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Kidney transplantation is the most common solid organ transplant and the best current
therapy for end-stage kidney failure. However, with standard immunosuppression, most
transplants develop chronic dysfunction or fail, much of which is due to chronic immune
injury. Tregs are a subset of T cells involved in limiting immune activation and preventing
autoimmune disease. These cells offer the potential to provide tolerance or to allow
reduction in immunosuppression in kidney transplants. The importance of Tregs in kidney
transplantation has been shown in a number of seminal mouse and animal studies,
including those with T cell receptors (TCRs) transgenic Tregs (TCR-Tregs) or Chimeric
Antigen Receptor (CAR) Tregs (CAR-Tregs) showing that specificity increases the potency
of Treg function. Here we outline the animal and human studies and clinical trials directed
at using Tregs in kidney transplantation and other tolerance settings and the various
modifications to enhance allo-specific Treg function in vivo and in vitro.
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INTRODUCTION

Kidney transplantation is currently the preferred treatment for patients with end-stage kidney
disease (ESKD). The primary limitation of long-term kidney allograft survival has been chronic
immune-mediated rejection. This is due to both cellular and humoral pathways as well as innate
immune factors and possibly other pathways. Major improvements have occurred over time with
improved and more specific immune suppression particularly targeting T effector cells. However,
because of the deleterious effects of immunosuppression a major goal has been to achieve immune
tolerance to the transplant.

In organ transplantation, there has been a longstanding interest in transferring therapies that
create tolerance to the clinic (1). In kidney transplantation, a number of bone marrow-based
strategies creating temporary or permanent donor hematopoietic chimerism have reached clinical
trials. The first of these was done at Massachusetts General Hospital (MGH), followed closely by
Stanford, John Hopkins and North Western (2–6).

Regulatory T cells (Tregs) are a subset of T cells that suppress immune activation and limit
autoimmunity in the periphery (7). A number of cell types with immune-regulatory function have
been characterized as Tregs, though the one best understood, at present, are the CD4+FOXP3+
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Tregs. These either arise in the thymus (tTregs) or develop from
peripheral CD4+ T cells that convert into CD4+FOXP3+ Tregs as
peripherally derived Tregs (pTregs) (8). Previously, it had been
thought that peripheral tolerance due either tTregs or pTregs
would be insufficient for long standing tolerance. However
increasing understanding of Tregs and other regulatory subsets
has led to the possibility that transplant tolerance allowing
reduction or cessation of immunosuppression could be
achieved using regulatory cell subsets (9).

We and others have shown a role for Tregs in 1) protecting
against autoimmune kidney disease, 2) maintaining tolerant
kidney grafts, 3) preventing human islet allograft and pig
xenograft rejection in humanised mouse models, and 4)
preventing kidney allograft loss in mouse models of kidney
tolerance (10–13). In addition to our studies, there have been 3
bone marrow transplant (BMT) trials reporting the use of Tregs
in graft versus host disease (GVHD), and there are current
human trials using Tregs in autoimmune diabetes at UCSF
(14–17). Clinically, polyclonal human Tregs have been shown
to be safe to infuse in kidney transplant patients in the multi-
centre One Study (18) and the safety of this study suggests that
Tregs may be the next frontier of cell therapy (19–21). This has
also been achieved at North Western University in kidney
transplant recipients with ex-vivo expanded Tregs (22). This
group has also developed protocols for ex-vivo expanded allo-
antigen specific Tregs (23).

In this review, we focus primarily on antigen specific Tregs
induction in kidney transplantation tolerance and other
tolerance studies in animal models and human studies of
kidney transplantation and discuss several approaches to
generate and expand antigen specific Tregs which can protect
against transplant rejection.
REGULATORY T CELLS

