air cleaning [27,28]. Recently, the potential of TiO2 in organic synthetic photoredox
catalysis has been discovered [29–33]. Upon UV, sunlight or even visible-light irradiation,
the photo-induced valence-band hole and conduction-band electron on TiO2 surface would participate
in their separate oxidative or reductive reaction with suitable electron donors or acceptors (as shown in
Scheme 2a). Benefiting from this separated interfacial electron transfer, a number of TiO2 photocatalytic
organic transformations have been unearthed. If photo-induced conduction-band electrons are
consumed with the suitable electron acceptors such as dioxygen, p-benzoquinone, Ag+ cation or
H+ upon metallic Pt loading, valence-band holes would oxidize the organic substrate furnishing the
oxidative transformations. TiO2 photocatalysis has demonstrated its potential in a series of oxidative
transformations such as alcohol oxidation to aldehydes and ketones [34–37], amine oxidative coupling
to imines [38–41] and sulfide oxidation to sulfoxides [42,43]. Furthermore, TiO2 photocatalysis could
be applied in redox-neutral C-C bond formation reactions [44–46]. Under appropriate light irradiation,
TiO2 photo-induced hole which is highly oxidative possessing a redox potential as high as 2.7 V
vs. normal hydrogen electrode (NHE) is generated. The hole could cleave the organic compounds’
C-X/H bonds generating radical cation species. Theses radical cations can be further trapped by
unsaturated compound participating in an addition reaction to construct C-C bonds or cross-coupled
with another radical species (see Scheme 2a) [44,45]. In these C-C construction transformations,
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both valence-band hole and conduction-band electron half-reaction are fruitful for synthesizing the
final product. According to the bond being cleaved, the C-C bond formation by TiO2 photocatalysis are
divided into the following categories: (1) Cleavage C-Si bonds [47]; (2) C-COOH bonds [48,49]. (3) C-H
bond at α-position of tetrahydropyrrole [50,51]. (4) C-H bond at aldehyde α-position [52]. (5) C-H
bond at both benzylic and amine α-position of N-arylisoquinoline [53]. (6) inert sp2 C-H bond of
pyridine α-position [54]. Apart from oxidative and redox-neutral transformations, TiO2 photo-induced
conduction-band electron with a redox potential of −0.5 V vs. NHE has been proved to be a mild and
selective catalyst for reductive transformation [55–59]. In the presence of excess amount of alcohols or
amines, TiO2 photo-induced holes would migrate to the surface and oxidize the alcohols and amines
which adsorbed on TiO2 surface and be quenched. The depletion of valence-band holes increases
the reaction rate of conduction-band electron’s reductive transformations, since this consumption
of holes decreases the possibility of hole-electron recombination. In this way, TiO2 photo-induced
conduction-band electrons would have a much longer lifetime to participate in the interfacial reduction
of organic compounds.
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Scheme 1. Catalytic hydrogenation (a) activating gaseous H2 as a hydrogen source (b) activating
alcohols as a hydrogen source.

Compared with transition-metal catalyzed transfer hydrogenation, TiO2 photocatalysis could
achieve similarly high selectivity and yield, but usually in much milder ambient conditions and
even visible-light irradiation. In recent years, some studies have uncovered that under strictly
controlling anaerobic conditions, photo-induced holes on TiO2 nanoparticle surface in the suspending
solution have the capacity to oxidatively remove hydrogens from alcohols or amines and deliver these
hydrogens to the conduction band of TiO2 where the hydrogens combined with the conduction-band
electrons and further selectively transferred to the unsaturated compounds such as carbonyls, imines
multiple bonds(see Scheme 2b) [60–63]. It is heartening that practices and principles of TiO2

photocatalysis in these transfer hydrogenations of substrates containing C=C, C=O, N=O and C-X
bond have overcome a lot of the traditional thermocatalysis’ limitations and flaws originating from
high temperature operations. Being environmentally benign, photo-, acid- and basic stable, extremely
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convenient in separation and recyclization, TiO2 photocatalysis seems to be an ideal choice for transfer
hydrogenations if scaling-up and enantioselectivity control issues are solved. Moreover, accompanying
with the elucidation of the detailed mechanism and pathway by trapping the reaction intermediates and
determining H/D kinetic isotope effects in the process of simultaneous oxidation of hole-scavenger and
reduction of target organic substrate, the efficiency and the chemo-, regio- and even enantioselectivity
of this methodology would be greatly improved. In this article, according to the unsaturated bond
being reduced by TiO2 photocatalyst, this review is mainly divided into the following parts: (1) Transfer
hydrogenation of C=C and C≡C (2) C=O and C=N (3) N=O. As the hydrodehalogenation by TiO2

photocatalysis has been recently reviewed by Zhao et al [64], this review would not cover this section.
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amine compounds.

