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Revealing universal quantum 
contextuality through 
communication games
A. K. pan

An ontological model of an operational theory is considered to be universally noncontextual if both 
preparation and measurement noncontextuality assumptions are satisfied in that model. In this report, 
we first generalize the logical proofs of quantum preparation and measurement contextuality for qubit 
system for any odd number of preparations and measurements. Based on the logical proof, we derive 
testable universally non-contextual inequalities violated by quantum theory. We then propose a class of 
two-party communication games and show that the average success probability of winning such games 
is solely linked to suitable Bell expression whose local bound is greater than universal non-contextual 
bound. Thus, for a given state, even if quantum theory does not exhibit non-locality, it may still reveal 
non-classicality by violating the universal non-contextual bound. Further, we consider a different 
communication game to demonstrate that for a given choices of observables in quantum theory, even 
if there is no logical proof of preparation and measurement contextuality exist, the universal quantum 
contextuality can be revealed through that communication game. Such a game thus test a weaker form 
of universal non-contextuality with minimal assumption.

Two famous no-go theorems play an important role in quantum foundations as they demonstrate how quantum 
world differs from the classical ones by ruling out the existence of particular kinds of physical models. Bell’s theo-
rem1 is the first that provides a conflict between the quantum theory and a notion of classicality widely known as 
local realism. The Kochen and Specker (KS) theorem2,3 proves an inconsistency between the quantum theory and 
another notion of classicality known as non-contextual realism. Quantum non-locality found its application in 
device-independent cryptography4–6, certification of randomness7–9, self-testing10,11, certification of dimension of 
Hilbert space12. On the other hand, quantum contextuality also provides advantage in communication games13–15 
and in quantum computation16,17. While the demonstration of Bell’s theorem requires two or more space-like 
separated systems, the KS theorem can also be proven for a single system having dimension of the Hilbert space 
d ≥ 3. The original KS proof was demonstrated by using 117 projectors for qutrit system. Later, simpler versions 
and varients of it using lower number of projectors have been provided18–24.

The traditional KS proof of contextulity has a limited scope of applicability due to the following reasons. First, 
along with the assumption of measurement non-contextuality it additionally requires outcome determinism for 
sharp measurement in an ontological model. Second, it is not the model of arbitrary operational theory, rather 
specific to quantum theory. Third, it is not applicable to the generalized measurements, i.e., for POVMs. The tra-
ditional notion of KS non-contextuality was generalized by Spekkens25 for any arbitrary operational theory and 
extended the formulation to the transformation and preparation non-contextuality.

The ontological model of an operational theory was coherently formulated by Harrigan and Spekkens26. Let 
there is a set of preparation procedures P, a set of measurement procedures M and a set of outcomes KM. Given 
a preparation procedure PP ∈  and a measurement procedures M ∈ M, an operational theory assigns probability 
p(k|P, M) of occurrence of a particular outcome k ∈ KM. For example, in quantum theory, a preparation proce-
dure produces a density matrix ρ and measurement procedure is in general described by a suitable POVM Ek. The 
probability of occurrence of a particular outcome k is determined by the Born rule, i.e., p(k|P, M) = Tr[ρEk]. In 
this paper we restrict our discussion in a particular operational theory, i.e., in quantum theory.

In an ontological model of quantum theory, it is assumed that whenever ρ is prepared by a preparation proce-
dure ∈P P a probability distribution μP(λ|ρ) in the ontic space is prepared, satisfying d( ) 1P∫ μ λ ρ λ| =

Λ
 where 

λ ∈ Λ and Λ is the ontic state space. The outcome k is distributed as a response function ξM(k|λ, Ek) satisfying 
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k E( , ) 1k M kξ λ∑ | =  where a POVM Ek is realized through a measurement procedure M ∈ M. A viable ontological 
model should reproduce the Born rule, i.e., ∀ρ, ∀Ek and ∀k, ∫ μ λ ρ ξ λ λ ρ| | =

Λ
k E d Tr E( ) ( , ) [ ]P M k k .

