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Abstract: Image encryption is one of the essential tasks in image security. In this paper, we propose a
novel approach that integrates a hyperchaotic system, pixel-level Dynamic Filtering, DNA computing,
and operations on 3D Latin Cubes, namely DFDLC, for image encryption. Specifically, the approach
consists of five stages: (1) a newly proposed 5D hyperchaotic system with two positive Lyapunov
exponents is applied to generate a pseudorandom sequence; (2) for each pixel in an image, a filtering
operation with different templates called dynamic filtering is conducted to diffuse the image; (3) DNA
encoding is applied to the diffused image and then the DNA-level image is transformed into several
3D DNA-level cubes; (4) Latin cube is operated on each DNA-level cube; and (5) all the DNA cubes
are integrated and decoded to a 2D cipher image. Extensive experiments are conducted on public
testing images, and the results show that the proposed DFDLC can achieve state-of-the-art results in
terms of several evaluation criteria.
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1. Introduction

As one of the most important information carriers, hundreds of millions of images are
generated, stored, and transmitted every day. How to ensure image security has become a very
hot topic of research in recent years. Image encryption is one of the most important image security
methods. Encryption algorithms can be roughly classified into two categories: symmetric key
(private key) and asymmetric key (public key) algorithms. The former uses the same key for both
encryption and decryption, while the latter uses a key for encryption and another key for decryption.
Typical private key algorithms include data encryption standard (DES), international data encryption
algorithm (IDEA), advanced encryption standard (AES) and so on. Rivest-Shamir-Adleman (RSA) and
Elliptic-curve cryptography (ECC) are among the very popular public key algorithms. The symmetric
key algorithms are fast, efficient, but difficult to manage keys, while the asymmetric encryption
algorithms are slow but have higher security [1,2]. Due to the inherent characteristics of images such
as strong correlation, high redundancy and bulky data capacity, the above mentioned encryption
algorithms are usually not suitable for direct applications in images. To address this issue, a variety of
image encryption algorithms have been proposed in recent years [3–6].

There are many kinds of operations for the purpose of image encryption, such as shuffling,
permutation, rotation, substitution, confusion, diffusion, transposition, and so on [7]. Among the
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operations, diffusion and permutation are very popular ones because they can achieve good
results and are easy to implement. The diffusion is to change the values of the pixels in images,
while the permutation aims at changing the positions of the pixels. Some practical image encryption
algorithms are capable of handling diffusion and permutation jointly. Due to the characteristics
of ergodicity, pseudorandomness, unpredictability, and extreme sensitivity to initial values and
parameters, chaos-based image encryption has become increasingly popular in recent years. The main
idea of chaos-based image encryption is to conduct diffusion and/or permutation according to the
pseudorandom sequences generated from chaotic systems [8–13]. Very recently, Flores-Vergara et al.
have implemented a chaotic cryptosystem on embedded systems with multiprocessors. The NIST
statistical test and the security analysis have confirmed the proposed cryptosystem is very secure and
robust for image encryption [14]. Wang et al. used a spatiotemporal chaotic system to generate
a pseudorandom sequence, and then used the sequence to conduct permutation and diffusion
simultaneously [15]. Pareek et al. employed two chaotic logistic maps and eight different types
of operations to encrypt the pixels of images, and the experimental results demonstrated the proposed
scheme was real-time, efficient and secure [16]. Hua et al. put forward a new 2D Logistic-Sine-coupling
map that has more complex behavior, better ergodicity, and larger chaotic range than some other
2D chaotic maps, for image encryption scheme. The experiments showed that the proposed scheme
had better security performance than several state-of-the-art encryption approaches [17]. Sahari and
Boukemara proposed a novel 3D chaotic map by integrating the piecewise and logistic maps for
color image encryption, the experimental results showed the efficiency and safety of the proposed
scheme [18]. Zhou et al. proposed a novel image encryption scheme by combining quantum 3D
Arnold transform and quantum XOR operations with scaled 3D Zhongtang chaotic system [19].
Low-dimensional chaotic systems have the advantages of simple forms, only a few parameters, and
easy implementation. However, such properties may make it easy to estimate the orbits and the initial
parameters of the low-dimensional chaotic systems and hence the security of encryption is limited.

In a dynamical system, the Lyapunov exponent (LE) is used to measure the rate of separation
of infinitesimally close trajectories [20]. If a chaotic system has at least two positive LEs, the system
is said to be hyperchaotic. The image encryption algorithms with hyperchaotic systems have been
demonstrated more secure [2,6,21–26]. Chai et al. used a 4D memristive hyperchaotic system to encrypt
4 compound bit planes recombined from the 24-bit planes of components R, G, and B [27]. Li et al.
proposed a quantum image compression-encryption approach with quantum cosine transform and a
5D hyperchaotic system, and the experiments demonstrated that the proposed compression-encryption
approach outperformed some classical image encryption approaches [28]. Zhou et al. used a 5D
hyperchaotic system for quantum color image encryption. Some researchers also applied 6D or 7D
hyperchaotic systems to generate hyperchaotic sequences for image encryption [6,29].

Like other tasks in signal processing, image encryption can also be conducted in both spatial or
transform domain [30–35]. The encryption in spatial domain is very direct, which changes the values
and/or the positions of pixels. To improve the efficiency or the effectiveness of image encryption,
sometime the algorithms can be conducted on higher-level data (blocks of pixels) or lower-level data
(DNA-level data and bit-level data) [36–38]. Generally speaking, for the same processing power,
the lower the data level, the more pixels will be involved in encryption. Therefore, the encryption
processing lower-level data usually achieves better performance of encryption [6]. In the field of
image encryption, the introduction of transform domain is for the purpose of compressing images.
Typical transform methods include discrete cosine transform (DCT) [39–43], Fourier transform [44–46],
and wavelet transform [47–50]. With these transform methods, the image encryption can focus on the
high-energy parts of the images only and discard some low-energy (zero coefficients) parts. Then the
image can be recovered by decryption and corresponding reverse transform.

