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Abstract: Vitamin D is a pleiotropic secosteroid yielding multiple actions in human physiology.
Besides the canonical regulatory activity on bone metabolism, several non-classical actions have
been described and the ability of vitamin D to partake in the regulation of the immune system is
particularly interesting, though far stronger and convincing evidence has been collected in in vitro as
compared to in vivo studies. Whether vitamin D is able to regulate at physiological concentrations
the human immune system remains unproven to date. Consequently, it is not established if vitamin
D status is a factor involved in the pathogenesis of immune-mediated diseases and if cholecalciferol
supplementation acts as an adjuvant for autoimmune diseases. The development of autoimmunity
is a heterogeneous process, which may involve different organs and systems with a wide range of
clinical implications. In the present paper, we reviewed the current evidences regarding vitamin D
role in the pathogenesis and management of different autoimmune diseases.

Keywords: vitamin D; autoimmunity; autoimmune diseases; rheumatoid arthritis; spondyloarthritis;
systemic lupus erythematosus; antiphospholipid syndrome; type 1 diabetes mellitus; autoimmune
thyroid disease; Addison’s disease; autoimmune liver disease

1. Introduction

Vitamin D is a hormone, firstly characterized for its prominent role in bone homeostasis: in the
early decades of the twentieth century, the discovery that rickets might be prevented and treated by sun
exposure led to isolating and identifying vitamin D2 (ergocalciferol) and vitamin D3 (cholecalciferol) [1].
In the following decades, our knowledge about vitamin D physiology grew significantly; indeed,
vitamin D activity is integrated in a complex hormonal axis along with parathyroid hormone (PTH)
and fibroblast growth factor 23 [2], such that cholecalciferol acts to spare calcium at the level of the
gut, the bone, the parathyroid glands and the kidney [3,4]. Besides the increasing awareness of the

Nutrients 2020, 12, 789; doi:10.3390/nu12030789 www.mdpi.com/journal/nutrients

http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
https://orcid.org/0000-0003-1488-8736
https://orcid.org/0000-0001-8322-9158
https://orcid.org/0000-0003-0913-0197
https://orcid.org/0000-0001-9740-0155
https://orcid.org/0000-0003-3215-5747
http://dx.doi.org/10.3390/nu12030789
http://www.mdpi.com/journal/nutrients
https://www.mdpi.com/2072-6643/12/3/789?type=check_update&version=2


Nutrients 2020, 12, 789 2 of 30

complexity of vitamin D activity on bone, the isolation of vitamin D receptor (VDR) in many different
cell types made evident the wider role of this hormone in human physiology. Thus, more and more
activities have been attributed to vitamin D: it contributes to the development of the nervous system,
as well as to its protection, transmission, and plasticity [5]. Moreover, vitamin D exerts a protective
role on the vascular endothelium [6–8], downregulates the renin-angiotensin-aldosterone system [9],
and positively regulates insulin sensitivity [10], making vitamin D status a putative determinant
of atherogenesis and a potential novel biomarker for cardiovascular risk [11]. Vitamin D status
is also considered as a marker of general health, since low vitamin D levels are associated with
cardio-metabolic disorders, neuromuscular disorders, cancer, and longevity [12].

Importantly, evidence has accumulated on the complex regulatory role of Vitamin D on the
immune system, which is the result of its actions on both innate and adaptive immunity. Vitamin
D contributes to hematopoiesis, since VDR drives the myeloid differentiation towards monocytes
and granulocytes [13], and is involved in antimicrobial response, particularly against Mycobacteria
infections. The exposure of human monocytes to such pathogens upregulates VDR expression. Further,
the local activation of vitamin D is enhanced by the upregulation of the activating enzyme CYP27B1; a
clinically relevant implication of this process is the increased risk of hypercalcemia which is observed
in the context of granulomatous diseases, as a result of excessive local activation of cholecalciferol,
which is released from the classical mechanisms of negative feedback [14].

The active form of vitamin D, 1,25(OH)2D3 (also called calcitriol) increases antimicrobial activity
of macrophages and monocytes by enhancing the production of cathelicidin antimicrobial peptide
(CAMP) and defensin β2 [15,16]. Moreover, 1,25(OH)2D3 induces chemotaxis and autophagy of
innate immune cells [17,18] and upregulates their phagocytic activity, contributing to the clearance of
pathogens [19]. In addition, vitamin D prevents infections by restricting the spreading of pathogens,
via neutrophil extracellular traps (NETs) formation, as recently proposed [20]. A schematic illustration
of 1α,25(OH)2D3 role in regulating the immune response is depicted in Figure 1.