2. Transfer Hydrogenation of C=C and C≡C Bonds

Catalytic reduction of C=C to C-C bonds are very important transformations in synthetic
organic chemistry [65,66]. In drugs, agrochemicals and fine-chemicals structure, sp3C-sp3C moiety
is ubiquitous and indispensable [67,68]. Saturated cyclic structures become more and more
important in the discovery of new drug molecules [69]. With the requirement for eco-sustainable
chemistry, green and mild catalytic hydrogenation process of C=C to C-C bonds is extremely desired.
Heterogeneous TiO2 photocatalysis provides a feasible plan.
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Not much later than Fujishima’s groundbreaking report on TiO2 photocatalysis application
in water-splitting [70], Boonstra et al. discovered that TiO2 could act as a catalyst for the
photohydrogenation of gaseous ethylene and acetylene [71]. They described that when TiO2 powder
was degassed with ethylene or acetylene and illuminated by near-UV (ultra-violet) light, hydrogenated
paraffin products were generated. The authors demonstrated that surface Ti-O-H provided reductive
H-species to hydrogenate acetylene and ethylene. Kubokawa et al. discovered that after water vapor
adsorption, TiO2 became a more effective catalyst for photohydrogenation of short-chain alkynes and
alkenes. The main products were alkanes and bond fission products. Although the efficiency and
selectivity were fairly low, this report spurred the further research on TiO2 photocatalyzed transfer
hydrogenation of unsaturated compounds (as shown in Scheme 3) [72].
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Scheme 3. TiO2 photocatalyzed transfer hydrogenation of ethylene and acetylene using water vapor
as a hydrogen source.

Further investigation over the reaction process by electron-paramagnetic-resonance (EPR)
experiments and other mechanistic studies proved that it was H2O not surface Ti-OH which reduced
alkynes and alkenes [73]. Furthermore, Anpo et al. discussed the influence of Pt-loading to the
efficiency and product distribution of this reaction using water vapor as a hydrogen donor [74].
Using Pt-loaded TiO2 powder as the photocatalyst, much less bond fission occurred, since in-situ
evolved hydrogen atoms transferred into substrates more easily on Pt nanoparticles than on TiO2

surface (as shown in Scheme 4). By preparing much smaller TiO2 nanoparticles with diameters
~50 Å, an apparent quantization effect appeared. The photohydrogenation efficiency of CH3C≡CH
and HC≡CH was greatly enhanced with smaller TiO2 nanoparticles in comparison with bulk TiO2

particles [75]. The quantum yield was measured and the experimental result showed that as TiO2

nanoparticle became smaller, the quantum yield of the photohydrogenation of alkynes increased
greatly. Yamataka et al. discovered that when hydrogen donor was changed from water vapor to
alcohols such as ethanol or propan-2-ol, using platinized TiO2 as photocatalyst, much enhanced yield
could be achieved for long-chain alkenes and alkynes transfer hydrogenation to alkanes [76]. This is a
major advance for transfer hydrogenation by TiO2 photocatalysis.

Apart from Pt-loaded TiO2, Baba et al. designed and synthesized the bimetal-deposited TiO2

and used it as an effective photocatalyst for transfer hydrogenation of ethylene with water vapor as
HDC [77]. They discovered that a noble metal component such as Pt or Pd could act as hydrogen
evolution and hydrogenation catalyst, while the second metallic component such as Ni or Cu acted as
an efficient adsorbent for ethylene. Thus, bimetallic photocatalyst such as Pt/TiO2/Cu or Pd/TiO2/Ni
was synthesized demonstrating higher selectivity for ethylene photohydrogenation to ethane other
than C=C fission to CH4 and H2 (as shown in Scheme 5).
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alkenes on unloaded and Pt-loaded TiO2.
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Scheme 5. Bimetal nanoparticle-loaded-TiO2 photocatalyzed transfer hydrogenation of ethylene.

Kuntz et al. discovered that using poly-vinyl alcohol as a hydrogen donor, an electron-transfer
reagent MoO4

2− acted as co-catalyst, acetylene transfer hydrogenation to ethane by TiO2 photocatalysis
could be furnished (as shown in Scheme 6) [78]. They described that MoO4

2− ion adsorbing on TiO2

colloidal particle surface would promote the adjacent Ti(III) sites to execute four-electron reduction
of acetylene through an electron-relay effect. Molybdenum played a similar role as noble-metal
platinum to catalyze the hydrogen generation and hydrogenation. Later on, the same group further
unearthed the mechanism behind the polynuclear Mo2 and Mo3 oxo species in assisting colloidal TiO2

nanoparticles to hydrogenate acetylene [79].
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Scheme 6. Molybdenum modified TiO2 photocatalyzed transfer hydrogenation of acetylene.

Both Mo2 and Mo3 oxo species promoted the photohydrogenation of acetylene to ethane by a
4-electron process on TiO2 colloidal particle surface. Besides, Mo2 oxo species also enhanced the
ethylene to ethane 2-electron photoreduction process. In further studies, they designed a more efficient
molybdenum-sulfur co-catalyst other than molybdenum-oxo for acetylene photohydrogenation by
TiO2 colloidal particle [80]. MoS4

2− and the dimeric Mo2S4(C2H4S2)2
2− co-catalysts provided a higher

turn-over number and quantum yield in comparison with its molybdenum-oxo analogues. In their
ending work on this theme, Kuntz et al. designed and prepared the optimal molybdenum-based
co-catalyst for acetylene photohydrogenation to ethane by TiO2 colloidal particle [81]. They combined
the advantages of both Mo-oxo and Mo-sulfur co-catalysts and synthesized a dimeric co-catalyst
Mo2OxSx(cys)2

2−. A greatly improved quantum yields as high as 9.21% was achieved with the record
high turn-over number (TON = 32.9) for acetylene photohydrogenation to ethylene by TiO2 catalyst
system. The reason for this high catalytic activity was that the processes of electrons accepting from Ti
(III) sites and electrons donating to the substrates bound to TiO2 surface were both greatly enhanced
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by this co-catalyst. This co-catalyst provided comparable catalytic possibility as platinum for this
multi-electron transfer process of TiO2 photocatalyzed transfer hydrogenation.