Some recent progress has improved the performance of image encryption. Regarding diffusion,
Hua and Zhou introduced filtering, a very popular technique in image processing, into image
encryption. The authors make the filtering reversible by setting the right-bottom point of the filter
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to “1”, and they proposed an image encryption algorithm using block-based scrambling and image
filtering (BSIF) with a fixed filter for all pixels [51]. Very recently, Hua et al. have extended image
encryption with Josephus scrambling and filtering diffusion, where the filter is a 2× 2 square with
fixed values [52]. Li et al. used a 1× 3 or 3× 1 filter with dynamically variable values decided by a 7D
hyperchaotic system for filtering (so-called dynamic filtering), and bit cuboid operations, namely DFBC,
for image encryption, and the experiments demonstrated the DFBC could achieve state-of-the-art
results [6]. As far as permutation is concerned, in theory, any reversible position transform can be
used for image encryption. Latin squares are such popular transforms which help to achieve good
results of permutation [53–55]. Xu et al. extended the use of Latin squares in image encryption, and
they treated the pixel-level image as a 3D bit matrix and then conducted operations of Latin cubes on
the 3D matrix, and the experimental results showed that the proposed image encryption achieves both
a desirable level of security and high efficiency [56].

Motivated by the diffusion with filtering and the permutation with Latin cubes, in this paper, we
propose a novel approach that integrats a hyperchaotic system, Dynamic Filtering, DNA computing,
and Latin Cubes, termed as DFDLC, for image encryption. Specifically, the DFDLC consists of five
stages: (1) A 5D hyperchaotic system with 2 positive LEs is applied to generate the chaotic sequences
for subsequent diffusion and permutation. (2) Filters with variable values are generated from the
chaotic sequences, and filtering is conducted on each pixel of the image with a different filter. That is
to say, the value of each pixel is changed by a different filter. This is called pixel-level diffusion with
dynamic filtering. (3) The 2D pixel plane is transformed into several DNA cubes via DNA encoding
rules determined by the chaotic sequence. (4) For each DNA cube, we generate a Latin cube with
the same size and then change the position of each element in the DNA cube via the Latin cube.
This operation is called DNA-level permutation with 3D Latin cubes. (5) All the DNA cubes are
integrated and decoded to a 2D pixel image. The main contributions of this paper are three-aspect:
(1) We propose a novel image encryption using a newly found 5D hyperchaotic system. (2) Pixel-level
dynamic filtering and DNA-level permutation with Latin cubes are used to improve the performance
of image encryption. (3) Extensive experiments on several public images show that the DFDLC is
promising for image encryption.

The remainder of this paper is structured as the following. A brief description of a 5D hyperchaotic
system with two positive LEs, filtering, DNA computing and Latin square is given in Section 2.
In Section 3, a novel image encryption algorithm with dynamic filtering and Latin cube transformation,
namely DFDLC, is proposed in detail. Experimental results are reported and analyzed in Section 4.
Finally, the paper is concluded in Section 5.

2. Preliminaries

2.1. Hyperchaotic Systems

As one of the most popular chaotic systems, the Lorenz chaotic system and its extensions are
very popular in image encryption. Most recently, Wang et al. have found a new 5D autonomous
hyperchaotic system with 2 positive LEs by adding feedback controllers to the Lorenz system,
formulated as Equation (1) [57]:

ẋ1 = x2

ẋ2 = −x2 + ax1 + bx3
1 + cx1x5

ẋ3 = x4

ẋ4 = −x4 + dx3 + ex3
3 + f x3x5

ẋ5 = −gx5 + hx2
1 + ix2

3

(1)

where xj(j = 1, 2, · · · , 5) are state variables, and (a, b, c, d, e, f , g, h, i) are constant parameters.
There are several numerical methods to solve this system, such as Forward Euler (FE), 4th order
Runge-Kutta (RK) and newly proposed trigonometric polynomials [58]. In this paper, we use the
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4th order RK method with a step size of h = 0.001 to solve the hyperchaotic system. When the
parameters (a, b, c, d, e, f , g, h, i) = (4,−1,−1, 2,−1, 2, 0.0, 6,−1) and initial values (x0

1, x0
2, x0

3, x0
4, x0

5) =

(1.618, 3.14, 2.718, 4.6692, 0.618) × 10−2, the attractors of the 5D hyperchaotic system are shown
in Figure 1.
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Figure 1. The attractors of the 5D hyperchaotic system.

2.2. Filtering

Filtering, also termed as convolution, is a very popular operation in the field of image processing,
which can be applied to denoising, smoothing, and sharpening images by changing the values of
pixels. Typically, the operation of filtering is to do convolution between a mask, also known as a
kernel/filter/window, and an image. The values of pixels in an image are changed and hence it seems
that filtering can be used for diffusion directly. However, since traditional filtering cannot be reversible,
the cipher image with such diffusion cannot be recovered. To cope with this issue, Hua and Zhou set
the right-bottom point of the filter to “1” and then align this point to the processed pixel in the image
for convolution, and they proposed a novel image encryption algorithm with block-based scrambling
and such image filtering (BSIF) [51]. However, the BSIF used a fixed filter for all pixel when doing
convolution, limiting the encryption performance. An ideal scheme should use a variable/dynamic
filter for convolution with each pixel.

2.3. DNA Computing

DNA computing, invented by Leonard Adleman, is a type of parallel computing technique
that the information is expressed by four nucleic acids, i.e., adenine (A), cytosine (C), guanine (G),
and thymine (T) [59]. The key factors of DNA for encryption are encoding and decoding rules, and
algebraic operations for DNA sequences. Like 0 and 1 are complementary pairs in binary, 00 (0) and
11 (3), and 01 (1) and 10 (2) are also complementary pairs in DNA computing. Although there are
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4! = 24 combinations in total for DNA encoding, there are only 8 kinds of DNA bases are capable of
meeting the DNA complementary rules, as listed in Table 1. With the encoding rule, an 8-bit pixel in
grayscale image can be expressed by 4 letters. For example, following Rule 5 and Rule 8 in Table 1
, the decimal gray-level 156 (’10011100’ in binary) can be transformed into a 4-letter DNA sequence
’TAGC’ and ’ATCG’, respectively. It can be seen that for a fixed binary sequence, different rules lead to
totally different DNA sequences.