Figure 1. Scheme of 1α,25(OH)2D3 role in regulating immune response. As reviewed, it interacts both
with innate- and adaptive-immune cells and with resident synoviocytes as well as osteoclasts, resulting
in a decrease of synovial inflammation and, finally, in bone erosion. Arrows are used to illustrate
decreased (↓) or increased (↑) production of specific actions, cells or molecules.

While on the one hand the active form of vitamin D promotes the antimicrobial activity of innate
immunity, on the other it downregulates antigen presentation by monocytes, probably contributing
to immune tolerance [21,22]. Additionally, 1,25(OH)2D3 drives monocytes differentiation towards
macrophages [23] instead of dendritic cells (DCs) [24]. More generally, DCs activity is also impaired by
1,25(OH)2D3, which inhibits DCs chemotaxis and antigen presentation, by downregulating MHC II
and costimulatory molecules expression [25,26].
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The immunomodulatory effects of vitamin D on adaptive immunity are both indirect and direct.
First of all, the spreading of adaptive response is negatively affected by the suppressive effect on
antigen presentation. Moreover, vitamin D is able to downregulate the expression of proinflammatory
cytokines by monocytes, such as Interleukin 6 (IL-6) and Tumor Necrosis Factor α (TNFα), which are
part of the inflammatory milieu allowing B and T cells activation and proliferation [27].

VDR is expressed by B cells at low levels in quiescence and it is induced upon B cells activation [28].
The effects of 1,25(OH)2D3 on B cells are multiple: calcitriol induces B cells apoptosis, thus preventing
proliferation and differentiation into plasma cells. By doing it, early administration of 1,25(OH)2D3 to
stimulated B cells cultures reduces immunoglobulin secretion [29]. Furthermore, the in vitro activity
of B cells as antigen presenting cells (APC) is inhibited by vitamin D, possibly through inhibition of the
costimulatory signal mediated by CD86 [30].

T cells are another target of vitamin D action. 1,25(OH)2D3 inhibits the cytotoxic activity of T cells
by suppressing the expression of Fas-ligand [31]. Vitamin D also has many effects on T helper cells (Th).
Calcitriol drives CD4+ Th differentiation, leading to a reduction of Th1 and Th17 cells [32]. Th1 and
Th17 subsets elicit a key role in different chronic inflammatory diseases, driving the inflammatory
response by the release of cytokines. It is not surprising that the exposure to 1,25(OH)2D3 diminishes
the expression of Th1 (IL-2, TNF-α, and Interferon γ- IFNγ) as well as of cytokines associated with
Th17 (IL-17A, IL-17F, IL-21, IL-22) [33,34]. Conversely, 1,25(OH)2D3 polarizes CD4+ cells towards
a Th2 phenotype with upregulation of cytokines such as IL-4 and IL-5 [35,36]. Finally, 1,25(OH)2D3
induces the differentiation of Treg, CD4+ cells involved in the maintenance of immune tolerance,
by enhancing the expression of CTLA-4 and Foxp3. This in turn leads to an increase of IL-10 and
transforming growth factor β1 (TGF-β1) [37,38].

In summary, there is strong evidence originating from studies showing that vitamin D is, at least
in vitro, a regulator of multiple subsets of the immune system. However, the relevance of vitamin
D-mediated regulation of the immune system in vivo is still to be proven. More specifically, it is unclear
whether these potential beneficial effects are exerted at the plasma concentrations normally achieved
in vivo or, conversely, if higher levels are required.

In this paper, our aim was to review the current evidences linking vitamin D to the regulation of
immune system activity, specifically focusing on different autoimmune diseases.

2. Vitamin D and Inflammatory Arthritis

2.1. Rheumatoid Arthritis

Rheumatoid Arthritis (RA) is the most prevalent rheumatic chronic inflammatory disease
worldwide; though characterized by the development of peripheral synovitis, it is considered a
systemic disease linked to genetic and environmental factors. Looking at the effects that vitamin
D plays on the immune system, different groups evaluated the potential pathogenetic relevance of
vitamin D status on the development of RA. Moreover, despite the groundbreaking revolution caused
by the introduction of biologics in the management of the disease, which dramatically improved its
clinical and functional prognosis, there is still an ongoing search for novel drugs. In this context,
vitamin D has some interest.