As an environmentally benign photocatalyst, TiO2 has little bio-toxicity and no secondary
pollution. However, since TiO2 nanoparticle surface is extremely hydrated and possesses numerous
polar Ti-OH groups, this material is extremely hydrophilic. Effectively adsorbing and converting
non-polar and weak-polar functional group on TiO2 surface is very challenging. For hydrogenation
of olefins with only C=C olefinic functional group, bare TiO2 photocatalyst without metal co-catalyst
loading is generally considered to be futile. Although the benzene ring has weak adsorption interaction
on polar TiO2 surface by the coordination of unoccupied Ti 3d orbital with benzene π-electron cloud,
TiO2 photo-induced conduction-band electrons commonly could not photoreduce benzene C=C bond,
because of its extreme inertness against the reductive transformation of the benzene ring. However,
when C=C bond is conjugated to another polar functional group such as C=O bond, the polarity and
redox potential of C=C bond is increased by a certain degree, because of the conjugation and induction
effect of C=O bond. In this way, the 1,4-conjugate hydrogenations of C=C bond by TiO2 photocatalysis
become possible if chemoselectivity can be successfully controlled. As shown in Scheme 7, Walton et al.
reported that under UV light excitation, P25 TiO2 could catalyze the transformation of maleimides
and maleic anhydride to succinimides and succinic anhydride using methanol as a hydrogen donor
achieving good to excellent yields (yields ranging from 60% to 94%) [82].
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ethanol as a hydrogen source.

Compared with earlier work by Kubokawa [72] and Anpo [74,75], the main development in this
work was using alcohols instead of water vapor as hydrogen donors. This modification extremely
enhanced the yield of hydrogenated products and chemoselectivity. Moreover, pristine maleimide
bearing NH group can be selectively converted to succinimide with NH group intact. Furthermore,
the authors expanded the substrate scope to N-aryl maleimide. Prolonged irradiation time was required
and decreased isolated yield was obtained (9–79%). The key to the success of this transformation was
the appropriate choice of a suitable class of olefin, i.e. maleimides, which has C=O group conjugated
to C=C bond, leading to the non-polar olefinic bond’s diffusion, approaching and adsorption to TiO2

surface catalytic sites much easier, which greatly promoted the hydrogen transfer process. Moreover,
suitable choice of hydrogen donor and solvent was also pivotal for the success of this reaction.
Methanol hole-scavenger acted as the hydrogen donor, while the addition of acetonitrile decreased the
nucleophilicity of methanol, thus reduced the possibility of the ring-opening side-reaction caused by
methanol and methoxide species’ nucleophilic attack.

If C=C bond is not conjugated to C=O bond, its reduction becomes much more challenging due to
the much-reduced redox potential [83,84]. Although pristine TiO2 photocatalyst could not initiate the
reduction of styrene C=C bond, Pd-loaded TiO2 could realize this transformation achieving nearly
quantitative yield [83]. In this case, Pd-H species played a very significant role to reduce C=C bond,
since it possessed strong reducing power. However, the functional group tolerability of this method
was not fully investigated.
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Although TiO2 photocatalysis has accumulated some success in the transfer hydrogenation of
C=C olefinic bond in maleimides, maleic anhydride and styrene, the reaction and substrate scopes are
still very limited. The expansion of this method to the world of complex pharmaceutical and natural
products synthesis still has long way to go. In the chemical markets, there are many desirable products
used as pharmaceuticals, drugs and agrochemicals such as imatinib, bortezomib and imidacloprid,
which are often required to be synthesized from the selective hydrogenation of unsaturated carbocyclic
or heterocyclic structures of available precursors. Thus, developing more general methodology
especially adapted to inactivated alkenes with an easily-reducible functional group is urgently needed.
Moreover, to achieve selectivity including chemo-, regio- and enantioselectivity is also the future
direction for transfer hydrogenations of C=C and C≡C bonds via TiO2 photocatalysis. To realize
these goals, modification and crystal engineering of TiO2 nanomaterials, hybridizing TiO2 with other
nanomaterials and the synergistic use of different catalysis modes would provide possible solutions.

3. Transfer Hydrogenation of C=O and C=N Bonds

Transfer hydrogenations of C=O bonds are extremely important since a variety of pharmaceuticals,
agrochemicals and natural products are required to possess the bioactive asymmetric C-OH center,
which can be conveniently prepared from the enantioselective reduction of the corresponding carbonyl
compounds. Compared with transfer hydrogenations of C=C and C≡C bonds, TiO2 photocatalyzed
transfer hydrogenations of C=O bonds have garnered more successes. The reason lies in that the
hydrophilic TiO2 surface could effectively adsorb polar organic compounds by hydrogen bonds and
coordination interaction of C=O lone-pair electrons with Ti 3d empty orbitals. In this way, polar C=O
bonds could be facilely converted to C-OH bonds by interfacial electron/proton transfer, hydride
transfer or hydrogen atom transfer delivered by HDC such as methanol, ethanol, i-propanol or
triethylamine on TiO2 nanoparticle surface.

