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Background: Epithelial-mesenchymal transition (EMT), one leading reason of

the dismal prognosis of bladder cancer (BLCA), is closely associated with tumor

invasion and metastasis. We aimed to develop a novel immune−related gene

signature based on different EMT and metabolic status to predict the prognosis

of BLCA.

Methods: Gene expression and clinical data were obtained from TCGA and

GEO databases. Patients were clustered based on EMT and metabolism scores

calculated by ssGSEA. The immune-related differentially expressed genes

(DEGs) between the two clusters with the most obvious differences were

used to construct the signature by LASSO and Cox analysis. Time-dependent

receiver operating characteristic (ROC) curves and Kaplan–Meier curves were

utilized to evaluate the gene signature in training and validation cohorts. Finally,

the function of the signature genes AHNAK and NFATC1 in BLCA cell lines were

explored by cytological experiments.

Results: Based on the results of ssGSEA, TCGA patients were divided into three

clusters, amongwhich cluster 1 and cluster 3 had completely opposite EMT and

metabolic status. Patients in cluster 3 had a significantly worse clinical

prognosis than cluster 1. Immune-related DEGs were selected between the

two clusters to construct the predictive signature based on 14 genes. High-risk

patients had poorer prognosis, lower proportions of CD8+ T cells, higher EMT

and carbohydrate metabolism, and less sensitivity to chemotherapy and

immunotherapy. Overexpression of AHNAK or NFATC1 promoted the

proliferation, migration and invasion of T24 and UMUC3 cells. Silencing

ANHAK or NFATC1 could effectively inhibit EMT and metabolism in T24 and

UMUC3 cells.
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Conclusion: The established immune signature may act as a promising model

for generating accurate prognosis for patients and predicting their EMT and

metabolic status, thus guiding the treatment of BLCA patients.
KEYWORDS

epithelial-mesenchymal transition, metabolic reprogramming, prognosis, gene
signature, bladder cancer
Introduction

Bladder cancer (BLCA) is one of the most common

malignant tumors of urinary system, and its incidence rate

ranks tenth among all cancers and is gradually increasing,

especially in the aging population. It is more common in men

than in women, with morbidity and mortality rates about four

times higher in men than in women (1). According to the depth

of tumor infiltration, bladder cancer can be divided into non-

muscle invasive bladder cancer (NMIBC) and muscle invasive

bladder cancer (MIBC). NMIBC accounts for about 75% and

MIBC accounts for about 25%. Despite the continuous

development of surgery combined with chemoradiotherapy

and immunotherapy techniques, the recurrence and metastasis

rates of bladder cancer are still high, resulting in a poor

prognosis (2). An important reason for this phenomenon is

that bladder cancer is highly heterogeneous and varies greatly

among individual patients, who can exhibit multidrug resistance

(3). Current conventional methods still have difficulty in

accurately predicting the prognosis of patients with BLCA.

Therefore, with the increasing development of genomics, there

is an urgent need to develop more effective and reliable

prognostic biomarkers to distinguish different subgroups of

patients and to enable optimal and personalized treatment.

Invasion and metastasis are unique features of BLCA that

affects the survival and prognosis of patients and is also an

important reason why surgery cannot completely remove the

tumor lesion. An important process that precedes the

development of tumor metastasis is epithelial-mesenchymal

transition (EMT), caused by alterations in the molecular

pathways of the tumor resulting from genetic and epigenetic

changes (4). EMT is an embryonic phenotypic plasticity

program that confers aggressiveness, dissemination, and

chemo/immunotherapy resistance in cancer. Accompanied

with the loss of apicobasal polarity and increased migratory
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hment analysis; TMB,
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capacity, EMT can make fixed and immobile urothelial cells

undergo complex reprogramming, and make some urothelial

cancer cells obtain mesenchymal characteristics with self-

renewal capacity, so as to escape immune surveillance and

penetrate into the surrounding basement membrane (5, 6).

In contrast to epithelial cells, mesenchymal carcinoma cells

have distinct metabolic demands that drive metabolic

reprogramming throughout the tumor microenvironment.