Table 1. Encoding and decoding rules of DNA.

RULE Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8

00 A T T A C G C G
01 C G C G A A T T
10 G C G C T T A A
11 T A A T G C G C

In image encryption, several algebraic operations, such as addition (++), subtraction (--) and
exclusive OR (XOR, ⊗⊗), as listed in Tables 2–4, can be used to change the values of nucleic acids [2].

Table 2. Addition (++) operation.

++ A C G T

A C A T G
C A C G T
G T G C A
T G T A C

Table 3. Subtraction (--) operation.

-- A C G T

A C G T A
C A C G T
G T A C G
T G T A C

Table 4. XOR (⊗⊗) operation.

⊗⊗ A C G T

A A C G T
C C A T G
G G T A C
T T G C A

2.4. Latin Square

A Latin square of order N is an N × N matrix which includes a set S with N different symbol
elements, and each symbol shows only once in each row and each column [53]. For instance, L is a
Latin square of order N, i and j represent the row and column index of an element in L respectively,
and Sk is the k−th element in set S. We can draw a formula as follows:

f (i, j, k) =

{
1, L(i, j) = Sk
0, otherwise

(2)

Given S = {0, 1, · · · , N − 1}, Figure 2 shows an example of Latin square of order 4.
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0 1 2 3
2 3 0 1
1 0 3 2
3 2 1 0


Figure 2. An example of Latin square of order 4.

3. The Proposed Image Encryption Approach

3.1. Hyperchaotic Sequence Generation

In this paper, we used the 5D hyperchaotic system described in Section 2.1 to generate the
hyperchaotic sequence for encryption. Specifically, the generating process has three steps:

Step 1: The sequences generated by the first N0 iterations are discarded to eliminate the
adverse effects.

Step 2: The 5D hyperchaotic system continues to iterate to generate sequences long enough
for image encryption. In the j−th iteration, we can obtain five state values denoted
as sj = {xj

1, xj
2, · · · , xj

5}.
Step 3: When the iteration completes, a hyperchaotic sequence S can be obtained by contacting all

the sj(j = 1, 2, · · · , N) as

S = {s1, s2, · · · , sN} = {x1
1, x1

2, · · · , x1
5, · · · , xN

1 , xN
2 , · · · , xN

5 }
= {s1, s2, s3, · · · , s5N−2, s5N−1, s5N}.

(3)

The real value sequence S is further mapped to an integral sequence as Equation (4):

ki = mod(
⌊

mod((|ki| − b|ki|c)× 1015), 108)
⌋

, 256), (4)

where mod, |·| and b·c denote the operations of modulo, absolute value, and flooring, respectively [2,6].

3.2. Dynamic Filtering

The modified filtering can be applied to image encryption, according to the very recent work
BSIF by Hua and Zhou [51]. However, the BSIF does convolution on each pixel in an image with
a fixed kernel generated from a random sequence. Li et al. used a 1× 3 or 3× 1 variable kernel to
convolute each pixel in an image, that is to say, the kernels associated with each pixel for convolution
are different, so-called dynamic filtering [6]. The experimental results demonstrated the effectiveness
of dynamic filtering. A reasonable assumption is that a dynamic kernel with larger size (e.g., 3× 3 or
5× 5) will lead to better encryption. An example of dynamic filtering with two 3× 3 filters is shown in
Figure 3, where the 3× 3 red kernel and the 3× 3 blue kernel are conducted on the pixels of 34 and
178 in the plain image, and the results of dynamic filtering will be 140 and 214 in the cipher image,
respectively. We can see that with dynamic filtering, the values of pixels in the plain image are changed,
and this procedure can be reversible [51]. Therefore, we can use this operation for diffusion.
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Figure 3. An example of dynamic filtering.

3.3. Image to Cubes

Since 3D Latin cube transformation can be conducted on cubes only, the image for encryption
must be reshaped to one or several cubes. The pseudocode of such transformation algorithm (I2C) can
be described as below.

Step 1: Given an image with size h× w× d, where h, w, and d represent the height, width, and
depth, respectively, calculate the number of the pixels N = h× w× d.

Step 2: Let L = 3
√

N, if L is an integer, jump to Step 3, else jump to Step 4.
Step 3: Get a cube with size L× L× L, return.
Step 4: Define K = 2n, n ∈ N, find the biggest K that meets K ≤ L; then we get a cube with size

K× K× K.
Step 5: Update N = N − K3, if N = 0, return; else jump to Step 2.

For instance, a DNA-level image with size 512× 512× 4 can be transformed into 4 cubes with size
64× 64× 64, while a DNA-level image with size 256× 256× 4 can be transformed into 8 32× 32× 32
cubes. Unlike the previous work that can only encrypts images of specified sizes [56], the proposed
DFDLC can handle images of any sizes with such transformation.

Accordingly, one or several cubes can be merged into a plain image with the reverse procedure of
the I2C.