An ontological model can be assumed to be non-contextual as follows25. If two experimental procedures 
are operationally equivalent, they have equivalent representations in the ontological model. An ontological 
model of quantum theory is assumed to be measurement non-contextual if ∀Pp(k|P, M) = p(k|P, M′) ⇒ ∀P 
ξM(k|λ, Ek) = ξM′(k|λ, Ek), where M and M′ are two measurement procedures realizing the same POVM Ek. KS 
non-contextuality assumes the aforementioned measurement non-contextuality for the sharp measurements 
along with the deterministic response functions for projectors. Similarly, an ontological model of quantum theory 
can be considered to be preparation non-contextual if ∀M:p(k|P, M) = p(k|P′, M) ⇒ ∀M μP(λ|ρ) = μP′(λ|ρ), where 
P and P′ are two distinct preparation procedures preparing same density matrix ρ. In an ontological model of 
quantum theory, the preparation non-contextuality implies the outcome determinism for sharp measurements25. 
Also, any KS proof can be considered as a proof of preparation contextuality but converse does not hold. In this 
sense, preparation non-contextuality is a stronger notion than traditional KS non-contextuality27. Very recently, 
it is also shown28 that any ontological model satisfying both the assumptions of preparation and measurement 
non-contextuality cannot reproduce all quantum statistics, even if the assumption of outcome determinism for 
sharp measurement is dropped28. Experimental test of such an universal non-contextuality has also been pro-
vided which are free from idealized assumptions of noiseless measurements and exact operational equivalences29.

In this work, we first generalize the universal contextuality proof demonstrated in29 for any arbitrary odd 
number of preparations and measurements in a qubit system. We then propose a class of communication games 
played between two spatially separated parties Alice and Bob and show that the average success probability of 
winning the game is solely dependent on a Bell expression. The local bound of such a Bell expression gets reduced 
if universal non-contextuality is assumed. Thus, for a given state, even if quantum theory does not violate local 
realist bound but it may still reveal non-classicality by violating the universal non-contextuality. We further point 
out that for a given choices of projectors corresponding to a suitable set of dichotomic observables, if there exists 
a logical proof of preparation contextuality for mixed state then there will be an inherent interplay between the 
preparation contextuality for mixed and pure states. In other words, assumption of preparation non-contextuality 
for mixed state in the logical proof automatically assumes preparation contextuality for pure states.A true test of 
universal contextuality should be free from such inconsistency. Further, we demonstrate that for a suitable choices 
of states and observables when there is no logical proof of preparation and measurement contextuality exist, uni-
versal quantum contextuality c an still be revealed through a suitable communication game.

We first encapsulate the notion of preparation and measurement non-contextuality in an ontological model of 
quantum theory which was first put forwarded by Spekkens25.

Logical proofs of Measurement and preparation contextuality
As already mentioned that the KS proof is restricted to deterministic ontological models and does not work for 
generalized measurement. In other words, KS proof is valid for commuting contexts and thus the Hilbert space 
dimension needs to be more than two1,3. It is pointed out in25 that the natural question should be whether in a 
non-deterministic ontological model the probabilities of different outcomes for a given λ depend on the com-
patible context instead of commuting context. Assuming the indeterministic response functions for POVMs 
(rigoursly justified in30) measurement contextuality can be demonstrated even for two-dimensional Hilbert space.