During EMT occurrence, cancer cells fine-tune their multiple

metabolic circuits to meet the bioenergetic and biosynthetic

demands of rapid cell proliferation and adaptation to the new

microenvironment (7). In addition to cancer cells, evolving

research has found that EMT can also give immune cells unique

metabolic characteristics that affect their immunoregulatory

function in response to cancer development (8). Thus, a better

understanding of the interdependence between EMT and tumor

metabolism could facilitate the discovery of effective predictive

markers and new approaches to improve outcomes of BLCA.

In our study, we divided BLCA patients of the TCGA cohort

into subgroups with different EMT status and metabolic

characteristics. Based on the difference analysis between

subgroups, we applied a variety of bioinformatics methods to

establish an immune-related gene signature which can stably

predict the prognosis and the response to chemotherapy and

immunotherapy of patients. Our findings may help to optimize

risk stratification of patients and provide a basis for studying the

interplay between EMT and metabolic reprogramming.
Materials and methods

Data acquisition and preprocessing

RNA sequencing profile, mutation annotation format

(MAF) file and corresponding clinical data of BLCA patients

were downloaded from The Cancer Genome Atlas (https://

portal.gdc.cancer.gov). Validation datasets GSE31684 and

GSE32894 were obtained from the GEO data portal (https://

www.ncbi.nlm.nih.gov/geo/). Validation dataset IMvigor210

were obtained from IMvigor210CoreBiologies, a fully

documented R package (9). All the patients from the
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IMvigor210 cohort received at least one dose of ICI therapy.

“ESTIMATE” R package was used to calculate immune/stromal

scores for TCGA patients (10). Protein expression information

for BLCA patients of TCGA cohort was obtained from the

TCPA portal (https://www.tcpaportal.org/). Gene mutation

information was obtained from the cBioPortal portal (http://

www.cbioportal.org/). Immunohistochemical information was

obtained from the HPA portal (https://www.proteinatlas.org/).
EMT and metabolic signature analysis

The prognostic value of various EMT signatures in

numerous studies was evaluated through the EMTome portal

(http://www.emtome.org/) (11). Then we obtained the EMT

signature containing 200 genes from the MSigDB portal

(http://software.broadinstitute.org/gsea/msigdb). Seven

metabolic gene signatures were obtained from a previous study

(12). These gene sets are mostly independent of each other and

represent the major metabolic processes, including amino acid

metabolism, carbohydrate metabolism, integration of energy,

lipid metabolism, nucleotide metabolism, tricarboxylic acid cycle

(TCA) and vitamin & cofactor metabolism. The activity scores of

the metabolic pathways for each sample of TCGA cohort were

calculated by single-sample gene set enrichment analysis

(ssGSEA) with the R package GSVA. The results of ssGSEA

were standardized by linear normalization.
Identification of molecular subtypes
based on EMT and metabolism scores

According to the results of ssGSEA, the TCGA cohort was

clustered into different subgroups by “Sparcl” R package. The

differentially expressed gene (DEGs) between the two most

significantly different clusters were analyzed with “Limma” R

package. The adjust P < 0.05 and |log2(Fold Change) | > 1 were

set as the cut‐off criteria to screen for DEGs. Then we

downloaded a list of immune genes from the Immport portal

(https://www.immport.org/) and intersected them with the

DEGs to obtain immune-related genes that changed under

different EMT and metabolic states (13). These genes were

included in further analysis.
Immune infiltration analysis, Gene Set
Enrichment Analysis (GSEA) and function
annotation

Comparison of 22 different types of immune cell fractions

between subgroups were conducted by using “CIBERSORT”

script in R (14). GSEA was performed by “ClusterProfiler” R

package. The reference gene sets were downloaded from the
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MSigDB portal. Gene Ontology (GO) analysis and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis were also performed by “ClusterProfiler”

R package. Pathways with FDR (false discovery rate) < 0.25 and

P < 0.05 were considered statistically enriched.
Construction and validation of the
prognostic gene signature

First, univariate Cox analysis of overall survival (OS) was

performed to screen out the immune-related DEGs with

prognostic value. Subsequently, we performed Lasso-penalized

regression analysis with the “glmnet” R package to select the

genes for constructing the predictive model. Finally, stepwise

multivariate Cox regression analysis was applied to determine

signature genes and their relative coefficient. The risk score (RS)

for each patient was calculated as follows:

RS =oiCoefficient mRNAð Þ � Expression mRNAið Þ
The training and validation cohorts were divided into high-

risk and low-risk groups based on the median RS calculated

separately. Kaplan-Meier survival analysis was conducted to

assess the survival differences between risk groups. Time-

dependent receiver operating characteristic curves (ROC) was

implemented using the “survivalROC” R package to evaluate the

sensitivity and specificity of the signature. Nomogram was made

by “regplot” R package, and time-dependent AUC curves were

drawn by “timeROC” R package.
Assessment of drug response based on
the signature

The response of the different risk groups to chemotherapy

was validated by the TCGA cohort. The TIDE algorithm was

used to evaluate the sensitivity of immunotherapy in BLCA

patients in the TCGA cohort (15). Patients with TIDE values >0

were defined as non-responders (negative sensitivity), while

TIDE values <0 were defined as responders (positive

sensitivity). We also downloaded the immunophenoscore (IPS)

from the TCIA portal (https://tcia.at) for the TCGA cohort to

assess the sensitivity to immune checkpoint in different risk

groups (16). Moreover, the independent cohort IMvigor210 was

used to test the ability of the signature for predicting the

immunotherapeutic response.
Cell culture and transfection

The human bladder cancer cell lines T24 and UMUC3 were

provided by the Cell Bank of the Chinese Academy of Sciences
frontiersin.org
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(Shanghai, China). The cell lines were cultured in RPMI 1640

medium supplemented with 10% foetal bovine serum (FBS;

Gibco, Grand Island, NY, USA) at 37°C under 5% CO2 in a

humidified incubator. For transient knockdown, the specific small

interfering RNA (siRNA) for AHNAK and NFATC1 were

purchased from GenePharma (Shanghai, China) and the

sequences are shown in Supplementary Table 1. Cells were

transfected with siRNA using Lipofectamine 3000 (Thermo

Fisher Scientific) for 24h according tomanufacturer’s instructions.
Quantitative real-time PCR and
western blotting

Total RNA was extracted using TRIzol (Takara) and cDNA

of each group was synthesized with the PrimeScript™ RT

reagent kit (Takara). qPCR was performed with the Roche

LightCycler 480II real-time PCR detection system (Roche,

Basel, Switzerland). Expression level of each gene was

normalized to that of b-actin. The primers for qRT-PCR are

listed in Supplementary Table 2.

Western blotting (WB) was performed as described previously

(17). The antibodies used were as follows: anti-AHNAK antibody

(sc-390743, Santa Cruz Biotechnology), anti-NFATC1 antibody (sc-

7294, Santa Cruz Biotechnology), anti-E-Cadherin antibody

(20874-1-AP, Proteintech), anti-Vimentin antibody (#5741, Cell

Signaling Technology), anti-PFKFB3 antibody (ab181861, Abcam),

anti-LDHA antibody (#3582, Cell Signaling Technology), anti-GLS

antibody (ab156876, Abcam), anti-GLUD1 antibody (ab168352,

Abcam), anti-PDL1 antibody (#13684S, Cell Signaling Technology),

anti-a-actinin antibody (11313-2-AP, Proteintech) and anti-b-actin
antibody (#4970, Cell Signaling Technology).
Cell proliferation, migration and
invasion assays

MTT (#88417, Sigma-Aldrich)assay was used to detect cell

proliferation. Cells were transfected with siRNA for 24 hours

and then inoculated in 96-well plates, each well containing 200

ml of complete growth medium, and cultured for the indicated

times. Then the number of viable cells of different groups were

measured by MTT methods.

Cell migration and invasion assay were performed by

transwell chamber technology. In the migration assay, cells

(5× 104) were inoculated in the upper chamber (Corning) with

serum-free medium after siRNA transfection and the lower

chamber was filled with medium containing 10% FBS. After

24 hours, the cells on the membrane of transwell inserts were

fixed with 4% paraformaldehyde and stained with 0.1% crystal

violet. The invasion assay followed the same procedure as the

migration assay, except that the membrane was coated with

Matrigel (BD Biosciences).
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Statistical analysis