Tregs that limit autoimmunity have been studied for a long time.
Almost 20 years ago the identification of a CD4+CD25+ subset as
necessary to protect against autoimmunity and limit alloresponse
and the subsequent identification of Foxp3 as a master
transcription factor identified this regulatory subset (24–27).
Further, the separation of these FOXP3+ Tregs into tTregs or
pTregs developed in the periphery in vivo has helped shape an
understanding of their action (28). Tregs can function through
multiple pathways to induce tolerance. Tregs are likely to have a
number of functional subsets that mirror effector T cells (28).
Naïve CD4+ T cells can be induced into FOXP3+ Tregs in vitro as
iTreg in this review. tTregs with epigenetic changes, provide
stability of demethylated FOXP3 especially at the Treg‐specific
demethylated region (TSDR) site, making them are more
resistant to conversion to other CD4 T cell phenotypes (29);
pTregs and iTregs without TSDR demethylation, appear at risk
of conversion into pathogenic subsets of CD4 T cells, including
Th17 (30).Many subsets of effector Tregs express lineage-specific
transcription factors in combination with the transcription factor
B-lymphocyte-induced maturation protein 1 (BLIMP1) which
Frontiers in Immunology | www.frontiersin.org 2
acts as a repressor. The important role of IL-2 and IL-4 in driving
alloantigen specific Tregs in transplantation has recently been
demonstrated (31). It has also been shown that acquisition of
antigen-specific memory by Tregs is associated with more potent
function (32). Further recent data suggests that memory Tregs
are more potent than naïve Tregs as shown in antigen-specific
models of skin inflammation where response to self-antigen
imprints regulatory memory in skin tissues and this has also
been shown in rat cardiac transplant models (33). Of interest,
antigen-specific CD4+ type 1 regulatory T cells that express IL-10
and/or TGF-b (Tr1) can be induced independently of foxp3
expression, can limit antigen-specific immune responses and
may also be important as mediators of transplant tolerance (34,
35). Further identification of memory markers on effector Tregs
in transplant settings suggests these may be more potent (36).
DONOR ANTIGEN-SPECIFIC TREGS IN
ANIMAL TRANSPLANT MODELS

In transplantation, the key goal is to achieve donor-specific
transplant tolerance in which the donor allograft is accepted
without long-term immunosuppressive requirements, and the
recipient remains capable of responding to pathogenic
microorganisms and other alloantigens (37). Donor-specific
tolerance of allografts arises spontaneously in various animal
models (11, 38–40) and has been well-documented in various
transplant populations (Figure 1), including our study in a
pediatric liver transplant recipient with full hematopoietic
chimerism (41). As well as Treg therapy, several approaches
have been used to achieve transplant tolerance in animal models,
including costimulatory blockade, hematopoietic donor
chimerism using BMT and stem cell transplantation, targeting
of effector cell activation and recruitment, and donor-specific
transfusions (DST). Among these approaches, donor-antigen
specific Foxp3+ Tregs have been found to play the crucial role
in the maintenance of allograft tolerance in several transplant
animal models.

Donor Antigen-Specific Tregs in
Spontaneous Acceptance of
Kidney Allografts
Donor-specific tolerance of renal allografts occurring spontaneously
across certain MHC mismatched mouse strains is a valuable model
for studying transplant tolerance (11, 38–40). Studies showed
spontaneous kidney allografts tolerance occurred in the DBA/2
(H2d) to C57BL/6 (H2b) transplant model and was associated with
T cell mediated immune regulation requiring TGF-b (40). In a
spontaneous kidney allograft tolerance mouse model with C57BL/6
mice as donors and B10.BR (H2k) as recipients, we found Foxp3+

Tregs increased in tolerant kidney allografts (39). Further we and
others demonstrated that Foxp3+ Tregs were essential for tolerance
induction in spontaneously accepted kidney allograft from DBA/2
to C57BL/6 mice, where depletion of CD4+CD25+ Tregs or Foxp3+

Tregs abolished kidney allograft tolerance (11, 42). Using DEREG
mice (C57BL/6) that carry the diphtheria toxin receptor and
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hu et al. Tregs in Kidney Transplantation
enhanced green fluorescent protein (DTR-eGFP) transgene under
control of the Foxp3 promoter, we identified donor -antigen-
specific Foxp3+ Tregs that were developed in DBA/2 kidney
allografts in C57BL/6 recipient mice and confirmed dominant
and donor antigen specificity of kidney allograft Tregs in vivo in
Rag-/- mice (11). These donor antigen-specific Foxp3+ Tregs
expressed elevated levels of TGF-b, IL-10, interferon gamma
(IFN-g), BLIMP1 and the chemokine receptor 3 (Cxcr3) (11).
These studies demonstrated the crucial role of Foxp3+ Tregs in
transplant tolerance and the therapeutic potential of donor antigen-
specific Tregs in clinical settings to improve transplant outcomes.