Let M1, M2, M3∈ M are three measurement procedures in quantum theory realizing three non-degenerate 
dichotomic observables A1, A2, A3 respectively. The projectors corresponding to At are =α α+PA

A
2t

t  where t = 1, 
2, 3 and α ∈ {+, −} satisfying

P P P P; with 0 (1)A A A At t t t
= + = .+ − + −

Since ρ =Tr[ ] 1 for any arbitrary ρ, then in an ontological model ( , ) 1ξ α λ| =  for every ontic state λ ∈ Λ. 
Thus, the response functions follow the equivalent relations
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trine spin axes satisfies this requirement. The corresponding response function for POVMs follow measurement 
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If the model is outcome deterministic for sharp measurement then each ξ(α|PAt
α, λ) ∈ {0, 1} and if meas-

urement non-contextual then ξ(α|PAt
α, λ) in Eq. (2) remains same as in Eq. (4). Importantly, no deterministic 

assignment can satisfy Eq. (4) and thus needs to be dropped. However, allowing ξ(λ|PAt
α) ∈ [0, 1] measurement 

non-contextuality is satisfied.
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It is important to note that the KS proof does not make any reference to the notion of preparation 
non-contextuality25 which should be the starting point of any ontological model to ensure that the λ distribution 
for operationally equivalent preparations are the same to make the measurement non-contextuality assumption 
justified for any λ.

Let three preparation procedures PP P P, ,1 2 3 ∈  produce six pure qubit states {ρAt
α} satisfying following three 

relations

ρ ρ= + .+ −
2

1
2

( ) (5)A At t

In an ontological model, using convexity property one can write

μ λ μ λ ρ μ λ ρ


 |



 = | + |+ − ( )2

1
2

( ) ( )
(6)P P A P At t t t t

which we call trivial preparation non-contextuallity condition.
The maximally mixed state 

2
 can also be prepared by two more preparation procedures P4 and P5 are of the 

following form
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Using the convexity property of the λ distributions
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which we call non-trivial preparation noncontextuality conditions. Without such non-trivial conditions logical 
proof of preparation contextuality for mixed state cannot be revealed in this example.

It is indistinguishable in quantum theory by any measurement which of the five preparation procedures is 
used to prepare the mixed state /2 . Equivalently, in a preparation non-contextual model, it can be assumed that 
λ  d i s t r ibut ions  corresp onding  to  the  f ive  preparat ion  pro cedures  are  the  same,  i . e . , 

  ( ) ( ) ( )P P P2 2 21 2 3
μ λ μ λ μ λ| = | = | = ( ) ( ) ( )P P2 2 24 5

  μ λ μ λ ν λ| = | ≡ | . We make it specific here by denoting the 
above assumption as mixed-state preparation non-contextuality. Importantly, for a logical proof of preparation 
non-contextuality for mixed state, one requires to assume preparation non-contextuality of λ distribution 
μ(λ|{ρAt

α}) corresponding to the pure states25. Assume that there exist a λ for which ( ) 0
2
ν λ| >  and for the same 

λ assume μ(λ|{ρAt
+}) > 0. Then by using μ(λ|ρAt

+)μ(λ|ρAt
−) = 0, from Eq. (8) one finds ( ) 0P 25

μ λ| =  which is in 
contradiction with the above assignment. Similar contradiction can be found for any assignment of positive prob-
ability distribution for any λ. However, if preparation contextuality for pure states is assumed, i.e., given a λ if 
μ(λ|{ρAt

α}) change their support in Pt and P5 or P4, the preparation non-contextuality for mixed state will be sat-
isfied in an ontological model.

There is a fundamental difference between the logical proofs of measurement and preparation contextuality. 
Measurement non-contextuality for projector and POVMs may be satisfied in an ontological model if determin-
ism is sacrificed. We note here that in Cabello’s18 elegant proof using 18 vector can also be shown measurement 
non-contextual if all the response functions are taken to be 1/4. On the other hand, in logical proof of preparation 
contextuality the assumption of preparation non-contextuality for pure states dictates preparation contextuality 
for mixed states and vice versa. Hence, such a contradiction is within the ontological model without recourse to 
any operational theory. Thus, if one wishes to propose a true test of the reproducibility of quantum theory by a 
universal non-contextual model, the assumptions of outcome determinism and inherent contradiction between 
preparation non-contextuality for pure and mixed states should be avoided. Such an attempt was made in28,29 
through a testable inequality which is verified experimentally29.