Student’s t-test or one-way analysis of variance was used to

analyze differences between groups in variables with normal

distribution. Wilcoxon rank-sum test or Kruskal-Wallis test was

for groups without normal distribution. P value < 0.05 was regarded

as statistically significant (* p<0.05, ** p<0.01, *** p<0.001,

**** p<0.0001).
Results

Activation of the EMT pathway is a risky
prognostic factor for bladder cancer

All the gene sets used for ssGSEA analysis were presented in

Supplementary Table 3 and normalized ssGSEA results were

presented in Supplementary Table 4. Figures 1A-E showed a

significant correlation between EMT score and pathological grade,

clinical stage, and TNM stage in the TCGA cohort. The higher

EMT score corresponded to the higher degree of malignancy. In

addition, we divided the patients of TCGA cohort into two groups

based on the median EMT score. The prognosis for overall survival

was significantly better in the low score group than in the high score

group (Figure 1F). The GSEA results showed that multiple

metabolic regulation-related pathways were significantly enriched

in the high EMT score group, implying that tumor undergo EMT

with concomitant metabolic reprogramming (Figure 1G). We also

evaluated the prognostic value of various EMT gene sets in other

studies and showed that EMT was indeed a risk prognostic factor

(Supplementary Figure 1).
Identification of molecular subgroups
with different EMT activities and
metabolic status

Based on the EMT and metabolic scores derived from the

ssGSEA algorithm, the total 408 patients in the TCGA cohort were

clustered into three groups, where distinct states existed for cluster 1

(N=116) and cluster 3 (N=73). Cluster 3 had significantly higher

scores in EMT, energy and carbohydrate than cluster 1, while scores

in amino acid, TCA cycle and lipid were lower than cluster 1

(Figure 2A). In addition, cluster 3 showed the worst prognosis

(Figure 2B). Then we explored the association between the three

subgroups and clinical characteristics. The results showed a stepwise

increase in the proportion of high clinical stage and TNM stage

from cluster 1 to cluster 3 (Figures 2C-F). Cluster 3 also had the

highest rate of local recurrence and metastasis among patients who

had received chemotherapy (Figure 2G). At the protein level, cluster

3 showed a stronger tendency toward EMT (Figure 2H). As

assessed by the ESTIMATE algorithm, cluster 3 had a

significantly higher immune score and stromal score than the
frontiersin.org
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other clusters (Figure 2I). Moreover, immune infiltration analysis

showed a lower percentage of CD8+ T cells and a higher percentage

of M2 macrophages in cluster 3, suggesting that the tumor

microenvironment differed among clusters and cluster 3

expressed the lowest level of immunity (Figure 2J).
Immune-related DEGs screening and
biological function annotation

For further exploration, we performed differential gene analysis

between cluster 3 and cluster 1 and obtained 6719 DEGs, which

were subsequently intersected with the immune gene list from

Immport to obtain a total of 519 immune-associated DEGs

(Figures 3A, ). Then we performed GO and KEGG analysis for

the 519 genes. The results of molecular function (MF) and cellular

component (CC) focused on pathways related to molecular

interactions and cell adhesion, while the biological processes (BP)

were mainly involved in the regulation of the immune system

(Figure 3C). The results of KEGG analysis encompassed pathways

associated with tumor malignancy regulation and immune

modulation, such as MAPK signaling pathway, PI3K-Akt

signaling pathway, T cell receptor signaling pathway and PDL1/

PD1 checkpoint pathway (Figure 3D).
Construction and validation of the
immune signature associated with EMT
and metabolic reprogramming

The 519 immune-associated DEGs were included in the

model construction process. First, univariate Cox survival
Frontiers in Immunology 05
analysis was applied to deal with these genes and 129 genes had

significant prognostic value. Then 37 genes were retained after

LASSO regression analysis and these genes were used for stepwise

multivariate Cox regression analysis to construct the model

(Figures 4A, B). Ultimately, 14 immune-related DEGs were

selected for the construction of the novel prognostic gene

signature (Figure 4C). Risk scores were calculated for each

sample based on the expression levels and coefficients of these

14 genes as follows: RS = (-0.246 × AGER) + (0.303 × AHNAK) +

(0.623 × CALR) + (-0.266 × CD3D) + (-0.222 × IFNGR1) +

(-0.176 × IRF5) + (-0.201× JAK2) + (-0.366 × MICA) + (0.415 ×

NFATC1) + (-0.191 × OAS1) + (0.226 × PDGFD) + (0.146 ×

RBP1) + (-0.545 × TCF7L2) + (-0.150 × TFRC). The TCGA

cohort was divided into high- and low- risk groups based on the

median value of RS. The score distribution and survival status of

all patients and the expression levels of 14 genes were shown in

Figure 4D. The 1-, 3-, and 5-years area under curve (AUC) values

of OS were 0.79, 0.77, and 0.78, respectively (Figure 4E). The

prognosis of patients in the high RS group was significantly worse

than that of the low RS group (Figure 4F). Moreover, RS were

closely correlated with clinical characteristics (Figures 4G-K).