Donor Antigen-Specific Tregs in
Allo-Transplantation With DST
In transplantation, Tregs have been shown to develop in the
recipients after DST and the critical role of Tregs has been
reported in DST models with mismatch at both major
histocompatibility class (MHC) class I and class II (43–48).
However, other studies reported equal expansion of recipient
transplant-specific Tregs in the rejecting and tolerant heart
allografts induced through DST combined with anti-CD154 mAb,
and without Treg expansion in the spleen (49). Although DST
combined with cyclophosphamide treatment failed to prolong
BALB/c (H2d) islet allograft survival in C57BL/6 (H2b) host mice,
additional infusion of either donor-reactive Tregs (5 × 10 6) or
polyclonal Tregs (25 × 10 6) led to prolonged survival of allogeneic
islets in > 70% of C57BL/6 host demonstrating the critical role of
Tregs in DST for induction of tolerance (46). Other studies have also
reported DST combined with anti-CD154 mAb and plasmacytoid
dendritic cells (pDCs) induced BALB/c heart allograft tolerance in
Frontiers in Immunology | www.frontiersin.org 3
C57BL/6 hosts in which Tregs developed and expanded in the
lymph node (47). In aMHC-mismatched skin allotransplant mouse
model, mice pre-treated with anti-CD4 monoclonal antibody
(mAb) and DST achieved dominant tolerance which was
mediated by Tregs in a CTLA-4 and IL-10-dependent manner.
However CD4+CD25+ Tregs from graft tolerant mice had no
demonstrable specificity for the tolerizing donor antigens (50). In
models using DST with additional immunological manipulation,
expanded alloreactive Tregs occurred predominantly through the
direct pathway of allorecognition (51) and long-term graft
acceptance predominantly relied on indirectly activated Tregs (45,
52). Interestingly, in a single MHC-I mismatch skin transplant
model, we demonstrated dominant F1 skin-allograft [C57BL/6.C
(H-2bm1) × C57BL/6 (H2b)] tolerance induced by a single DST
across an unmanipulated C57BL/6 host (53). In this model,
expansion of antigen-specific Foxp3+ Tregs in F1 grafts and
spleens of recipient mice were due to thymus-derived Foxp3+

Treg proliferation that were indirectly activated. The essential role
of Foxp3+ Tregs in this model was confirmed by depletion of
Foxp3+ Tregs in DEREG mice which abrogated F1 skin graft
tolerance (53).

Donor Antigen-Specific Tolerance in
Allo-Transplantation Combined With BMT
Kidney transplant tolerance in a clinical setting has been achieved
with non-myeloablative BMT to induce hematopoietic mixed
chimerism, but is limited by the risk of GVHD, and loss of both
mixed chimerism and tolerance (3, 54, 55). Mixed chimerism
achieves transplant tolerance through both central and peripheral
depletion of alloreactive cells (54). More recent data support an
A B

D

E
C

FIGURE 1 | Donor antigen-specific Tregs developed in transplant tolerance mouse models (A) Spontaneous acceptance of kidney allotransplant tolerance.
(B) Mixed chimerism induced allo-transplantation tolerance via bone marrow transplantation. (C) Donor-specific transfusions (DST) induced allotransplantation
tolerance. (D) Blockade of the B7-CD28 (using CTLA-4 Ig/Fc) or/and CD40-CD40L (using anti-CD154 mAb) co-stimulatory pathway induced transplantation
tolerance; (E) and IL-2 and rapamycin targeted therapies induced transplantation tolerance.
August 2021 | Volume 12 | Article 717594
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important role for Tregs in mixed chimerism, both in limiting
GVHD and maintaining chimerism with host Treg cells involved
in preventing chronic allograft rejection and donor Treg cells
controlling GVHD in animal models and transplant recipients
(56–61). Mouse studies have shown an important role for host
Treg cells in tolerance using nonmyeloablative BMT,
costimulatory blockade and total body irradiation to achieve
mixed chimerism across a full MHC mismatch (58). Mixed
chimerism only occurred in the presence of host Tregs in host
mice and allogeneic T cell-depleted BMT in a non-lymphoablative
irradiation regimen (57). Moreover, host Tregs specific for directly
presented donor antigens prevented acute rejection only of skin
and heart allografts, while host Tregs specific for both directly and
indirectly presented alloantigens prevented both acute and chronic
rejection in the samemodels (57). Using a non irradiation regimen
in which the host received, anti-CD154 mAb, a single dose of
depleting CD8 mAb, N,N-bis(2-chloroethyl)-nitrosourea (BCNU,
an alkylating agent), and allogeneic BMT from methyl-guanine-
methyl-transferase (MGMT) transgenic mice, high levels of donor
mixed chimerismwithout GVHDwere achieved across fully MHC
mismatchedmice leading to donor-specific skin allograft tolerance
(56). MGMT is a DNA repair enzyme that removes BCNU from
guanine and limits BCNU toxicity, enhancing engraftment of
donor hematopoietic cells. Importantly, both donor and host
Foxp3+ Tregs were expanded in this model, suggesting their
important role for the maintenance of tolerance in mixed
chimerism (56). In non-human primates (NHPs) where kidney
allograft tolerance was achieved with the development of transient
mixed chimerism using T cell-depleted BMT and costimulatory
blockade without myeloablation, Foxp3+ Tregs were found to be
enhanced in tolerant recipients (62). Thus, mixed chimerism and
Tregs are likely to be synergistic in achieving transplant tolerance
and limiting GVHD in clinical transplantation (63–65).