Universal Non-Contextual Inequality in (3, 3) Scenario
We now recapitulate the non-contextual inequality in three-preparation and three- measurement scenario 
(henceforth, (3, 3) scenario)29. We start from a simple observation. Let a preparation procedure preparing the 
maximally mixed state /2 and a measurement of a qubit observable, so that,  P PA At t

= ++ − . Since Tr 1
2




. 


=  one 
can write Tr P P( ) ( ) 1A A A A

1
2 t t t t

ρ ρ


+ ⋅ + 


=+ − + −  irrespective of P and M. Here PAt
α is equal to ρAt

α but to denote 
preparation we use ρAt

α. In (3, 3) scenario, the average correlation can be written as

( )Tr P P( ) 1
6 (9)Q

t
A A A A3

1

3

t t t t∑ ρ ρΔ = + .
=

+ + − −

Due to the perfect correlation in quantum theory each Tr[ρAt
αPAt

α] = 1, one has (Δ3)Q = 1. In an ontological 
model
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To get perfect correlation, each ξMt(α|PAt
α, λ) should produce deterministic outcome. By assuming mixed state 

preparation non-contextuality ν λ μ λ ρ μ λ ρ| = | + |+ −( )( /2) ( ) ( )A A
1
2 t t

 independent of t and by noting that there is 
an upper bound on each ξMt(α|PAt

α, λ) independent of the outcome α, one has ξMt(α|PAt
α, λ) ≤ η(PAt, λ). Equation 

(10) can then be written as

P( ) 1
3

( , )
(11)
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t
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t∑λ η λΔ ≤ ∈ Λ











.

∈

If the response functions are constrained by Eqs. (2) and (4), we have (η(PA1, λ), η(PA2, λ), η(PA3, λ)) = (1, 1/2, 1).  
Such an indetrministic assignment in an universal non-contextual model provide (Δ3)unc ≤ 5/6. Thus, an univer-
sal non-contextual model cannot reproduce quantum statistics. This result is verified in a recent experiment29.

We shall shortly generalize the above proof for a qubit system for any arbitrary odd number of observables. 
Before that, we provide a scheme to reveal quantum universal contextuality by using a two-party communication 
game as a tool.

Results
A communication game in (3, 3) scenario. Let Alice and Bob are two parties having input x ∈ {1, 2, 3} 
and y ∈ {1, 2, 3} respectively and their respective outputs are a ∈ {−1, 1} and b ∈ {−1, 1}. The wining rule is the 
following; if x = y the outputs satisfies a ≠ b and if x ≠ y the outputs satisfies a = b. Let Alice and Bob share a max-
imally entangled state and the input x ∈ {1, 2, 3} corresponds to the observables A1, A2, A3 and similarly y ∈ {1, 2, 
3} corresponds to B1, B2, B3. Alice measures one of A1, A2, A3 to produce six pure qubit states {ρAt

α} satisfying the 
relation in Eqs. (5) and (7). The average success probability can be written as

 P a b x y x y P a b x y x y1
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, it can shown that 3,3  is 
solely dependent on a Bell-like expression β3,3 is given by
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where β3,3 = (−A1 + A2 + A3) ⊗ B1 + (A1 − A2 + A3) ⊗ B2 + (A1 + A2 − A3) ⊗ B3.
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σ σ= −−  and Bob’s observ-
ables B1 = −A1, B2 = −A2 and B3 = −A3 provide the maximum quantum value (β3,3)Q

max = 6. This in turn fixes the 
maximum average success probability in quantum theory is given by

≤


 +



 ≈ . .( ) 1
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In two-party, two-outcome Bell scenario, the assumption of preparation non-contextuality is equivalent to 
locality. In such a case, (β3,3)local ≤ 5 and  = ≈ .( ) 7/9 0 777local3,3 . This is obtained by assuming that B1, B2 and B3 
may take any value in between −1 and +1. But, given the observable choices in quantum theory that maximim-
izes ( )Q3,3  the Bob’s observables satisfy the relation given by Eq. (3) and consequently B1 + B2 + B3 = 0 has to be 
satisfied. In ontological model Eq. (4) needs to be satisfied which is measurement-noncontextuality assumption. 
Thus, in an universal non-contextual model (β3,3)unc ≤ 4 and the average success probability is given by

( ) 1
2

1 4
9

0 722
(15)unc3,3 ≤



 +



 ≈ . .