Since the late years of last century, different groups reported a potential protective and therapeutic
effect of vitamin D on murine models of arthritis. The relevance of vitamin D in the pathogenesis of
RA is supported by the observation that VDR-deficient mice are prone to a more severe arthritis when
crossed with human TNF transgenic mice (hTNFtg), in comparison to VDR wild type/hTNFtg
mice. VDR-deficient mice showed larger synovial infiltrates of inflammatory cells, and their
monocytes demonstrated a pro-inflammatory phenotype, being particularly prone to differentiate
into osteoclasts [39]. Tsuji et al., in 1994, reported that the oral administration of 1,25(OH)2D3
is able to protect mice from the development of collagen induced arthritis (CIA) caused by the
administration of type II collagen (CII) [40]. Similarly, the non-hypercalcemic analogue MC 1288
(20-epi-1α,25-dihydroxycholecalciferol) prevents CIA development when administered before CII
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immunization; indeed, when started in mice with established CIA, MC 1288 is able to reduce the
severity of arthritis [41]. In a further model of RA (Adjuvant-induced arthritis, ATA), the effect of
vitamin D status on disease course was tested. Rats fed with a vitamin D-replete diet showed less
severe arthritis than those fed with a vitamin D deficient diet [42]. These observations suggest that, in
animal models, vitamin D signaling protects from arthritis and might be exploited for treatment.

Preclinical data suggest that 1,25(OH)2D3 can effectively regulate monocytes activity, promoting
an anti-inflammatory phenotype. When primary cultures of macrophages derived from peripheral
blood monocyte obtained from patients with RA are treated with 1,25(OH)2D3, TNF-α and receptor
activator of nuclear factor-κB ligand (RANKL) production dose-dependently decrease. Moreover,
at higher concentrations, 1,25(OH)2D3 also reduces the production of IL-1α, IL-1β, and IL-6 [43].
In monocytes isolated from RA patients and stimulated with lipopolysaccharide (LPS), the addition of
1,25(OH)2D3 and dexamethasone induces the development of a tolerogenic subset of dendritic cells
(tolDC), with a stable anti-inflammatory phenotype. These cells are able to suppress the immunogenic
activity of mature DC, inhibiting T cells proliferation and cytokines production [44]; more specifically,
tolDC suppress the development of Th17, and act simultaneously to ameliorate the severity and
progression of arthritis in a murine model [45]. In a recent study, DBA1/J mice induced for CIA were
treated intraperitoneally with 1,25(OH)2D3 which drove the CD4+ differentiation from a Th1-Th17 to
a more favorable Treg phenotype. This was associated to decreased incidence and lower clinical scores
of arthritis, and reduced erosive burden [46].

Fibroblast-like synoviocytes (FLS) are another interesting target of vitamin D activity. These
cells are not mere innocent bystanders in RA; they actively participate in the inflammatory response,
specifically contributing to the development of bone erosions, one of the most important pathogenetic
moments in the course of the disease. 1,25(OH)2D3 acts on FLS isolated from RA patients, significantly
reducing the number of invasive FLS in vitro; this was associated to a reduction of cytoskeleton
reorganization and to a suppression of metalloproteinases (MMPs) production [47]. Moreover,
1,25(OH)2D3 enhances FLS apoptosis preventing RA progression [48,49]. In line with the previous
findings, Wen et al. reported that 1,25(OH)2D3 is able to suppress the IL-22 induced synthesis of
RANKL by FLS; finally, 1,25(OH)2D3 inhibits the in vitro osteoclastogenesis [50].

To summarize the currently available preclinical data, we can state that there is quite strong
evidence that the active form of vitamin D is able to prevent the development of murine models of
chronic arthritis; furthermore, it is promising as a therapeutic tool. In this setting, 1,25(OH)2D3 mainly
drives immune response by acting on APC and creating a more tolerogenic and less inflammatory
phenotype and directly suppresses synovial proliferation and joint erosions.

However, how these convincing evidences translate to clinical practice is less clear. Should we
really postulate a potential protective role for vitamin D in vivo and, therefore, is hypovitaminosis D a
risk factor for RA? And again: can we really hypothesize for vitamin D a role in the treatment of RA?