Donor Antigen-Specific Tregs in
Costimulation Blockade–Induced
Transplant Tolerance
In several transplant model systems, blockade of the B7-CD28
(using CTLA-4 Ig/Fc) or CD40-CD40L (using anti-CD154 mAb)
co-stimulatory pathway induced donor graft tolerance (66–72).
The impact of Treg numbers and functionality on the efficacy of
costimulation blockade, and the requirement of Tregs in
transplant induction via co-stimulation blockade is an area of
active investigation (67, 68, 73, 74). Although CTLA-4–Ig
treatment in C57BL/6 naïve mice causes a decrease in Treg
and Helios+Foxp3+ Tregs, it prolongs fully mismatched BALB/c
heart allograft survival in C57BL/6 recipients. However, it does
not protect single MHC-II mismatched heart allografts in
C57BL/6 recipients in which long-term allograft survival was
Tregs dependent (73). In a different model, treatment with
CTLA4-Ig abolished skin allograft tolerance induced by IL-2/
anti–IL-2 complex suggesting that allo-Treg development
requires costimulation (75). Others reported that in the
presence of B7:CD28 and CD40:CD40L co-stimulatory
blockade, the suppressive function of CD4+CD25+ Tregs was
activated, suppressing the proliferation of CD4+ effector cells
(67). Experiments in vitro by Vogel et al. found that co-
Frontiers in Immunology | www.frontiersin.org 4
stimulatory blockade primed Foxp3+ Tregs to be more
suppressive than naïve Foxp3+ Tregs (76). Depletion of
CD4+CD25+ Tregs in recipient mice abolished heart allograft
tolerance induced by CD154 mAb treatment (77). In an islet
xenotransplant pig-mouse model, we found expanded Foxp3+

Tregs populations in the xenograft, spleen and draining lymph
nodes that were induced by treatment with CTLA-4 Fc and anti-
CD154 mAb. Once again activated Foxp3+ Tregs had more
potent regulatory function in vivo than naive Tregs (68).
Further, depletion of Foxp3+ Tregs at induction (unpublished)
or maintenance (68) in recipient mice with the blockade of B7-
CD28 or CD40-CD40L abolished transplant tolerance thereby
confirming the essential role of these cells. However, antigen
specificity of Treg after the induction of tolerance does not
appear to be universal. Using a combination of nondepleting
CD4, CD8, and CD154 mAb to induce fully mismatched C57BL/
10 (B10, H-2b) skin allograft tolerance in CBA (H2k) mice,
antigen specific tolerance to the second skin allograft was
shown to be mediated by CD4+CD25+ Tregs; but these Tregs
from tolerant mice had no demonstrable donor antigen
specificity after adoptive transfer (78).