For subgroup validation, BLCA patients in the TCGA cohort

were divided into different groups based on the following

characteristics: age, gender, clinical stage, and AJCC T stage.

Patients in the low RS group can obtain better survival benefits,

suggesting that the signature had robust predictive ability in

different subgroups (Figures 5A-H). We also validated the

predictive efficacy of the signature with two other independent

cohorts GSE31684 and GSE32894 (Figures 5I, K). The 1-, 3-, and

5-years AUC values of OS were 0.67, 0.63, 0.63 in GSE31684 and

0.78, 0.76, 0.79 in GSE32894 (Figures 5J, L). Moreover, we also

integrated the clinical information of TCGA cohort with the
A B DC

E F G

FIGURE 1

EMT score shows important clinical prognostic value and biological implication in TCGA cohort. (A-E) The correlation between EMT score and
grade, clinical stage and AJCC TNM stage. (F) Comparison of overall survival between high and low EMT score groups. (G) Multiple metabolic
regulatory pathways were significantly enriched in the high EMT score group. * p<0.05, **** p<0.0001.
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riskscore to build a nomogram model for predicting the survival

probability (Figure 5M). The red dots showed how to use this

nomogram to calculate the survival probability for a patient. The

calibration curve showed that the nomogram had a high

prediction accuracy (Figure 5N). The nomogram had higher

AUC value compared to riskscore alone, suggesting that our

gene signature had better predictive potential when combined

with clinical factors (Figure 5O).
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Comparison the immune infiltration,
metabolic status and pathway
enrichment between high- and
low- risk groups

To further explore the differences between the risk groups, a

series of in-depth studies were conducted. Immune infiltration

analysis showed a higher percentage of CD8+ T cells in the low-
A
B

D E F

G IH

J

C

FIGURE 2

Identification of molecular subtypes based on EMT and metabolism scores. (A) The TCGA cohort was divided into three clusters based on
cluster analysis of the ssGSEA scores. (B) Overall survival of the three clusters was compared by KM survival analysis. (C-F) Comparison of
clinical characteristics between the three clusters. (G) Comparison of the proportion of metastasis and local recurrence after receiving
chemotherapy. (H) Comparison of the expression levels of EMT marker proteins. (I) Comparison of the ESTIMATE scores. (J) Comparison of the
infiltration of 22 leukocyte types among three clusters. *p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001, ns: no significance.
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risk group (Figure 6A). The high-risk group was more inclined

to undergo EMT, high carbohydrate and energy metabolism,

which was very similar to cluster 3 (Figure 6B). The GSEA

results also revealed that multiple cancer-related pathways were

significantly enriched in the high-risk group, such as EMT,

hypoxia, angiogenesis and glycolysis (Figure 6C). Tumor

mutational burden (TMB), another biomarker that predicts

the effect of immunotherapy, is also an important prognostic

marker (Figure 6D). Patients in the low-risk group had a

significantly higher TMB, implying that patients with low RS

may be more likely to benefit from immunotherapy (Figure 6E).

In addition, the interrelationships between the 14 genes in the

signature and their relationships with metabolic scores were

shown in Supplementary Figure 2.
Prognostic value of the gene signature
to chemotherapy and immunotherapy

Of the 94 patients in the TCGA cohort who had received

chemotherapy, 44 were in complete response and 37 had

progressive disease. The risk score of patients with complete

response was significantly lower than that of patients with

progressive disease. (Figure 7A). Among patients who had

received chemotherapy, those with high RS had a significantly

poorer OS benefit (Figure 7B). Then we predicted the response

of patients in the TCGA cohort to immunotherapy by the TIDE
Frontiers in Immunology 07
algorithm (Figure 7C). The results showed a higher percentage

of responders in the low-risk group (Figure 7D).