3.4. 3D Latin Cube

Latin cube is a generalized version of the Latin square. A Latin cube of order N is an N × N × N
cube which includes a set S with N different symbol elements, and each symbol occurs only once in
each row, each column, and each file [56]. Given a chaotic sequence x = {x0, x1, · · · , xqn−1} (q is a
prime and qn is the order of the Latin cubes to generate), we can sort the sequence by ascending to
get an index sequence y = {y0, y1, · · · , yqn−1} and then construct a finite field Fqn on y via redefining
“+” and “×”. With three distinct nonzero elements p1, p2 and p3 in Fqn , the element of Lt(i, j, s) can be
obtained by Equation (5):

Lt(i, j, s) = ys + pt × yj + p2
t × yi, (5)

where t = {1, 2, 3} is the index of the Latin cube, and “+” and “×” are the addition and multiplication
in Fqn , respectively [56]. Figure 4 shows three Latin cubes of order 3 on the set S = {0, 1, 2}, named
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as L1, L2, and L3. When we superimpose the same position of three Latin cubes on the set S, if each
combination occurs only once, we can say these three Latin cubes are orthogonal. For example, when
we combine the three Latin cubes L1, L2 and L3, each of the 27 combinations 000, 001, 002, · · · , 222
occurs only once, so they are orthogonal. By combining L1, L2 and L3, we can get a new cube K shown
in Figure 5. Then a spatial permutation is obtained: (0, 0, 0)→ (0, 0, 0), (0, 1, 0)→ (1, 1, 2), (0, 2, 0)→
(2, 2, 1), · · · , (2, 2, 2)→ (0, 2, 1), i.e., the element in the left position is transferred to the right position.
More generally, Ks(i, j) = (L1(i, j, s), L2(i, j, s), L3(i, j, s)), where s is the index of K (or L), and i and j
are the indices of the row and the column, respectively.

L1

 0 1 2
1 2 0
2 0 1

  1 2 0
2 0 1
0 1 2

  2 0 1
0 1 2
1 2 0



L2

 0 1 2
2 0 1
1 2 0

  1 2 0
0 1 2
2 0 1

  2 0 1
1 2 0
0 1 2



L3

 0 2 1
2 1 0
1 0 2

  1 0 2
0 2 1
2 1 0

  2 1 0
1 0 2
0 2 1


Figure 4. Three examples of Latin cube of order 3.

K1

 (0, 0, 0) (1, 1, 2) (2, 2, 1)
(1, 2, 2) (2, 0, 1) (0, 1, 0)
(2, 1, 1) (0, 2, 0) (1, 0, 2)



K2

 (1, 1, 1) (2, 2, 0) (0, 0, 2)
(2, 0, 0) (0, 1, 2) (1, 2, 1)
(0, 2, 2) (1, 0, 1) (2, 1, 0)



K3

 (2, 2, 2) (0, 0, 1) (1, 1, 0)
(0, 1, 1) (1, 2, 0) (2, 0, 2)
(1, 0, 0) (2, 1, 2) (0, 2, 1)


Figure 5. A new cube K constructed by L1, L2, L3. K1, K2 and K3 are the 1st, 2nd and 3rd squares of
K respectively.

3.5. DFDLC: The Proposed Image Encryption Approach with Dynamic Filtering and Latin Cubes

The DFDLC is conducted on pixel-level diffusion and DNA-level permutation. Specifically,
regarding pixel-level diffusion, we mainly apply dynamic filtering on each pixel in a plain 2D image.
We also used the ciphertext diffusion in crisscross pattern (CDCP) to improve the diffusion results [60].
For DNA-level permutation, we mainly use Latin cube to change the position of each nucleic acid.
In addition, a kind of global DNA permutation similar to the global bit permutation is adopted for
DNA permutation [6]. The proposed DFDLC is illustrated in Figure 6. With the hyperchaotic sequence
generated by the 5D chaotic system, the main steps of the DFDLC are as the following: hyperchaotic
sequence generation, pixel-level diffusion, pixel-to-DNA transformation, DNA permutation, and
DNA-to-pixel transformation.
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Input

CDCP

Dynamic Filtering

Pixel-level Diffusion

Pixel-plane to bit-cuboid

DNA-encoding

DNA-cuboid to cubes

3D Latin cube-permutation

Merge cubes

Global DNA-permutation

DNA-level Permutation Output

Hyperchaotic system

Hyperchaotic Sequence

Transformation

DNA-decoding

Bit-cuboid to pixel-plane

Transformation

Figure 6. The framework of the proposed DFDLC.

The details of the DFDLC are described as follows:

Step 1: Given the keys, generate a hyperchaotic sequence with Equations (1), (3) and (4).
Step 2: Conduct CDCP with pixels of the image. This operation expands a little change in one

pixel of the plain image to very large changes in a variety of pixels of the cipher image.
Step 3: Dynamic filtering on the image. For each pixel, firstly, generate a 3× 3 kernel with the

hyperchaotic sequence and set the right-bottom grid to 1. Secondly, do convolution with
the kernel and corresponding sub-region of the image associated with the pixel. Thirdly,
use the result of the convolution as the new value of the pixel in the cipher image.

Step 4: Transform the pixel image to a DNA image. For each pixel, use an encoding rule decided
by the hyperchaotic sequence to encode one pixel into a string with 4 nucleic acids. The
DNA encoding rule (Rule N ) can be formulated as: N = 1 + mod(x, 8), where x is a
corresponding value in the hyperchaotic sequence regarding the pixel.

Step 5: Transform the DNA image into one or several cubes using I2C.
Step 6: Conduct DNA-level Latin cube permutation. For each DNA-level cube, generate a Latin

cube and then change the position of each nucleic acid according to the Latin cube. In
addition, the DNA XOR operation is conducted on the DNA-level cube with a generated
DNA cube from the hyperchaotic sequence.

Step 7: Integrate all the DNA-level cubes into a DNA image.
Step 8: Conduct global DNA permutation as described in [2].
Step 9: Decode the DNA image into a pixel image. For each nucleic acid, the DNA encoding

rule is decided as the encoding rule in Step 6. The pixel image is the cipher image.

The proposed DFDLC consists of five stages: hyperchaotic sequence generation (Step 1),
pixel-level diffusion (Step 2-3), a transformation from a plane image to cubes (Step 4-5), DNA-level
Latin cube permutation (Step 6-8) and a transformation from cubes to a plane image (Step 9). The keys
of the DFDLC are Step 3 and Step 6, i.e., pixel-level diffusion with dynamic filtering and DNA-level
permutation with 3D Latin cubes, respectively. Although the main objective of Latin cubes in the
DFDLC is for permuting the DNA, it also results in diffusion because the change of the position of
DNA can change the corresponding value of the pixel naturally [6].

The cipher image can be easily decrypted by the inverse steps as listed above.