Concerning the first question, the literature is controversial. Hypovitaminosis D is undoubtedly
highly prevalent in patients affected by RA [51], however, as shown by a systematic review on this topic,
while some authors reported a statistically lower vitamin D plasma concentration in RA than in the
general population, this observation was not replicated by others [52]. We should always keep in mind
that what we measure to evaluate vitamin D status is 25(OH)D3 which is a more stable intermediate
metabolite, but which does not automatically reflect the real activity of vitamin D on immune cells,
being influenced by the degree of activation mediated by CYP27B1 and inactivation mediated by
CYP24A1. Furthermore, the immunological mechanisms triggering RA date back years from disease
onset; therefore, the evaluation of vitamin D status in a patient with an already established disease is not
informative for the potential protective role of this hormone on the pathogenesis of RA. It is interesting
to note that data from the Iowa Women’s Health Study (IWHS) suggest a potential protective effect of
higher vitamin D intake on incident RA in a very large prospective cohort [53]. While it is unclear
whether RA patients are more prone to hypovitaminosis D, there is convincing evidence that vitamin
D status inversely correlates with disease activity when the disease is established [54,55].
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It seems therefore reasonable to postulate a potential role for vitamin D for the treatment of
RA [56,57]. We recently reviewed the current evidences supporting the use of cholecalciferol as a
disease modifying antirheumatic drug in RA [58]. As discussed in the paper, the literature about this
topic is controversial because of the small sample size of the interventional studies and their wide
heterogeneity, both in terms of endpoints used to measure the outcome and supplementation regimens
considered. Nevertheless, we managed to draw the following conclusions:

1. Hypovitaminosis D might contribute to the neuropathic pain, often present in RA [59];
the correction of vitamin D status, even with low doses aiming to normalize plasma levels,
is convincingly effective in ameliorating pain [60];

2. The effect of cholecalciferol supplementation on disease activity is controversial; however, when
vitamin D was used at higher doses, the supplementation regimen was generally beneficial [61,62].
This suggests that, possibly, the effect on immune system of vitamin D requires higher plasma
levels than those necessary for bone health. Indeed, plasma 25(OH)D3 approximately doubles
the synovial concentration [63]; the anti-inflammatory properties of this intermediate have been
demonstrated at a 50-100 nM concentration. Thus, the plasma level required for bone health is
probably ineffective to elicit immune regulation [37].

3. Vitamin D status correction is still to be considered quintessential for bone health, particularly in
RA patients who are prone to bone loss, although the preferable regimen is not defined yet [64,65].

In conclusion, clinical studies are less convincing than preclinical data but, again, we should
consider that the supplementation studies have been mainly conducted with an intermediate metabolite
(cholecalciferol), which requires activation, while the in vitro studies have been performed with the
active 1,25(OH)2D3. This might justify these discrepancies, at least in part.

2.2. Spondyloarthritis

Vitamin D status is generally poor in patients with spondyloarthritis (SpA) [66]. Despite the
fact that vitamin D derivatives are topically employed in cutaneous psoriasis, its potential role in the
pathogenesis and management of Psoriatic Arthritis (PsA) is less investigated than in RA. Different
studies reported lower 25(OH)D3 plasma concentrations in PsA patients than in healthy controls [67],
being vitamin D status inversely associated with inflammatory markers [68]. Data on effects of
cholecalciferol supplementation on disease course are scarce. In 1990, Huckins and colleagues reported
that the daily administration of calcitriol, in a small cohort of ten PsA patients, significantly improved
tender joints count [69]. A further report belonging to 2009 showed the potential immunological
effects of alphacalcidol administration, which was associated to a persistent improvement of disease
activity [70]. Clearly, controlled trials are lacking and further studies are required to elucidate the
potential therapeutic use of vitamin D in PsA.

In ankylosing spondylitis (AS) data are even less conclusive. The current evidences deriving from
systematic reviews and meta-analysis suggest that AS patients harbor lower vitamin D values than
controls [71,72]. However, whether an association links vitamin D status to disease activity is debated,
with some papers demonstrating an inverse association between 25(OH)D3 and disease activity [73,74]
and others refusing this finding [75,76]. Currently, there are no trials investigating the effect of vitamin
D supplementation on disease activity.