Interestingly, the values of ∈ . .( ) [0 722, 0 777]3,3  do not reveal the non-classicality in the form of quantum 
nonlocality but in the form of quantum universal contextuality.

Generalization for (n, n) scenario for odd n. We generalize the universal quantum contextuality proof 
for any arbitrary preparation and measurements, i.e., the (n, n) scenario. Consider the following n (odd) number 
of observables An,1 = σz, A{ }n i i i x i y n, 2, ( 1)

n z1
2

α σ β σ= − − σ
= ... −

+  and A{ }n j j n j x j y n, , ( 1)
n z3

2
α σ β σ= − + − σ

= ... −
+  with 

αi = −αj, βi = −βj and 1i i n
2 2 1
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. In quantum theory, such choices of observables satisfy 
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This relation will provide the non-trivial preparation and measurement non-contextual assumptions along 
with the trivial assumptions originate from  P PA An t n t, ,

= ++ −  where t = 1, 2 ... n. A logical proof of preparation and 
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measurement contextuality can also be demonstrated. Now, in (n,n) scenario, the average correlation can be writ-
ten as

( )n
p P P1

2
,

(17)
n

t

n

A A
1 { , }

n t n t, ,∑ ∑ αΔ = | .
α

α α

= ∈ + −

In quantum theory, (Δn)Q = 1. Following the approach adopted earlier, the average correlation in ontological 
model is
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According to the mixed state preparation non-contextuality assumption ν λ μ λ ρ μ λ ρ| = | + |+ −( /2) ( ( ) ( ))A A
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Using equivalent representation of Eq. (16) in a measurement non-contextual ontological model and assigning 
indeterminstic values of the response function, one has ( ) 1n unc n

1
2

Δ ≤ − . Thus, (Δn)unc < (Δn)Q. However, when 
n is very large (Δn)unc ≈ (Δn)Q. This is due to the fact that {η(λ|PAn,t)} contains only one indeterminstic response 
function and (2n − 1) dsterminstic values out of 2n assignments.

Next, we generalize the communication games for (n, n) scenario where n is odd. Let Alice and Bob receive 
inputs x ∈ {1, 2, ... n} and y ∈ {1, 2, .... n} respectively and their respective outputs are a ∈ {−1, 1} and b ∈ {−1, 1}. 
The winning rule remains same, i.e., if x = y then a ≠ b and if if x ≠ y then a = b. The average success probability 
is given by
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where βn is the Bell expression is given by
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Given the choices of observables satisfy Eq. (16), in quantum theory (βn,n)Q = 2n providing quantum success 
probability

= + .
n

( ) 1
2

1
(22)n n Q,

For a universal non-contextual model satisfying the equivalent representation of the Eq. 16) in the ontological 
model, we have (βn,n)unc = 2n − 2 which provides the average success probability in an universal non-contextual 
model

n n
( ) 1

2
1 1

(23)n n unc, 2= + − .

Since  ( ) ( )n n Q n n unc, ,>  for any arbitrary n, the universal quantum contextuality is revealed through the com-
munication game.