4. Experimental Results

4.1. Experimental Settings

To validate the performance of the proposed DFDLC, we compare it with some state-of-the-art
image encryption schemes, such as the image encryption with a fractional-order hyperchaotic
system and DNA computing (FOHCDNA) [2], the hyperchaotic and DNA sequence-based method
(HC-DNA) [61], CDCP [60], BSIF [51] and DFBC [6]. We set the parameters for the DFDLC as following.
For the 5D hyperchaotic system, we set (x0

1, x0
2, x0

3, x0
4, x0

5) = (1.618, 3.14, 2.718, 4.6692, 0.618)× 10−2 and
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1000 as the initial values and the preiterating times, respectively. For the compared methods, we use
the parameters as set by the corresponding references.

We used ten publicly accessed images for validating the proposed DFDLC, and the details of the
images are listed in Table 5.

Table 5. Testing images.

Image Size (h × w) Image Size (h × w)

Lena 512× 512 Cameraman 512× 512
Barbara 512× 512 Mandril 512× 512

Bw 512× 512 Pirate 512× 512
Couple 512× 512 Finger 512× 512
Peppers 512× 512 Houses 512× 512

The experiments were conducted using MATLAB 2016b (MathWorks, Natick, MA, USA) on a
64-bit Windows 7 Ultimate (Microsoft, Redmond, WA, USA) with 32 GB memory and a 3.6 GHz
I7 CPU.

4.2. Security Key Analysis

A feasible image encryption algorithm should have a large enough key space and extreme
sensitivity to the key to resist brute force attacks. In this subsection, we will analyze the key space and
the sensitivity of the security key.

4.2.1. Key Space

The key space is the set of all possible security keys that can be used in a system of image
encryption. It was reported that the size of a key space larger than 2100 can provide enough security [62].
Basically, the 5 initial values of the 5D hyperchaotic systems, i.e., (x0

1, x0
2, x0

3, x0
4, x0

5) for Equation (1),
can be constructed as the security keys. If each initial value has the same precision of 10−15, the DFDLC
has a key space with size of 1015∗5 = 1075 ≈ 2249, which is much larger than 2100. Therefore, the
DFDLC can resist all types of brute-force attacks from current computers. Besides, the distinct nonzero
elements in the finite filed for Latin cubes can be used as security keys to improve the key space.

4.2.2. Sensitivity to Security Key

An ideal image encryption approach should be sensitive enough to the security key, that is to say,
a very little change in the security keys will lead to a completely different decrypted image.

We use two groups of slightly different keys to validate the sensitivity to the security keys
of the proposed DFDLC. The first group keys are the initial values of the hyperchaotic system,
i.e., g1 = (x0

1, x0
2, x0

3, x0
4, x0

5) = (1.618, 3.14, 2.718, 4.6692, 0.618)× 10−2, while the second groups are
almost the same as the first group except x0

1 = 0.0168 + 10−15, i.e., g2 = (x0
1 + 10−13, x0

2, x0
3, x0

4, x0
5) =

(1.618 + 10−13, 3.14, 2.718, 4.6692, 0.618)× 10−2. We apply g1 and g2 to decrypt the first five images in
Table 5, and the results are shown in Figure 7. It is clear that even the security keys are changed very
little such as 10−15, the cipher images cannot be recovered correctly, demonstrating the high sensitivity
to security keys of the proposed DFDLC [6].
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Figure 7. Decrypted images of Lena, Cameraman, Barbara, Mandril and Bw with security keys g1 and
g2. The first and the second row is with g1 and g2, respectively.

4.3. Statistical Analysis

Statistical analysis, including histogram analysis, entropy analysis, and correlation analysis are
essential for a cryptosystem. An ideal image encryption algorithm should have the ability to resist
kinds of statistical attacks.

4.3.1. Histogram Analysis

Histogram describes the distribution of pixels for an image. The histogram of a natural image
usually shows an irregular (unevenly distributed) shape. A good image encryption approach should
change the irregular shape of a plain image as evenly distributed as possible, leading to a completely
random-like cipher image. Regarding evaluating the image encryption approach with histogram, the
more uniform the histogram is, the better the encryption approach is [2]. The histograms of the plain
images and the corresponding cipher images are shown in Figure 8.

It can be seen that the histograms of the plain images except Bw look like mountains, including
peaks and valleys. However, the histograms of their corresponding cipher images are so flat that they
are very close to uniform distributions. It is worth pointing out that regarding the image Bw, it has
only two values of grayscale level, i.e., 0 and 255, and its histogram looks like two needles. However,
the histogram of its cipher image is still very uniform similar to histograms of other cipher images.
Although the plain images are very different, the histograms of their corresponding cipher images
are so uniform and so close that it looks like that each grayscale level appears about 1000 times in all
cipher images. This characteristic of cipher images can be easily found in the last column in Figure 8.
The experiments indicate that the proposed DFDLC can obtain very uniform histograms for different
types of images and hence it can resist histogram attacks very well.
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Figure 8. Histograms of the plain images and their corresponding cipher images. The first and the
second columns are the plain images and their corresponding histograms, respectively. The third and
the fourth columns are the cipher images and their corresponding histograms, respectively.
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4.3.2. Information Entropy

Information entropy (IE), originally proposed by Shannon, is one of the key measures to quantify
the degree of uncertainty (randomness) of a given system in information theory [63]. It can be applied
to measure the randomness of an image encryption system. Given an 8-bit grayscale level that has
28 = 256 possible pixel values, i.e., 0, 1, · · · , 255, the IE can be formulated as Equation (6)

IE(I) = −
255

∑
i=0

p(Ii)log2 p(Ii), (6)

where p(Ii) is the probability of the i−th gray value Ii appears in an image I. For a cipher image, when
each gray value Ii appears with equal probability, i.e., 1

256 , the IE obtains the maximum 8. Therefore,
an ideal image encryption approach should have an IE close to 8.