The IPS scores of patients in the low-risk group for multiple

immune checkpoints were also significantly higher than those in

the high-risk group, suggesting that the gene signature may be

helpful to predict the response of patients to immunotherapy

(Figure 7E). Therefore, we validated this value using patients

with bladder cancer in the IMvigor210 immunotherapy cohort.

Patients in the high-risk group had a significantly poorer

prognosis and a much lower response rate to immunotherapy

than those in the low-risk group (Figures 7F, G).
Signature genes AHNAK and NFATC1
were closely related to EMT as well as
metabolism in BLCA cell lines

Among the 14 genes in the model, AHNAK and NFATC1

had the highest mutation frequencies and were closely associated

with clinical stage (Figures 8A, B). Univariate Cox and KM

survival analysis showed that they were risk prognostic factors

(Figure 8C). In addition, both genes were expressed at higher

levels in bladder cancer tissues than in normal tissues

(Figure 8D). Therefore, we experimentally validated the

functions related to EMT, glycolysis, glutamine metabolism

and immune checkpoint regulation of AHNAK and NFATC1

in bladder cancer.
A B D

C

FIGURE 3

Screening and functional enrichment analysis of immune-related DEGs. (A) Volcano map showed the DEGs between cluster 3 and cluster 1.
(B) Venn diagram displayed the amount of immune-related DEGs. (C) Top 8 items of molecular function (MF), cellular component (CC) and
biological process (BP) of GO analysis. (D) The result of KEGG pathway analysis.
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As shown in Figure 9, we performed qRT-PCR and WB

experiments in both T24 and UMUC3 cell lines. When AHNAK

and NFATC1 were knocked down, the EMT marker E-cadherin

was increased while vimentin was downregulated. The key

enzymes of glycolysis, PFKFB3 and LDHA, and the key

enzymes of glutamine metabolism, GLS and GLUD1, were

significantly downregulated in at least one cell line. The level

of PDL1 was also significantly downregulated in both cell lines.

These results suggested a close association of AHNAK and

NFATC1 with EMT genesis, metabolic reprogramming, and

immune escape in bladder cancer.
AHNAK and NFATC1 can promote the
migration, invasion and proliferation of
BLCA cell lines

To investigate the effects of AHNAK and NFATC1 on the

biological functions of bladder cancer cells, we performed

transwell and MTT assays. The ability of cancer cells to

migrate and invade was significantly inhibited after AHNAK
Frontiers in Immunology 08
or NFATC1 was knocked down (Figures 10A, B). Besides, the

proliferation rate of cancer cells was significantly decreased after

AHNAK and NFATC1 knockdown (Figures 10C, D). Based on

these results, we believed that these two genes could influence

the biological behavior of bladder cancer cells and were of

significant research value.
Discussion

EMT is a fundamental biological process involved in

development. Through the regulation of EMT, systems, organs

and tissues are formed and their function, growth and

regeneration are maintained (18). However, dysregulated EMT

can lead to disease, including dysplasia, fibrosis, and

tumorigenesis (19). EMT-transformed bladder cancer cells

have been reported to possess stem cell properties. Induction

of EMT not only promotes the proliferation of tumor cells from

their primary sites, but also enhances the self-renewal ability of

tumor cells and confers them with greater migration ability (5).

It is reasonable to expect that altering the motor phenotype will
A B D E

F

G IH J K

C

FIGURE 4

Construction of the novel immune-related gene signature based on EMT and metabolic status. (A, B) The LASSO regression was used to reduce
the dimensionality of survival related genes after univariable Cox survival analysis. (C) Stepwise multivariate Cox regression analysis to construct
the 14-gene prognostic signature. (D) The heatmap of the 14-gene expression and the distribution of patient survival status ranked by
corresponding RS. (E) The time-dependent ROC curve for predicting 1-, 3-, and 5-year overall survival in TCGA cohort. (F) The KM survival
analysis between high and low RS groups. (G-K) The correlation between RS and clusters, clinical stage and AJCC TNM stage. *p<0.05,
**p<0.01, ***p<0.001.
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require alterations in cellular bioenergetics and thus metabolism.

Indeed, the link between EMT and metabolism is reciprocal, and

the extensive regulatory crosstalk between the two has been

intensively studied (20).

Metabolic reprogramming of tumors refers to the construction

of a completely new metabolic network under the aberrant

expression of oncogenes, which redefines the flow of nutrients

and energy in the metabolic network during tumorigenesis (M. 21).