Kohtani’s group has conducted a series of excellent work on TiO2 photocatalytic transfer
hydrogenations of aryl carbonyl compounds using alcohols as hydrogen donors [55,85–90]. In their
most recent work, even moderate enantioselectivity for aryl ketones’ conversion to chiral secondary
aryl alcohols was realized (as shown in Scheme 8) [56]. Although previous work of König’s group
had proved that the combination of TiO2 photocatalysis and imine organocatalysis could facilitate
the asymmetric aliphatic aldehyde α-alkylation using α-bromomalonate as alkylating reagent [52],
Kohtani’s discovery was the pioneering work in realizing heterogeneous asymmetric photocatalysis
by fabricating a chiral TiO2 surface and directly deploying this surface for the asymmetric induction.
In König’s work, TiO2 photocatalyst only acted as photo-redox catalyst without participating in chiral
control [52]. However, Kohtani et al. accomplished the preparation of chiral TiO2 surface and applied
this chiral surface for enantioselective control [56].

By adsorbing the chiral R-mandelic acid on TiO2 nanoparticle surface, the semiconductor surface
became discriminative in transfer hydrogenation of acetophenone. This asymmetric transformation
was furnished with 33% ee value. Although this ee value was not ideal, it demonstrated the
possibility of fabricating asymmetric active sites on the TiO2 surface by adsorbing appropriate chiral
molecules [52,56,91,92]. In this way, the asymmetric catalytic sites would impose the influence on
transfer hydrogenations by providing sterically differentiated environment for ketone substrate to
access these sites. Namely, the direction of attack from both photo-induced holes and electrons was
of asymmetry.
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Scheme 8. (Top): Chiral reagents modified-TiO2 photocatalyzed enantioselective transfer
hydrogenation of acetophenone. (Bottom): Proposed models for (left) bidentate and (right)
mono-dentate adsorption of (R)-mandelic acid (MA) and interaction between aromatic ketone and MA
on the TiO2 surface.

In their earlier work, Kohtani et al. developed the transfer hydrogenation of aryl ketones and
aldehydes to aryl secondary and primary alcohols. In 2010, this group initially reported the transfer
hydrogenation of ketones by TiO2 photocatalysis using ethanol as a hydrogen donor (as shown
in Scheme 9). Using ethanol or methanol as a hydrogen donor is very advantageous, since these
short-chain molecules are volatile and easy to be separated from the mixture of the product by
rotatory evaporation.
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Scheme 9. TiO2 photocatalyzed transfer hydrogenation of acetophenone derivatives.

Using commercial Degussa P25 TiO2 as photocatalyst under >340 nm irradiation, benzaldehyde
and several acetophenone derivatives were transformed into the corresponding alcohols with good
yields, respectively [85]. Aryl carbonyl compounds with less steric hindrance were hydrogenated
preferentially. For instance, tert-butyl and iso-propyl phenyl ketones were reduced much more
sluggishly and provided poorest yields (7% and 25%) in prolonged time compared with unsubstituted
benzaldehyde and acetophenone. Moreover, this method could be extended to a variety of
acetophenones with electron-donating and electron-withdrawing groups on phenyl ring resulting in
good to excellent yield. Besides, bicyclic aryl ketones 2-acetonaphthalone could also be reduced with
this method using either ethanol or i-propanol as HDC. However, this method could not be extended
to aliphatic ketones. Cyclohexanone did not convert at all in this photocatalytic system, due to its much
greater electron density and much lower redox potential. For diaryl ketone and aryl cyclic aliphatic
ketone, this method was proved to be valid providing yields ranging from 78% to >99%. Later on,
insightful mechanistic studies for this transformation were conducted. The different reduction modes
of acetophenone and 2,2,2-trifluoroacetophenone were unveiled by systematic kinetic and adsorption
studies [86,87]. Although 2,2,2-trifluoroacetophenone possessed higher redox potential, its reduction
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was slower than acetophenone. This phenomenon mainly originated from the ketone-hemiketal-ketal
equilibrium. The rate-determining-step of the reduction was the hemiketal-ketone tautomerization.
Only ketone form could be adsorbed on TiO2 surface by C=O lone-pair electrons with Ti 3d empty
orbital. In 2,2,2-trifluoroacetophenone, the hemiketal and ketal are the major species, while for
acetophenone, the ketone form is the major species. This subtle difference was uncovered and
exploited to design more efficient transfer hydrogenation catalyst systems.

Apart from UV-light excited transfer hydrogenation of ketones, visible-light could also be applied
for hydrogenation of aryl ketones to secondary aryl alcohols. For example, Kohtani et al. reported
that fluorescein and rhodamine B dye-sensitized TiO2 semiconductor photocatalyst could mediate
the transfer hydrogenations of acetophenones and fluoro-substituted acetophenone derivatives
under visible-light irradiation (as shown in Scheme 10) [55]. Initially, the dye molecules were
anchored on the surface of TiO2 nanoparticles through carboxylate or phenolic linking groups.
These adsorbed dye molecules were excited by the visible-light irradiation and the excited-state
electrons on dye LUMO were injected into TiO2 conduction band. These electrons on TiO2