The IEs of the test images and corresponding cipher images with the DFDLC and the compared
approaches are shown in Table 6. It can be seen that the testing natural images in this experiment have
close IEs around 7, while the image of Bw has the lowest entropy 1, showing that the distribution
of pixel values is irregular, as indicated by their histograms in Figure 8. It can be seen that the IEs
of all cipher images are very close to the ideal value 8. Specifically, all encryption approaches except
for HCDNA achieve very stable IEs, i.e., 7.9992 ∼ 7.9994, which are also very close to 8, indicating
that these approaches are secure enough to resist entropy attacks. Although the IEs achieved by the
HCDNA are slightly worse than those by the other approaches, they are still very close to the ideal
value except that the IE of Bw by HCDNA is as low as 7.9158. Among the approaches, the BSIF
obtains the highest IEs with 6 out of 10 cases, followed by DFDLC, FHDNA and DFBC, which all
achieve the highest IEs 4 out of 10 times. However, the HCDNA achieves the highest IE only once.
The experimental results demonstrate that the DFDLC are advantageous over or comparable to other
approaches in terms of IE.

As mentioned above, the IEs reflect the randomness of the grayscale values in an image. The IEs
achieved by DFDLC are very close to 8, indicating that the pixel values are distributed very uniformly,
as the histograms shown in the last column in Figure 8. Therefore, the results of histograms are
consistent with the analysis of IEs, confirming that the proposed DFDLC has good statistical properties
in terms of image encryption.

Table 6. The IEs of the testing images.

Image Input Cipher Images
DFDLC FHDNA [2] HCDNA [61] CDCP [60] IC-BSIF [51] DFBC [6]

Lena 7.4455 7.9993 7.9993 7.9994 7.9993 7.9994 7.9994
Cameraman 7.0480 7.9992 7.9993 7.9981 7.9993 7.9993 7.9992
Barbara 7.6321 7.9993 7.9994 7.9993 7.9992 7.9993 7.9993
Mandril 7.2925 7.9994 7.9992 7.9992 7.9993 7.9993 7.9993
Bw 1.0000 7.9993 7.9992 7.9158 7.9992 7.9993 7.9993
Pirate 7.2367 7.9994 7.9993 7.9988 7.9993 7.9994 7.9993
Couple 7.0572 7.9993 7.9992 7.9992 7.9993 7.9992 7.9993
Finger 6.7279 7.9993 7.9994 7.9990 7.9992 7.9994 7.9993
Peppers 7.5925 7.9993 7.9994 7.9991 7.9993 7.9993 7.9994
Houses 7.6548 7.9992 7.9993 7.9993 7.9994 7.9994 7.9993
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4.3.3. Correlation Analysis

Natural images usually show high correlation, that is, neighboring pixels have very close grayscale
levels. When an image is permutated, the neighboring pixels will be randomly distributed in the whole
image and hence the high correlation in plain image is broken. An ideal image encryption approach
should decrease the correlation to zero in the cipher image. One of the popular ways to measure the
correlation in images is the correlation coefficient γ defined as Equation (7) [6,64]

E(x) =
1
M

M

∑
i=1

xi,

S(x) =
1
M

M

∑
i=1

(xi − E(x))2,

cov(x, y) =
1
M

M

∑
i=1

(xi − E(x))(yi − E(y)),

γ =
cov(x, y)√
S(x)S(y)

,

(7)

where x and y are grayscale levels of two adjacent pixels in an image, and M denotes the number of
pairs of involved pixels, and E(x), S(x) and cov(x, y) are the expectation of x, the standard deviation
of x and the covariance of x and y, respectively.

To analyze the correlation, we firstly use all the pairs of adjacent pixels from each plain image and
the corresponding cipher image in the horizontal direction, the vertical direction, and the diagonal
direction to compute the correlation coefficients, denoted by γh, γv and γd, respectively. The results are
shown in Table 7. We can see that the correlation coefficients of all plain images in all directions are very
high, especially the γh of the image Bw equals to the maximum value of 1. However, all the correlation
coefficients of the encrypted images decrease to close to zero, showing that the high correlation in plain
images is broken. Regarding the encryption approaches, each outperforms others in several cases,
indicating they are comparable in terms of reducing the correlation in images. If we consider the range
of the γ achieved by the approaches, we can see that the ranges by DFDLC, FHDNA, HCDNA, CDCP,
BSIF and DFBC are [−0.0023,0.0030], [−0.0049, 0.0057], [−0.0032, 0.0038], [−0.0032, 0.0028], [−0.0032,
0.0034] and [−0.0029, 0.0027], respectively. Accordingly, the interval widths of γ by the approaches are
0.0053, 0.0106, 0.0070, 0.0060, 0.0066 and 0.0056. Among the interval widths, the DFDLC achieves the
narrowest one, indicating that the DFDLC is the most stable approach in terms of γ.

Then, we randomly select 4000 pairs of horizontally adjacent pixels from each plain image and
its corresponding cipher image to plot the distribution maps of the grayscale levels of the adjacent
pixels, as shown in Figure 9. It can be seen that the correlation of natural images is so strong that
the grayscale levels of the adjacent pixels are concentrated near the diagonal line. The figure of the
plain Bw is a special case because its distribution has only two possible combinations, i.e., (0, 0) and
(255, 255). The strong correlation of all the plain images is thoroughly destroyed by the proposed
DFDLC so that the grayscale levels of adjacent pixels are evenly distributed over the entire plane.
It further demonstrates that the DFDLC has good performance regarding correlation.
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Table 7. The correlation coefficients γ of the testing images.