Metabolic reprogramming is an important pathway that mediates

EMT while itself being strictly regulated by EMT-related factors.

Cancer cells meet their specific energy needs by regulating their

metabolism and synthesizing biomolecules including proteins,

lipids and nucleic acids (22). Metabolic adaptation in cancer cells

involves many key metabolic pathways, most notably glycolysis,

TCA cycle, lipid and amino acid metabolism, which can directly
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regulate the dynamics of EMT and are closely associated with

cancer cell survival, invasion and metastasis (6).

Metabolic reprogramming maintains the Warburg effect of

tumors and induces EMT by enhancing glycolysis and blocking

the TCA cycle (23). Malignant tumor cells are able to promote the

increase of glucose transport proteins thereby enhancing aerobic

glycolysis and maintaining their metastatic potential. Among these

transporter proteins, GLUT1 and GLUT3, induced by hypoxia-

inducible factor 1a (HIF-1a), have been shown to potentiate

glycolysis and cancer progression (24). Mitochondrial dysfunction

often exists in tumor cells, resulting in lactic acid accumulation,

which promotes the formation of acidic microenvironment and the

progress of EMT. At the same time, EMT-induced stimulants also

accelerate microenvironment acidification by triggering metabolic

changes ( 25). It was also found that tumor cells have significant
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FIGURE 5

Subgroup analysis, external validation and nomogram proved the predictive value of the 14-gene signature. (A-H) The KM survival curves of OS
between high and low RS groups in different subgroups. (I-L) The KM survival curves of OS between high and low RS groups and the time-
dependent ROC curves of validation cohorts. I and J, GSE31684. K and L, GSE32894. (M) The nomogram created by integrating clinical
information and Riskscore. (N) Calibration curve of the nomogram. (O) Time-dependent AUC curves of different prognostic models.
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dysregulation of lipid metabolism, including high lipogenesis and

low lipolytic capacity, increased membrane lipid synthesis, and

upregulation of bioactive lipid, which induces the EMT process (23,

26). In addition, the microenvironment reshaped by metabolic

reprogramming can affect the function of immune cells, allowing

cancer cells to escape immune surveillance and leading to resistance

to immunotherapy. The acidic tumor microenvironment is

deficient in glucose, tryptophan and arginine, while the

concentration of immunosuppressive molecules such as lactate

and kynurenine are increased (27). Excess lactate promotes

macrophage polarization to an inhibitory M2 phenotype and

inhibits monocyte migration and differentiation into dendritic

cells, thereby inhibiting antigen presentation and subsequent T

cell activation (28). Lactate and kynurenine can also directly inhibit

T cell-mediated immune responses (29).
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In the present study, we combined the advantages of high-

throughput sequencing to quantify EMT and various metabolic

pathways using transcriptomic data and classified the TCGA

bladder cancer cohort into three clusters. Among them, cluster 3

showed a distinctively different EMT and metabolic status

compared to cluster 1. Patients in cluster 3 had the highest

degree of malignancy and the worst prognosis. And other results

were consistent with the description above, with a significant

EMT trend and high energy/carbohydrate metabolism in cluster

3 and a significant inhibition of TCA cycle and lipid metabolism.

Multiple cancer-related pathways were active in cluster 3, with a

significantly lower proportion of CD8+ T cells. Then, we

established a novel predictive signature with 14 genes by

analyzing the differences between cluster 3 and 1, combining

with the immune database and using multiple convergence
A B

D E

C

FIGURE 6

The immune infiltration, metabolic status and pathway enrichment between high and low risk groups in TCGA cohort. (A) Comparison of 22
types of immune cell infiltration. (B) Comparison of various metabolic scores of ssGSEA result. (C) Multiple malignant regulatory pathways were
significantly enriched in the high risk group. (D) The KM survival curve of OS between high and low TMB groups. (E) Comparison of the TMB
value between risk groups. *p<0.05, ***p<0.001.
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methods. The model-calculated RS was strongly associated with

clinical features, EMT and metabolic scores, TMB and immune

infiltration. The model has good predictive power for overall

survival in subgroup analysis as well as in external cohorts. More

importantly, the predictive model can help to identify whether

pat ients are able to respond to chemotherapy or

immunotherapy. All these suggests that our risk score is a

reliable predictor.