conduction band reduced acetophenones C=O group coupled with protons, while triethylamine
substrates were oxidized by the ground state dye radical cations to continuously supply protons
and electrons. Furthermore, the efficiency of this visible-light-sensitized protocol was greatly
increased by the introduction of more absorptive dyes. A series of pristine and thiophene-modified
coumarin derivatives were chosen as the photosensitizers for visible-light driven TiO2 photocatalytic
transformation of acetophenone to 1-phenyl-ethanol [88]. The irradiation time to reach the same
conversion was greatly shortened compared with the previous dye-sensitized system when appropriate
hydrogen donor was chosen. Moreover, the author studied the kinetics of this transformation in
detail [87]. Seven acetophenone derivatives were systematically investigated for this reductive
transformation. Their redox potential, adsorptive energy on TiO2 surface and electron transfer
efficiency were compared. From these experimental and theoretical results, a plausible mechanism
was proposed. The Ti defect sites of TiO2 photocatalyst acted both as the adsorption and the
electron transfer sites. The reaction rate and yield were mainly determined by the redox potential of
acetophenones, as well as the adsorption interaction. Furthermore, the same group discovered that
2-fluoroacetophenone showed different product distribution in the TiO2 photocatalyzed transfer
hydrogenation with fluoro-substituted acetophenones in spite of their similar structures [89].
2-fluoroacetophenone provided defluorinated acetophenone, while 2,2,2-trifluoroacetophenone
yielded 2,2,2-trifluoro-1-phenylethanol and 2,2-difluoroacetophenone formed both the defluorinated
and the hydrogenated products. To explain this phenomenon, the plotting of the reaction rate versus
the redox potential of different fluorinated acetophenones was conducted. The experimental results
showed that the redox potential of fluorinated acetophenone determined the chemoselectivity of this
transfer reduction. The chemoselective transfer hydrogenation of ketones and aldehydes to alcohols
provided feasible functional group interconversion and the derivatization methods of pharmaceutically
interesting molecules.
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Aldehydes could also be directly transformed to primary alcohols by TiO2 photocatalyzed transfer
hydrogenation [93]. Li et al. reported that in the presence of HDC such as ethanol or i-propanol,
both aromatic aldehydes and aliphatic aldehydes could be reduced to the corresponding primary
alcohols in a TiO2 suspending solution under near-UV irradiation (as shown in Scheme 11) [93].
By the comparison of the isotope tracing experiments results and kinetics curve analysis of different
functionalized benzaldehyde derivatives, they demonstrated that this reaction proceeded through
a stepwise SET (single electron transfer) mechanism accompanied with simultaneous protonation
other than direct hydrogen atom transfer pathway. Besides alcohols, oxidable amines are also excellent
hole-scavenger and hydrogen source for some dye-modified TiO2 photocatalytic system with lower
redox potential and oxidability, since amines are usually easier to donate electron than alcohols.
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Scheme 11. TiO2 photocatalyzed transfer hydrogenation of benzaldehyde.

Not only carbonyl C=O could be effectively reduced to the corresponding C-OH bonds, but imine
C=N bonds could also be photohydrogenated by TiO2 photocatalyst. Ohtani et al. reported that under
UV irradiation in a Pt-TiO2 suspending solution, N-benzylidenebenzylamine and N-benzylideneaniline
could be hydrogenated to the corresponding secondary amine dibenzylamine and N-benzylaniline
with the simultaneous photo-oxidation of 2-propanol by TiO2 photo-induced hole, respectively, in high
selectivity and yield (as shown in Scheme 12) [60].Molecules 2019, 24, x FOR PEER REVIEW 11 of 21 
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Scheme 12. TiO2 photocatalyzed transfer hydrogenation of Schiff bases.

This transfer photo-hydrogenation occurred in a stepwise SET followed by protonation pathway
the same as the previous Li’s example for benzaldehydes. They discussed the influence of Pt-loading,
the addition of desiccating reagents, acid and the preparation condition of the photocatalysts to
the overall selectivity and yield. An earlier report by Kagiya et al. demonstrated that both the
symmetrical, unsymmetrical secondary and the tertiary amine could be synthesized by the Pt-TiO2

photocatalyzed transfer hydrogenations of in-situ formed imine intermediate which were generated
from the condensation of primary amines and alcohols [94–96]. Apart from aldehyde and dihydrogen,
no other by-products were formed. With the introduction of an alcoholic solvent, unsymmetrical
secondary and tertiary amines were synthesized from Pt-TiO2 photocatalyzed hydrogenation of
imines. In this case, imines were generated from the condensation of primary amines and aldehydes,
which were formed through oxidation of the alcohol solvent by photo-induced holes [94]. Moreover,
Ohtani et al. reported that α,ω-diamino carboxylic acids could be transformed to five- or six-membered
cyclic imino acids via Pt-TiO2 photocatalysis [95]. They described that α,ω-diamino carboxylic acids
were initially oxidized by photo-induced holes to the corresponding α-keto acid or ω-aldehyde
intermediates bearing carbonyl and amino groups. Condensation between carbonyl and amino groups
generated the cyclic imine intermediate. The following reduction by conduction band electrons in
Pt-TiO2 along with protonation provided the final cyclic imino acid products. Pt-loaded TiO2 particles
played two pivotal roles in these C=N transfer hydrogenations. The first was to act as proton reduction
site to generate dihydrogen. The second was the hydrogenation site to help the dihydrogen molecule
reduce C=N bond to amino compounds.

When polar C=O was conjugated to non-polar C=C bond, Au/TiO2 or Pt/TiO2 could act as
chemoselective photocatalyst to reduce C=O bond to C-OH with C=C bond intact. Li et al. reported



Molecules 2019, 24, 330 12 of 22

that under 365 nm UV irradiation, Pt/TiO2 photocatalyst provided excellent performance with record
high apparent quantum yield (AQE) for photocatalytically selective reduction of cinnamaldehyde to
cinnamyl alcohol (as shown in Scheme 13) [57]. Besides, Au/TiO2 also achieved satisfactory selectivity
at high conversion under visible-light irradiation (> 420 nm).
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Scheme 13. Au/Pt-TiO2 photocatalyzed transfer hydrogenation of cinnamaldehyde to
cinnamyl alcohol.