Donor Antigen-Specific Tregs in IL-2 and
Rapamycin Targeted Therapies
The cytokine interleukin-2 (IL2) is a key regulator of immune cells
including Tregs that constitutively express the high‐affinity
IL‐2Ra (CD25) and are highly sensitive to very low doses of
IL‐2 (79–81). In the clinic, low-dose IL-2 therapy has been shown
to selectively expand FOXP3 Tregs and used successfully to treat
chronic GVHD (82), hepatitis C virus–induced vasculitis (83),
systemic lupus erythematosus (SLE) (84), and type 1 diabetes (85,
86). In a humanized mouse model, we demonstrated that the
infusion of in vitro–expanded human FOXP3+ Tregs in the
presence of IL-2 and rapamycin prevented porcine neonatal islet
cell cluster xenograft rejection (87). Low dose IL-2 treatment in the
host mice led to expansion of Foxp3+ Tregs in vivo and prolonged
allograft survival in a full MHC-mismatch corneal transplant
model of C57BL/6 grafts to BALB/c hosts, and these in vivo
expanded Tregs also demonstrated donor antigen specificity (88).
Further, IL-2 treatment of host mice preferentially expanded
infused donor antigen-specific Tregs generated in vitro, and
improved the skin allograft survival in a single MHC-mismatch
mouse model (89). Using IL-2/anti-IL-2 antibody complexes has
also been shown to induce Foxp3+ Tregs expansion, prolong islet
allograft survival (90) and protect against proteinuric chronic
kidney disease (91). In our study, low dose of IL-2 treatment
alone failed to prolong islet allograft survival in humanized mice
despite expandingFOXP3+ Tregs in vivo (92). Graft survival
depended on the balance of effector T cells and Tregs.
Rapamycin has been shown to be pro-tolerogenic by allowing
expansion of human and mouse Tregs while also suppressing
CD4+ T effector cells in experimental studies (93–96). Whilst low-
dose rapamycin treatment did not lead to either Treg expansion in
vivo or prolongation of islet graft survival in humanized mice, the
combination of IL-2 and rapamycin led to an expansion of Tregs
and prolonged human islet allograft survival in this humanized
mice model (92). The combination of IL-2 and rapamycin has also
August 2021 | Volume 12 | Article 717594
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been reported to prolong skin graft survival in minor antigen
mismatch and semi-allogeneic mouse recipients (97). These
studies suggest a combination of agents that selectively expand
Tregs in vivo whilst limiting effector T-cell expansion will be
required to protect graft rejection if these therapies are to be
translated in the clinic. Although these results in rodent studies are
encouraging, more work needs to be done to ensure that T cell
activation in vivo is limited to the Treg population only. IL-2, at
the appropriate dose, can activate effector T cells, and a clinical
trial of low dose IL-2 in liver transplant recipients had to be ceased
due to increased rejection without evidence of Treg induced
suppression (NCT02949492).
POTENTIAL METHODS TO GENERATE
AND INDUCE ALLOSPECIFIC TREGS
EX VIVO

Concerns around non-specific immune suppression and the need
to increase potency has led to the development of antigen-specific
Tregs which display more efficient suppressive function than naïve
Tregs. There are several methods to generate donor antigen-
specific Tregs from FOXP3+ Tregs (CD4+CD25+CD127-)
precursors, and antigen-specific iTregs or Tr1 from naïve CD4+

T cells for therapy in transplantation (Figure 2) (98, 99).

Direct Antigen Expansion With Donor
HLA Expressed by APC
Human Tregs expanded in the presence of donor antigen ex vivo
demonstrate enhanced suppressive function and were more
Frontiers in Immunology | www.frontiersin.org 5
effective for protecting skin allograft rejection in a humanized
mouse model (100). Our group has identified xenospecific
human CD27+HLADR+ Tregs generated in the presence of pig
donor peripheral blood mononuclear cells (PBMCs) in a mixed
lymphocyte reactions (MLR) system which demonstrated more
effective protection of pig islet xenograft rejection in a
humanized mouse model (unpublished). Allospecific Tregs
were generated using isolated CD4+CD25+CD127- Tregs from
PBMCs of healthy volunteers in the presence of soluble 4-trimer
CD40 ligand (CD40L)-activated donor B cells (23) or skin-
derived myeloid DCs (101). Further studies have shown that
human allospecific Tregs can be generated in a MLR system from
PBMC of uremic patients in the presence of donor PBMCs under
conditions of costimulatory blockade with belatacept (102).
Allospecific Tregs were generated in different MLR system in
which sorted CD4+CD25+CD127- Tregs from transplant
recipient’ PMBCs were expanded with donor B cells activated
using K562 cells and expressing human CD40L (100). These
allospecific Tregs maintained high levels of FOXP3 expression
and TSDR (100, 102), and demonstrated safety for cell therapy in
clinical kidney transplant trials (18, 100, 102).