We make a few comments on the above proofs of universal quantum contextuality. For the above special 
choices of observables, whenever preparation non-contextuality for mixed state in an ontological model is 
assumed, one may argue that the preparation contextuality for pure state is automatically installed within the 
onlogical model. One may then say that inequality (19) for any odd n does not provide a true test of univer-
sal quantum contextuality. This is due to the fact that assumption of preparation non-contextuality leads us to 
assume preparation contextuality for pure states and vice versa. However, this feature was not required to be used 
in the derivation of the inequality (19). In the Appendix, we provide an example of (4, 4) scenario where no logical 
proof of preparation and measurement contextuality can be demonstrated and no contradiction with quantum 
theory through the inequality similar to Eq. (19) can be shown. It would then be interesting if the violation of uni-
versal non-contextuality can be shown when there is no logical proof possible. We provide such a proof through 
the communication game in (3, 4) scenario.
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Communication games in (4, 3) and (3, 4) scenarios. Before presenting the communication game in 
(3, 4) scenario we first demonstrate the communication game in (4, 3) scenario. The game in (4, 3) scenario has 
close resemblance with the 3 to 1 parity-oblivious random access code. In13,15, it was shown that how quantum 
preparation contextuality powers 3 to 1 random access code.

In (4, 3) scenario, Alice and bob measures four and three dichotomic observables respectively. The winning 
rule is the following; if x + y = 5 output requires a≠b and if x + y ≠ 5 output requires a = b. The average success 
probability can be written as

P a b x y x y P a b x y x y1
12

( , ; 5) ( , ; 5)
(24)x y

4,3
1

4

1

3
 ∑ ∑=









≠ | + = + = | + ≠






= =

which can be recast as

1
2 24 (25)4,3

4,3
β

= +
〈 〉

where β4,3 = (A1 + A2 + A3 − A4) ⊗ B1 + (A1 + A2 − A3 + A4) ⊗ B2 + (A1 − A2 + A3 + A4) ⊗ B3 is known as Gisin’s 
elegant Bell expression. The maximization of β4,3 in turn provides the optimal success probability of the (4, 3) 
game. In quantum theory, if the projectors with +1 eigenvalues corresponding to Alice’s observables forms a 
four-outcome SIC-POVM and Bob’s observables are mutually unbiased basis, then β =( ) 4 3Q

opt
4,3

31. Then, 
= + ≈ .( ) (1 1/ 3 )/2 0 788Q

opt
4,3 . A model assuming only trivial non-contextuality is in fact a local model. In 

such a case, (β4,3)local ≤ 6 and (P4,3)local = (1 + 1/2)/2 = 0.75. However, if one assumes additional non-trivial 
non-contextuality assumption (given in detail in Appendix), a constraint A1 = A2 + A3 + A4 on Alice observables 
needs to be satisfied. The operational equivalence in quantum theory dictates to assume such non-contextuality, 
i.e., functional relation between At in the ontological model. Under such constraint of non-contextuality, the 
preparation-noncontextual bound on Bell expression (β4,3)pnc ≤ 4 and the average success probability is given by 

= + ≈ .( ) (1 1/3)/2 0 666pnc4,3 . The importance of (4, 3) game example is that the addition of non-trivial 
non-contextuality assumption along with the trivial ones do not provide the logical contradiction of preparation 
non-contextuality for pure or mixed state. This thus truly the test of preparation contextuality free from logical 
inconsistency.

Due to the symmetry, the communication game in (4, 3) scenario can easily be converted to (3, 4) one by 
swapping the role of Alice and Bob’s observables. In that case it becomes a proof of universal contextuality. Let 
Alice performs measurement of three mutually unbiased bases. So that, there is no functional relation between 
Alice three observables and thus no non-trivial preparation non-contextuality assumption can be made. In other 
words, no logical proof of preparation contextuality can be shown for such choices of observables. For Bob’s 
choices of observables {Bt} (where t = 1, 2, 3, 4) along with the trivial conditions = ++ − P P( )B P2

1
2 t t

 the POVM 
measurements are (the non-trivial conditions)
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=





+





+

=

− −

=

+ P P P P
2

1
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1
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B B
t
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2

4

2

4

t t1 1

here, each PAt
α = (1 + αBt)/2 is a rank one projector corresponding to dichotomic observables {Bt} having eigen-

values α ∈ {1, −1}. To satisfy the relations in Eq. (26) one requires the functional relation B1 = B2 + B3 + B4 to be 
satisfied. This is valid even for deterministic and measurement non-contextual values of the response functions. 
Hence, no logical proof of measurement non-contextuality can be demonstrated irrespective of the nature of the 
response function.