They postulated a six-membered transition-state model to illustrate this chemoselectivity.
Under UV or visible-light irradiation, TiO2 photo-induced holes oxidize the electron and hydrogen
donor i-propanol yielding active hydrogen species on metal particles. The C=O group adsorbed on
TiO2 surface and occupied the vicinal position to the metallic nanoparticle which adsorbed hydrogen.
This vicinity facilitates the hydrogen transfer from metal to C=O group on TiO2 surface. Once alcohol is
adsorbed on the TiO2 surface by hydrogen bonds, the photo-induced holes migrate to TiO2 surface and
then oxidize these adsorbed alcohol molecules to generate protons and aldehyde product. The protons
combine with TiO2 photo-induced electron on Au and Pt anchoring sites yielding hydrogen atoms or
dihydrogen. These active hydrogen species generated by Au or Pt nanoparticle will reduce C=O bonds.
Moreover, this article also indicated that alcohol oxidation and the simultaneous carbonyl reduction
both occurred at the Au- or Pt-adsorbed TiO2 site.

Apart from plasmonic metal-loaded TiO2 nanoparticles photocatalyst systems for
chemoselective C=O reduction over thermodynamically more favorable C=C reduction [87],
organic molecules-modified TiO2 nanoparticles could also solve this chemoselectivity issue.
Dihydroxynaphthalene chelated TiO2 nanoparticles behaved as efficient photocatalyst for visible-light
induced transfer hydrogenation reduction of benzaldehydes to the corresponding benzyl alcohols
with the maintaining of easily-reducible functional group kept intact [97]. By a simple impregnation
procedure, the as-synthesized dihyroxynaphthalene-modified TiO2 nanoparticles promoted the
transfer hydrogenation of a variety of benzaldehydes with chloro, bromo, iodo, acetyl and cyano groups
kept intact [97]. This high selectivity originated from attenuated reducing power of dye-sensitized
conduction-band electrons compared with direct UV-light induced conduction-band electron.

Using TiO2 and modified TiO2 nanomaterials, a series of compounds with C=O and C=N bonds
could be photohydrogenated to the corresponding saturated alcohols and amines products, respectively.
In this way, TiO2 photocatalysis provides one of the most important means for reductive transformation
of polar unsaturated compounds to the corresponding saturated ones using short-chain alcohols or
amines as hydrogen sources. This method could be applied in the production of alcohols and amines
molecules, which are often very important products, key intermediates and candidates for drugs,
agrochemicals, flavors and fragrances. The most economically interesting products such as chiral
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drugs with saturated heterocyclic structures could be synthesized by this prospective methodology.
TiO2 photocatalyzed transfer hydrogenation strategies to reduce C=O and C=N bonds with other
sensitive and bio-active groups kept intact has the potential to enlarge the synthetic toolbox of building
complex molecule, shorten synthesis steps and maximize economic benefit.

4. Transfer Hydrogenation of N=O Bonds

The amino group plays pivotal role in many important drug molecules and agrochemicals [98].
The most convenient method to prepare the amino groups is the selective reduction of nitro groups.
However, this transformation is challenging due to the difficulty in controlling selectivity [99].
Common reductant such as NaBH4 or LiAlH4 often leads to the mixture of nitroso, amino, azo,
azoxy and hydrazine products which are often difficult to separate requiring time-consuming column
chromatographic operations. Generally, thermocatalytic transformations of nitro to the amino group
often require noble metal catalysts Pd and explosive dangerous gaseous H2 [100]. To meet the demand
and principle of green chemistry, TiO2 semiconductor photocatalysis provided a very promising
means of nitro to amino compounds based on transfer hydrogenation mechanism (as shown in
Scheme 14) [101].
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Scheme 14. TiO2 photocatalyzed transfer hydrogenation of nitrobenzenes using alcohol as a
hydrogen source.

As early as 1993, Li et al. discovered that when TiO2 nanoparticles suspended in an ethanol
solution, nitrobenzenes could be transformed into the corresponding amino compounds in good
isolated yields under UV irradiation [102]. The high efficiency and selectivity was thermodynamically
controlled by the difference of reduction potential between nitro compounds and TiO2 conduction
band electrons. The conduction band potential of TiO2 (−0.85 V versus SCE) in acetonitrile, is more
negative than p–nitroacetophenone (–0.1 V versus SCE).

Brezová et al. systematically studied the solvent influences on the efficiency of TiO2

photocatalyzed chemoselective 4-nitrophenol reduction to 4-aminophenol [61]. They discovered
that viscosity, polarity, polarizability and polarity/polarizability ratio all influence the efficiency.
A solvent with the minimum viscosity, the maximum polarity, polarizability and the highest
polarity/polarizability ratio, namely, methanol provided the highest reaction rates when other
conditions were identical.

Ferry et al. conducted the studies to confirm the real reducing species of TiO2 photocatalyzed
aromatic nitro and aliphatic nitro compounds reduction: Alkylhydroxy radicals or TiO2 conduction
band electrons [63,103]. From the carbon and nitrogen mass-balance experiments, they discovered
that hydroxylamine may possibly be the pivotal intermediates. By comparing the kinetics curve of
nitro compounds with different substitution groups, the authors deduced a counterintuitive point that
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nitro compounds with electron-withdrawing group would retard the transformation of nitro to the
amino group. Moreover, from the kinetics plot of the reaction rate of nitro compounds versus the redox
potential of different alcohols such as methanol and i-propanol, TiO2 conduction band or trapped-state
electrons other than α-alkylhydroxy should be known as responsible for reductive transformation,
albeit different nitro compounds showed almost the same kinetics constant in the presence of either
methanol or i-propanol.