With the advent of bioinformatics era, there have been many

prediction models and subtype classification methods based on

various sequencing data (30–32). This study was the first

combined analysis of EMT, metabolism and immunity in

bladder cancer, and the results showed the robustness of the

predictive model. Many of the genes in the model have been

reported in previous studies, among which AHNAK and

NFATC1 are the focus of our attention. The nuclear protein

AHNAK, also known as desmoyokin, is a large complex scaffold

protein with a tripartite nature and multiple domains. AHNAK

has been reported to be involved in a variety of biological

processes, including cell signaling and contacts, regulation of

calcium channels, membrane repair and tumor metastasis (33).

Shankar et al. reported that AHNAK was an important regulator

of pseudopodia formation in metastatic cells, and knocking

down AHNAK could reduce actin cytoskeletal dynamics and

inhibit migration and EMT trends (34). In addition, AHNAK
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plays an important role in the regulation of glucose and lipid

homeostasis, antigen presentation, and T cell activation (35, 36).

NFATC1 is a transcription factor activated by the T cell receptor

and Ca2+ signaling pathway that affects T cell activation and

effector function (37). Oikawa et al. found that induced

expression of NFATC1 downregulated E-cadherin expression

and increased invasive activity in tumor xenografts in vivo (38).

Liu et al. also found that inhibition of NFATC1 suppressed the

proliferation, Warburg effect, migration and invasion of prostate

cancer cells by down-regulating the expression of c-Myc and

PKM2 (39).

Some limitations remain in this study. First, the predictive

model in this study was obtained through retrospective analysis

of public database, and its clinical validity remains to be verified

in larger prospective trials. Second, our study only included

some cell experiments, and more detailed in vivo and in vitro

experiments are needed to explore the functions of these genes.

In conclusion, we constructed a novel gene signature related

to EMT, metabolic reprogramming, and immunity that is

effective in predicting the prognosis of bladder cancer patients

and whether patients are able to respond to chemotherapy or

immunotherapy. Our results provide a reference for the study of

the interaction between EMT and metabolic reprogramming,

and for the targeting of key metabolic molecules in the treatment

of tumor metastasis.
A B
D
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C

FIGURE 7

Prognostic value of the gene signature to chemotherapy and immunotherapy. (A) Comparison of RS among patients with complete response
and progressive disease after chemotherapy. (B) The KM survival curve of OS between high and low RS groups in patients after chemotherapy.
(C) Distribution of TIDE value in TCGA cohort. (D) Comparison of the proportion of responders and non-responders in different RS groups of
TCGA cohort. (E) The association between IPS and RS groups. (F) The KM survival curve of OS between high and low RS groups in the
IMvigor210 cohort. (G) Comparison of outcomes after receiving immunotherapy in different RS groups in the IMgivor210 cohort. ****p<0.0001.
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FIGURE 8

Screening of the key model genes for further experimental validation. (A) Mutation frequencies of the 14 genes in the TCGA cohort. (B) The
correlation between the 14 genes and clinical stage of TCGA BLCA patients. (C) The results of univariate Cox and KM survival analyses for
the 14 genes. (D) Expression levels of AHNAK and NFATC1 in cancerous and normal tissues. N, normal; T, tumor. *p<0.05, **p<0.01,
***p<0.001.
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A B C

FIGURE 9

qPCR (A) and WB (B, C) were used to detect the effects of AHNAK and NFATC1 knockdown with siRNAs on key glycolysis enzymes, amino acid
metabolism enzymes, EMT and PD-L1 immune checkpoints of two bladder cancer cell lines T24 and UMUC3. Glycolysis enzymes involve
PFKFB3 and LDHA. Glutamine metabolic enzymes involve GLS and GLUD1. EMT involves E-cadherin and vimentin. b-actin and a-actin were
used as internal references. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. ns, no significance.
A B

DC

FIGURE 10

AHNAK and NFATC1 increases cell migration, invasion and proliferation in BLCA. (A, B) Transwell migration and invasion assays of T24 and
UMUC3 cells transfected with siRNAs against AHNAK and NFATC1 (100× magnification). (C, D) MTT assay of T24 and UMUC3 cells transfected
with siRNAs against AHNAK and NFATC1. **p<0.01, ***p<0.001, ****p<0.0001.
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