Image γ Input Cipher Images
DFDLC FHDNA [2] HCDNA [61] CDCP [60] IC-BSIF [51] DFBC [6]

Lena
γh 0.9691 0.0023 0.0000 −0.0015 −0.0004 −0.0032 0.0002
γv 0.9841 0.0009 −0.0022 −0.0020 0.0028 0.0013 0.0010
γd 0.9639 0.0008 0.0004 0.0024 0.0016 −0.0009 0.0006

Cameraman
γh 0.9830 0.0011 0.0013 0.0004 −0.0001 −0.0015 −0.0008
γv 0.9887 0.0009 0.0033 0.0003 0.0019 0.0010 −0.0013
γd 0.9746 −0.0002 −0.0000 −0.0013 0.0010 −0.0012 −0.0002

Barbara
γh 0.8940 −0.0003 −0.0022 0.0010 −0.0026 −0.0002 0.0027
γv 0.9572 0.0030 −0.0002 0.0004 0.0006 −0.0004 −0.0029
γd 0.8942 −0.0029 −0.0000 −0.0009 0.0005 0.0010 −0.0005

Mandril
γh 0.9322 0.0022 0.0016 −0.0007 0.0012 0.0026 −0.0006
γv 0.9100 0.0005 0.0035 −0.0001 0.0009 −0.0001 −0.0018
γd 0.8647 −0.0023 −0.0025 −0.0017 −0.0004 0.0001 0.0016

Bw
γh 1.0000 0.0019 0.0006 0.0004 −0.0004 0.0003 0.0000
γv 0.9922 −0.0006 0.0009 0.0013 0.0001 −0.0005 −0.0002
γd 0.9961 −0.0012 −0.0012 −0.0002 0.0005 0.0002 −0.0016

Pirate
γh 0.9593 −0.0000 0.0015 −0.0023 −0.0012 −0.0026 −0.0012
γv 0.9675 0.0009 0.0057 −0.0000 −0.0008 −0.0006 0.0013
γd 0.9432 0.0015 0.0001 0.0011 0.0006 0.0005 0.0005

Couple
γh 0.9451 0.0012 0.0013 0.0014 −0.0001 −0.0006 −0.0009
γv 0.9514 0.0025 −0.0026 0.0008 0.0001 0.0023 0.0022
γd 0.9116 0.0017 −0.0011 −0.0007 0.0005 −0.0008 −0.0024

Finger
γh 0.9343 −0.0001 0.0002 0.0007 −0.0023 0.0004 −0.0025
γv 0.9168 0.0002 −0.0025 0.0029 −0.0032 −0.0009 0.0004
γd 0.8664 0.0017 0.0005 −0.0022 −0.0010 0.0030 −0.0006

Peppers
γh 0.9733 0.0003 −0.0045 0.0000 −0.0003 −0.0031 0.0008
γv 0.9763 −0.0010 −0.0049 −0.0005 0.0003 −0.0010 −0.0003
γd 0.9650 0.0011 −0.0012 −0.0005 −0.0025 0.0017 −0.0010

Houses
γh 0.9077 0.0020 0.0006 0.0004 0.0026 0.0001 −0.0002
γv 0.9173 0.0015 0.0004 −0.0032 0.0002 0.0017 0.0006
γd 0.8439 0.0020 0.0021 0.0038 −0.0011 0.0034 0.0002

Range [0.8439,1.000] [−0.0023,0.0030] [−0.0049, 0.0057] [−0.0032, 0.0038] [−0.0032, 0.0028] [−0.0032, 0.0034] [−0.0029, 0.0027]

Interval Width 0.1561 0.0053 0.0106 0.0070 0.0060 0.0066 0.0056
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Figure 9. The adjacent-pixel distribution maps of the plain images and the corresponding cipher
images in horizontal direction.
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4.4. Analysis of Resisting Differential Attacks

Differential attack is to study how a tiny change in a plain image can affect the corresponding
cipher image. A good encryption approach should have the ability to resist differential attacks, that is
to say, any small changes (even if changing a bit) in a plain image will result in a completely different
cipher image. Two of the most popular indices to quantify the performance of resisting differential
attacks in image encryption are the number of pixels change rate (NPCR) and the unified average
changing intensity (UACI), as defined by Equations (8) and (9), respectively [65]

NPCR =
1

W × H

W

∑
i=1

H

∑
j=1

dij × 100%, (8)

UACI =
1

255×W × H

W

∑
i=1

H

∑
j=1

∣∣∣C1
ij − C2

ij

∣∣∣× 100%, (9)

where W and H denote the width and the height of the cipher images respectively, C1 and C2 are two
cipher images, and dij is defined as Equation (10)

dij =

{
0, C1

ij = C2
ij,

1, C1
ij 6= C2

ij.
(10)

As far as the two indices are concerned, the NPCR focuses on the variation ratio of two cipher
images whose plain images are slightly changed while the UACI defines the mean intensity of the
two cipher images. Wu et al. proposed a threshold and a range for NPCR and UACI respectively to
evaluate if an encryption approach can pass the differential attack test for a given specified size image
at a significance level α. Specifically, for a 512× 512 8-bit grayscale image, if the NPCR score is bigger
than the threshold N ∗0.05 = 99.5893%, it passes the NPCR test at α = 0.05. In addition, if the UACI

score falls into the interval
(
U ∗l0.05,U ∗u0.05

)
= (33.3730%, 33.5541%), it is said to pass the UACI test at

α = 0.05 [65].
We add 1 to the value of a randomly selected pixel to compute one score of the NPCR and the

UACI. The computation is repeated 10 times and then the mean, standard deviation, and times of
passing the test of NPCR and UACI are reported in Tables 8 and 9, respectively. The mean scores
that pass the NPCR or the UACI tests at a significance level α = 0.05 are shown in bold. One can see
that both DFDLC and BSIF can pass both tests on all images in terms of the mean scores of NPCR
and UACI, while CDCP and DFDC can pass most tests. In contrast, the FHDNA and the HCDNA
failed the tests with all images, although the mean scores by the FHDNA are very close to N ∗0.05 and(
U ∗l0.05,U ∗u0.05

)
. If we look at the times of passing the NPCR test, both the DFDLC and the BSIF can

pass the test in 99 out of 10× 10 = 100 times and they are far superior to other methods. However,
regarding times of passing the UACI test, the DFDLC is slightly worse than the BSIF, but it outperforms
other methods. The experimental results demonstrate that the proposed DFDLC is capable of resisting
differential attacks.
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Table 8. The mean / standard deviation / times of passing the test of NPCR (%) of running the schemes 10 times (α = 0.05).