Using electron-paramagnetic-resonance (EPR) techniques as the characterization tool,
Brezová et al. [62] studied a number of key intermediates in the TiO2 photocatalytic transfer
hydrogenation of nitrosobenzene derivatives. Taking nitrosobenzene as an example, they demonstrated
the mechanism of TiO2 photocatalytic transfer hydrogenation of aromatic nitroso compounds by
i-propanol as HDC, in which the radical species were characterized during the photocatalysis
process. (as shown in Scheme 15). Initially, photo-induced electrons on TiO2 conductor band
reduce nitrosobenzene to form mono-valence radical anion along a SET route. After protonation,
N-OH• radical was generated. During the EPR measurements, no spin-trapping adducts of alkoxy,
hydroxylalkyl and alkyl free-radicals were observed. Moreover, deuterium labelling experiments using
CD3OD/toluene mixed solvent with other conditions identical were conducted. In agreement with
the authors’ proposition, N-OH• was characterized by its different hyperfine splitting in comparison
with N-OH•.Molecules 2019, 24, x FOR PEER REVIEW 14 of 21 
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Scheme 15. Mechanism of aromatic nitroso compounds transfer reduction by TiO2 photo-generated
electron and proton in i-PrOH as demonstrated by the EPR studies.

Furthermore, the authors studied other nitrosobenzene derivatives (2-nitrosobenzene,
nitrosodurene, 2,3,4,5-tetramethylnitrosobenzene, 2,4,6-tritert-butylnitrosobenzene,
3,5-dibromo-4-nitrosobenzenesulfonate and 2-methyl-2-nitrosopropane) photo-induced transfer
hydrogenation reductions with alcohol (methanol, ethanol and i-propanol) in TiO2 slurry by
EPR technique. All the results obtained the similar conclusion of transfer hydrogenation, that is,
photo-induced hole oxidation of alcohols produces protons and corresponding aldehydes products
in terms of 2e-ET, while the photo-induced electrons reduced nitrosobenzenes along a stepwise
SET route.

Makarova et al. prepared surface modified TiO2 nanomaterials with L-arginine, lauryl sulfate
and salicylic acid as modifier [104–106]. After surface modification with arginine, nitrobenzene
adsorption on TiO2 surface was enhanced and the transformation of nitrobenzene to aniline was
greatly accelerated by this modification strategy. From 10 K, 120 K and 200 K varied-temperature
EPR experiments, the authors uncovered that upon surface arginine modification, the surface trapped
electron signals were absent in the EPR spectra, which differed greatly with bare TiO2 and other two
modified samples. This phenomenon was mainly reasoned to derive from the fairly good electron
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coupling between TiO2 and arginine through the anchoring group of ammonium and carboxylate
group of L-arginine with TiO2 surface oxygen lone-pair electron of Ti-O and Ti 3d unoccupied orbital.
This electron coupling interaction facilitated TiO2 trapped electrons transfer to nitrobenzene more
efficiently, leading to the highest yield for arginine modified TiO2. Tada et al. loaded Ag clusters onto
TiO2 nanoparticles surface to realize a reasonable delivery photocatalytic reaction system (RDPRS)
for the transformation of nitrobenzene to aniline [107]. They discovered that upon Ag cluster loading,
the activity and the aniline product selectivity were both drastically increased. From the adsorption
experiments investigation, the authors discovered that nitrobenzene was selectively adsorbed on Ag
cluster rather than on bare TiO2 and the aniline product was neither adsorbed by Ag nor by TiO2.
This difference in adsorptivity facilitated the desorption of aniline from TiO2 surface against further
unselective over-oxidation. Also, the surface plasmonic effect of Ag particles enhanced the electron
transfer from TiO2 conduction band to the nitrobenzene compounds, which accelerated the hole
oxidation by means of the rapid transfer of conduction band electron.

Zhang et al. systematically investigated different factors influencing the yield and selectivity of
p-chloronitrobenzene reduction to p-chloroaniline [108]. They discovered that solvent played pivotal
role in increasing product yield of p-chloroaniline. HCOOH/i-propanol as a hydrogen donor and
solvent provided the best results achieving quantitative yield (99.2%). i-propanol is the best solvent
and hydrogen donor, since i-propanol has the largest steric hindrance and highest redox potential
among small molecule alcohols. This means that the TiO2 photo-induced hole oxidation of i-propanol
is more difficult and slower than other hydrogen donor, which possibly provided a milder reduction
condition and thus received good selectivity and yield of the transfer hydrogenation.

Kominami et al. studied the TiO2 photocatalytic reduction of nitrobenzene using oxalic acid as
green transfer hydrogenation reagent in aqueous solution [109]. They discovered that in the presence
of a small partial pressure O2 (5%), higher yield of aniline was achieved than in the absence of O2.
Although the authors did not provide the essential role of this small amount of O2, we proposed that
the low partial pressure O2 possibly acted as an electron shuttle or energy transfer reagent through
ROS species that facilitated the electron and energy transfer processes during the total photocatalytic
transfer hydrogenation. With the optimal conditions in hand, an excellent 95% yield of aniline was
realized using oxalic acid hydrogen source in the aqueous solution. The only by-product was the
oxidation product of oxalic acid-CO2.