Indirect Antigen Expansion With Donor
HLA Fragments Presented by Host
APC/MHC
Another approach has been the use of indirectly presented HLA
molecules in the context of recipient MHC using antigen
presenting cells (dendritic cells or B cells) pulsed with donor
antigen. This may potentially be more effective for suppression of
chronic rejection (103). However, this is often limited by the
small clone size of TCR recognizing the peptide in the context of
A B

FIGURE 2 | Methods of allospecific Treg derivation (A) Generating donor antigen-specific Tregs from FOXP3+ Tregs (CD4+CD25+CD127-) precursors. This includes
donor HLA presented to generate i) direct antigen expanded (donor APC/MHCII) or ii) indirect antigen expanded Tregs ed (host APC/MHCII). iii) Polyclonal expansion with
antiCD3/CD28 beads. iv) Isolation of specific Tregs using Tetramers composed of host class II MHC & donor MHC fragments. v) Insertion of antibody fragment scFv
connected to TCR to create a CAR. vi) Genetic modification of Tregs with transgenic TCR. (B) Inducing donor antigen-specific i) iTreg and ii) Tr1 from naïve CD4+ T cells.
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self-MHC or the development of inhibitory constimulatory
molecules by the APC.

Isolation of Specific Tregs Using
Tetramers Composed of Host Class II
MHC & Donor MHC Fragments
This has the advantage of having a broad range of T cell receptors
(TCRs) in the selected population. It still requires Treg expansion
and sorting. It also has issues around the initial selection of Tregs
and it may potentially be useful in displaying a range of targets.
However MHC Class II tetramers have proved less efficient than
Class I and may be a barrier to larger scale clinical use (104).

Insertion of Allospecific TCR
Theuse ofTCRs against an alloantigenwasfirst usedbySimpsonand
her group using TCR transgenic mice against the H-Y antigen (105,
106). Here Tregs directed againstH-Y could induce tolerance against
a minor antigen (107, 108). TCR-transduced Tregs specific for
allogeneic MHC class II molecules induced long-term survival of
partiallyMHC-mismatched heart grafts when combined with short-
term adjunctive immunosuppression (109). This demonstrated the
capacity and increased potency of TCR targeted Treg therapy. More
recently this approach has been used in cancer against minor H-A
antigensbutmayhavea future role in transplantation tolerance (110).

Car-Tregs
Antibody fragment scFv connected to the intracytoplasmic tail of
the TCR and associated signaling molecules are transduced into
Tregs to create a chimeric antigen receptor (CAR) Treg (111).
The targeting of Tregs in organ transplantation and in
autoimmunity to the transplanted cells or autoimmune tissues
is an attractive option. The potency of antigen targeting was first
shown by the Simpson group as described above. T cell
specificity has also been achieved using antibody fragments
linked to intracellular TCR signalling domains called CARs.
CAR T cells have been used most impressively in the
treatment of CD19 lymphoma using CD8 T cells engineered
with a scFv chain from an antibody against CD19 fused to the
intracellular component of the T cell receptor (112–114). These
hybrid receptors are comprised of a scFv derived from
monoclonal antibodies or an antigen-binding fragment (Fab)
fused to CD3-z transmembrane and end domains, the
intracellular functional component of the TCR. This approach
has been used to direct T cells against cancer antigens, most
spectacularly against CD19. Further modifications enhance the
survival and activity of the Treg and drive the functionality of the
T cells have been undertaken (115).

The efficacy of CAR Tregs directed against alloantigens has
been demonstrated using HLA-A2 specific CAR T cells in vitro
and in transplant models (116–118). However, CAR Tregs while
limiting skin graft rejection in naïve mice cannot prevent skin graft
rejection in sensitized mice (119). Many strategies exist to improve
the isolation and expansion of Tregs and subsequent genetic
modifications to alter cytokine signalling, enhance regulatory
elements or inhibit signals that supress regulation and develop
pathways for testing in large animals and human trials (120).
Frontiers in Immunology | www.frontiersin.org 6
Generating Allospecific iTregs From Naïve
CD4+ T Cells
iTregs are induced to express FOXP3 from naïve CD4+ under
specific condition in vitro, but iTregs without TSDR
demethylation, appear more susceptible to conversion into
pathogenic subsets of CD4+ T cells (30). iTregs induced with
TGF-b in the presence of all-trans retinoic acid (ATRA) and
rapamycin demonstrated robust suppressive function in vitro but
not in vivo, in the humanized GVHD mouse model (121).
Interestingly, allospecific iTregs that were induced with TGF-b1,
IL-2, and ATRA in the presence of allogeneic monocyte-derived
dendritic cells, can specifically suppress donor allo-responses but
not third-party allo-responses, andmaintain suppressive function in
the presence of pro-inflammatory cytokines, despite methylation of
the FOXP3 TSDR (122).