Image DFDLC FHDNA [2] HCDNA [61] CDCP [60] BSIF [51] DFBC [6]

Lena 99.6103/0.0129/10 99.5814/0.0119/6 43.5948/16.8360/0 99.6201/0.2837/5 99.6166/0.0109/10 99.5995/0.0002/10
Cameraman 99.6055/0.0126/10 99.5795/0.0137/4 64.6306/31.1442/0 99.6146/0.2372/6 99.6057/0.0121/10 99.6143/0.0002/10
Barbara 99.6171/0.0075/10 99.5842/0.0099/8 37.8473/19.6663/0 99.6048/0.2136/6 99.6165/0.0144/10 99.5833/0.0002/10
Mandril 99.6047/0.0117/10 99.5774/0.0125/3 51.2024/28.3679/0 99.5697/0.2107/4 99.6070/0.0117/10 99.5998/0.0001/10
Bw 99.6030/0.0094/10 99.3196/0.2433/1 47.5142/15.7628/0 99.6362/0.2321/5 99.6180/0.0142/10 99.6033/0.0000/10
Pirate 99.6176/0.0133/10 99.5812/0.0127/4 35.8150/27.9995/0 99.6403/0.3222/7 99.6116/0.0116/10 99.5751/0.0002/0
Couple 99.6089/0.0133/10 99.5779/0.0076/5 58.1698/27.5116/0 99.5718/0.1939/3 99.6079/0.0112/10 99.5586/0.0001/0
Finger 99.6097/0.0158/10 99.5792/0.0152/4 60.3329/29.8886/0 99.5984/0.1420/6 99.6171/0.0096/10 99.6132/0.0002/10
Peppers 99.6099/0.0154/9 99.5800/0.0119/5 45.6316/38.2206/0 99.5493/0.2509/4 99.6099/0.0150/9 99.6166/0.0001/10
Houses 99.6130/0.0126/10 99.5795/0.0083/6 63.0733/19.2267/0 99.6039/0.2053/7 99.6135/0.0119/10 99.6151/0.0001/10

Table 9. The mean / standard deviation / times of passing the test of UACI (%) of running the schemes 10 times (α = 0.05).

Image DFDLC FHDNA [2] HCDNA [61] CDCP [60] BSIF [51] DFBC [6]

Lena 33.4504/0.0466/9 33.2700/0.0490/0 18.5974/9.5490/0 33.5212/0.0775/6 33.4714/0.0339/10 33.4818/0.0005/10
Cameraman 33.4909/0.0457/9 33.3010/0.0320/0 27.0047/13.9227/0 33.4222/0.0658/7 33.4755/0.0485/10 33.4406/0.0005/10
Barbara 33.4451/0.0350/10 33.2533/0.0431/0 13.6480/8.2289/0 33.4464/0.1075/7 33.4722/0.0476/9 33.4808/0.0007/10
Mandril 33.4704/0.0334/10 33.2988/0.0336/0 22.2006/14.1993/0 33.4467/0.0928/5 33.4449/0.0423/10 33.5136/0.0003/10
Bw 33.4334/0.0471/10 32.0705/1.0272/0 18.5654/6.1072/0 33.4555/0.1144/4 33.4500/0.0468/10 41.6585/0.0010/0
Pirate 33.4736/0.0275/10 33.3021/0.0431/1 14.8888/14.1945/0 33.4664/0.0766/8 33.4644/0.0328/10 33.4668/0.0003/10
Couple 33.4282/0.0385/9 33.2796/0.0381/0 17.8782/7.3362/0 33.4293/0.1011/9 33.4632/0.0439/10 33.4717/0.0003/10
Finger 33.4311/0.0504/8 33.2907/0.0413/0 26.0775/14.9380/0 33.4911/0.1004/6 33.4856/0.0399/9 33.5263/0.0006/10
Peppers 33.4618/0.0432/10 33.2735/0.0347/0 19.8106/18.6275/0 33.4626/0.0752/6 33.4301/0.0379/10 33.4525/0.0009/10
Houses 33.4634/0.0358/10 33.3322/0.0273/1 22.1296/7.4892/0 33.4721/0.0467/10 33.4448/0.0343/10 33.4545/0.0004/10
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4.5. Discussion

The proposed DFDLC conducts encryption on pixel-level and DNA-level, with dynamic filtering
for diffusion and Latin cubes for permutation. From the above analysis, we can see that the DFDLC
can resist brute force attacks, statistical attacks as well as differential attacks, and the experiments
have also demonstrated that DFDLC is superior or comparable to the compared state-of-the-art image
encryption methods. In addition, the proposed I2C allows the DFDLC to handle images with any sizes,
making it more practical.

One limitation of the DFDLC is the running time. It takes about 0.84s and 3.15s to encrypt an
image of size 256× 256 and 512× 512 respectively in our experimental environment. The DFDLC is
time consuming because the DNA operations (DNA encoding, decoding and algebraic operation) are
actually operations on strings. This can be resolved by introducing lookup tables of DNA operations.
Another possible way is to use GPU to accelerate DNA operations.

5. Conclusions

Image encryption is one of the core tasks of image security. To improve image security, in this
paper, a novel image encryption algorithm that uses a 5D hyperchaotic system with 2 positive LEs,
pixel-level dynamic filtering, DNA computing, and 3D Latin cubes, namely DFDLC, is proposed.
The novelty of the DFDLC is introducing a new type of dynamic filtering to conduct pixel-level
diffusion and permutating images with DNA-level data via Latin cubes. Extensive experiments on ten
public test images have indicated that the proposed DFDLC has a large key space, is very sensitive
to security keys, has good statistical characteristics, and can resist types of attacks. In the future, we
will extend the proposed DFDLC in several aspects. First, we will apply trigonometric polynomials
to generate the hyperchaotic sequence for the DFDLC. Second, we will try a variety of shapes of the
filters for dynamic filtering. Third, we may use GPU or lookup tables to speed up the encoding and
decoding of DNA and corresponding arithmetic operations. Finally, we can apply the DFDLC to color
image encryption.
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