Shiraishi et al. utilized rutile TiO2 nanoparticles as a photocatalyst for effective nitrobenzene
reduction. (as shown in Scheme 16) [110]. For rutile TiO2, more Ti3+ species on the surface of TiO2

were generated upon UV irradiation than anatase. The Ti3+ species played a dual role both as the
nitrobenzene adsorption and the electron trapping sites. In the presence of alcohol as a hydrogen
source, a variety of nitrobenzene derivatives could be transformed into the corresponding anilines
in excellent yield (>94%) and quantum yield (25%) with another reducible functional group intact
(as shown in Table 1).
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Table 1. Rutile-TiO2 photocatalytic transfer hydrogenation of nitrobenzenes with i-propanol.

Entry Substrate Solvent t/h Conversion/% Product Yield/%

1
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Reaction conditions: Substrate (50 µmol), rutile-TiO2 catalyst (10 mg), solvent (5 mL), temperature (303 K), N2 (1 atm),
Xe lamp (λ > 300 nm).

Not only UV-light could induce the TiO2 photocatalytic transfer hydrogenation of nitrobenzenes
to anilines, but also lower energy visible green light could excite dye-sensitized TiO2 to catalyze this
transformation. König et al. prepared a TiO2/Ru-N3 metal-oxide semiconductor/transition metal
ion/dye ternary composite catalyst system [58].

Under green-light or sunlight irradiation, excited state N3 dye transferred its electrons to TiO2

conduction band, these in-situ generated TiO2 conduction band electrons reduced the vicinal Pt, Pd or
Au ion to the corresponding metal colloidal particles. These metal particles behaved as reaction
sites for hydrogen generation and hydrogenation of nitrobenzenes. Triethanolamine acted as the
final electron/hydrogen donor to regenerate the ground state N3 dye. This visible-light-induced
transformation demonstrated good substrate tolerability with many functional groups on nitrobenzene
rings kept intact under the standard photoreduction conditions. Moreover, this method provided an
excellent yield for anilines.

Using TiO2 photocatalytic transfer hydrogenation for the transformation of nitro to amino
compounds has already gained great advances since the beginning of the 1990s. A number
of nitrobenzene derivatives could be transformed into the corresponding anilines under UV,
sunlight or even visible-light irradiation under pristine TiO2, meta-loaded TiO2 and dye-sensitized
TiO2 nanomaterials. EPR and surface-sensitive spectrometry such as attenuated total reflection
infrared (ATR-FTIR) and diffuse reflectance infrared Fourier transform spectroscopy (DRITS-FTIR)
provided much information on the reaction pathways of this heterogeneous photocatalytic
reaction [62,63,103,104]. However, there are yet some challenging issues in this field to be addressed.
For instance, how to enhance the optimal yield, utilize the total solar spectrum to near-infrared region
and meliorate the functional group tolerability and extend the application to more complex molecules
are interested in medicinal chemistry and natural product chemistry. All of these called for a more
insightful understanding of the reaction mechanism.

5. Conclusions

We have conducted a review of paragon examples of TiO2 photocatalyzed transfer
hydrogenations. Although still in its budding period in comparison with its currently prevalent
applications in water-splitting, dye-sensitized-solar-cell, aqua system and air atmosphere pollutant
decomposition [111], TiO2 photocatalysis has already exhibited the potential in organic synthesis [112],
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especially in transfer hydrogenation based on safe and cheap HDC (hydrogen donor compounds).
Various unsaturated bonds, including C=C, C≡C, C=O, C=N, N=O bond, could be transformed
into the corresponding saturated C-C, C-O, C-N and N-H bonds, respectively. Compounds with
non-polar olefin and acetylene, polar aldehyde, ketone, imine and nitro functional groups can be
smoothly reduced by TiO2 photocatalysis using transfer hydrogenating reagents, such as water,
alcohols, and amines. By means of this strategy, these unsaturated bonds in functionalized organic
substrates could be transformed into the useful saturated moieties in diverse complex organic
functional molecules. This research topic has already become a hot and active area being focused
by both photocatalytic and synthetic field. Comparing with homogeneous Ru-, Ir-polypyridyl
complex and organic dye photocatalysts, however, TiO2 photocatalysis demonstrates a fairly narrow
substrate scope and limited reaction types and still has much space to improve. Current transfer
hydrogenations by TiO2 photocatalysis still lack selectivity, especially in enantioselectivity. The latter
is the widest gap between the state-of-the-art TiO2 photocatalyzed transfer hydrogenation and the
future requirement for this methodology. Although there are sparse reports of chiral TiO2 surface
photocatalyzed transfer hydrogenation of acetophenone, the ee value is still very low. The scope of
TiO2 photocatalyzed asymmetric transfer hydrogenation needs to be widened. Only by the continuous
efforts in the optimization of reaction conditions and materials engineering of photocatalysts could
this asymmetric photocatalyzed transfer hydrogenation be applied in laboratorial and industrial
scales enantiomer’s synthesis. By more elaborate designing of TiO2 nanomaterials itself or artful
choice of co-catalysts, additives, and reaction parameters, this research area will provide us with
greener, safer, more environmentally benign, efficient designs and strategies to supplement the
traditional transition-metal complexes catalysts and organocatalysts for transfer hydrogenation of
unsaturated compounds.
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