Generating Allospecific Tr1
Tr1 cell therapy in GVHD trials including NCT03198234
suggested therapeutic possibility in the treatment of
transplantation rejection (123). Allospecific Tr1 were enriched
in cultured CD4+ T cells that were stimulated with allogeneic
IL-10-producing DCs generated from CD14+ monocytes in the
presence of IL-10 (124). These allospecific Tr1 showed specific
suppression function to donor alloresponse in vitro and
maintained a tolerogenic gene expression profile in vivo (124).
ANTIGEN-SPECIFIC TREGS IN
TRANSPLANT CLINICAL TRIALS

Given the central role of T-cells in downstream effector function,
Tregs have been studied as a potential therapeutic in human solid
organ transplantation. Sixteen Treg clinical trials that have
focused on feasibility, safety and preliminary efficacy of infused
Tregs to reduce the dose of calcineurin inhibitor (CNI)-based
immunosuppression have been reported. However, the majority
of reported clinical trials using Tregs lack the capacity to robustly
identify mechanistic effects and much of our understanding of
underlying mechanisms relies on extrapolation of results from
rodent and non-human primate studies.

Autologous or donor-derived peripheral blood is the most
common source of Tregs used in clinical trials, although alternate
sources such as umbilical cord blood and paediatric thymus,
non-lymphoid tissue such as skin, adipose tissue and muscle
have been explored (125) (Figure 3). Peripheral blood contains
only a small proportion of Tregs that require purification via
CD25+ cell selection, with or without CD8+ depletion. Ex vivo
expansion of these naturally-occurring Tregs can be achieved
through various means, but the choices are dependent on
whether polyclonal or donor alloAg-reactive Treg (darTreg)
are required (100). darTregs are theoretically more potent,
however the majority of trials have expanded polyclonal Tregs
with a combination of IL-2 and anti-CD3/CD28 magnetic bead
stimulation ± rapamycin or TGF-b, although this process may
require a greater cell infusion dose to achieve donor-specific
suppressive effects (126–129) (Figure 3).
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Clinical studies in kidney or liver transplantation have
demonstrated Treg safety in early phase I/II studies. The One
study (18), which included polyclonal Treg (n = 12 and 11 at
Guy’s and Oxford University Hospitals, UK and Charité Hospital,
Germany) and darTregs (n = 2) at the University of California
San Francisco Medical Centre and (n = 3) at Massachusetts
General Hospital, USA, did not demonstrate significant adverse
events such as rejection. However, infusion of darTregs following
a preconditioning regimen of splenectomy, rituximab with
cyclophosphamide, or rituximab with rabbit anti-thymocyte
globulin in living donor kidney transplantation resulted in
significant rejection risk following immunosuppressive drug
weaning (130). This highlights the caution required to achieve
in vivo translation of cell therapies – despite demonstrating
functionally suppressive Tregs in vitro, there was either
insufficient Treg dosage, loss of regulatory function in vivo, or
significant depletion of recipient Tregs. Additional studies of
darTregs in liver transplantation (deLTa, NCT02188719) was
not completed within the study timeframe, and several additional
studies (ThRIL, NCT02166177; ARTEMIS NCT02474199) are
either not formally reported or yet to commence recruiting
(LITTMUS, NCT03654040). Tr1 cell therapy in two kidney
transplant patients in the One Study group showed Tr1 cells
expand and Tr1-cell tolerogenic gene expression profile remains
stable even under active immunosuppressive treatment (124).
CONCLUSIONS

The safety of infusing mildly manipulated Tregs has been
demonstrated in clinical trials of kidney transplantation.
Frontiers in Immunology | www.frontiersin.org 7
Promising animal studies suggest that specific Tregs or
modified Tregs may be more potent and allow further
reduction in immunosuppression or true tolerance. There are
caveats with CAR T cells failing to suppress rejection in
sensitized mice and primate studies demonstrating Treg
conversion. However overall, the accumulating evidence
suggests that these barriers can be overcome and allo-specific
Tregs therapy translated into the clinical practice.
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