By keeping the winning rule same, in (3, 4) scenario, the success probability is given by

 P a b x y x y P a b x y x y1
12

( , ; 5) ( , ; 5)
(27)x y

3,4
1

3

1

4

∑ ∑=








≠ | + = + = | + ≠






= =

which can be re-written in the following form

 1
2 24 (28)3,4

3,4β
= +

〈 〉

where β3,4 = β4,3 and maximum quantum values is 4 3  for the choices of the observables given in the Appendix. 
Thus the universal non-contextual bound for (β3,4)unc ≤ 4 providing the success probability ( ) 0 666unc3,4 ≤ .  and 
quantum theory violates this bound. Hence, we have provided a proof to reveal universal quantum contextuality 
where there is no logical proof of preparation or measurement contextuality exist for the set of choices of the 
observables in quantum theory. This thus can be considered as a true test of universal quantum contextuality.

Summary and Discussions
In this report, we discussed the notions noncontextuality in an ontological model of quantum theory which is 
beyond the traditional notion of KS noncontextuality. Such an ontological model is considered to be universally 
noncontextual if both the preparation and the measurement noncontextuality assumptions are satisfied in that 
model. By considering the qubit system, we first generalized a known logical proof of universal quantum con-
textuality29 for any arbitrary odd number of preparation and measurement scenario. We then showed that how 
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such a logical proof can be cast into a universal non-contextual inequality for any odd number of preparation and 
measurement scenario and demonstrated the quantum violation of them.

In order to demonstrate how universal quantum contextuality powers a communication task, we proposed a 
two-party communication game where Alice uses n (odd) number of dichotomic observables to steer the state of 
the Bob who also performs the measurement of n number of same observables. For any arbitrary n, it is shown 
that the average success probability of winning such game is solely dependent on a suitable Bell expression. For 
bipartite dichotomic measurements Bell scenario the trivial preparation non-contextuality is equivalent to local-
ity assumption31,32. We have shown that the local bound of such a Bell expression gets reduced if non-trivial 
preparation and measurement non-contextuality conditions i.e., universal non-contextuality is further assumed. 
Thus, for a given state, even if quantum theory does not violate local realist bound, there is a possibility to reveal 
non-classicality through the violation of universal non-contextuality.

We have also pointed out the subtleties involved in the logical proof of quantum preparation and measure-
ment contextuality for a suitable set of pure qubit states corresponding to a suitable set of dichotomic observables. 
If there exists a logical proof of preparation contextuality for mixed state then there will be an inherent interplay 
between the preparation contextuality for mixed and pure states. In other words, in order to impose the assump-
tion of preparation non-contextuality for a mixed state in an ontological model, the assumption of preparation 
contextuality for pure states constituting the relevant mixed state requires to be assumed. Such contradiction 
appears within the framework of concerned ontological model devoid of any operational theory. If one wishes 
to truly test the universal non-contextuality such inconsistency needs to be avoided. For this, we demonstrated 
that for a suitable choices of states and observables when is no logical proof of preparation and measurement 
contextuality can exist in (4,3) scenario, universal quantum contextuality can still be revealed through a suitable 
communication game. However, for even (n,n) no logical or statistical proof of universal contextuality can be 
demonstrated for the qubit system. All the proofs provided in this paper is derived for qubit system and thus 
experimentally testable using existing technology. The precise operational equivalence has to be ensured in the 
real experiments following a recently developed approach29,32.
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