3. Vitamin D and Autoimmune Connective Tissue Diseases

3.1. Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a chronic multisystemic autoimmune disease characterized
by tissue and organ inflammation and damage in relation to the production of autoantibodies directed
against nuclear antigens.
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In animal models of SLE, the relationship between vitamin D and disease manifestations is
controversial, suggesting that the effect of vitamin D may be different depending on the target organ,
explaining the clinical observation of different responses according to disease phenotype. In MRL/1 SLE
mice, 25(OH)D3 reduced cutaneous lesions, proteinuria, and anti-double strand DNA (anti-dsDNA)
autoantibodies [77], while cholecalciferol was associated with the worsening of histopathological
damage in the NZB/W mice [78]. Recently, vitamin D supplementation in a rat model of SLE ameliorated
their cognitive function by reducing the process of apoptosis in the hippocampus [79]. In a model of
pristane-induced SLE in female BALB/c mice, supplementation with vitamin D improved arthritis, but
not renal injury [80].

A reduction in anti-dsDNA production was observed when SLE-derived peripheral blood
mononuclear cells were incubated with calcitriol [81]. In vitro, vitamin D reduced the state of activation
of APC from SLE patients, inhibiting the expression of CD40, MHC class II, and CD86 molecules [82].
Likewise, treatment with vitamin D reduced the activation of DCs and the expression of genes related to
IFN-alpha [83]. Vitamin D supplementation demonstrated a beneficial effect on B and T cell homeostasis
derangement during the course of SLE as shown in two independent cohorts, by increasing Treg e
Th2 [84] and decreasing Th17 and Th1 cells, and memory B cells [85].

Vitamin D deficiency has been observed to be associated with SLE disease expression, relapses, and
pathogenesis [86,87]. Systematic reviews and meta-analyses have been published on the significance
of lower circulating levels of vitamin D in patients with SLE of different ethnicity when compared
to healthy controls [88–90]. In particular, vitamin D status inadequacy was more prevalent among
unsupplemented SLE patients living at a latitude beyond the 37◦ parallel north and [88]. The reduced
sun exposure due to photosensitivity and the use of photo-protection, as well as the alteration of
its renal metabolism, the presence of VDR polymorphisms which reduce the cell responsiveness to
the hormone or the genetic variants of two genes encoding key enzyme regulators of endogenous
production, were all described as additional risk factors for vitamin D insufficiency in SLE patients as
compared to healthy controls [91,92]. Medications used for the treatment of SLE may also influence
the vitamin D status. Data on hydroxychloroquine (HCQ) are still controversial: some authors found
lower vitamin D levels in patients treated with HCQ [93], although others found opposite results
or did not observe any association [94,95]. Noticeably, chronic corticosteroid use reduces intestinal
absorption and accelerates the catabolism of 25(OH)D3 and 1,25(OH)2D3 through an increase in
CYP24A1 activity [96,97].

Active SLE patients with lupus nephritis harbored significantly lower vitamin D levels than their
counterparts [98]. Furthermore, vitamin D exerts a protective role in podocyte injury induced by
autoantibodies from patients with nephritis [99]. Lower vitamin D levels in the bloodstream appear to
be associated with worse disease activity, as well as with extra-musculoskeletal complications such
as fatigue [100], cardiovascular risk [101], and cognitive impairment [102,103]. In addition, a recent
longitudinal cohort analysis showed that vitamin D deficiency was associated with more active disease
at baseline and over time, as well as a trend toward more severe lupus flares [104].

Despite the debate about low levels of vitamin D being either the cause or the consequence
of SLE [105], vitamin D supplementation should be deemed as integral part of SLE management
strategies [88].

Concerning the relationship between vitamin D supplementation and SLE disease activity,
two RCTs [106,107], one open clinical trial [108] and a cohort study [109] found that vitamin D
supplementation is able to reduce disease SLE activity, while two cohort studies [110,111] and a
RCT [112] failed to observe any significant variation. Schedules and dosages were highly variable
across these studies. SLE serology does not seem to be affected by vitamin D supplementation given
both with an intensive or a standard regimen [110], while a higher vitamin D dose was able to reduce
anti-dsDNA antibodies [85]. Some authors demonstrated that vitamin D supplementation may play
a role in decreasing urine protein-to-creatinine ratio and the likelihood of clinical proteinuria [109].
Table 1 reports the major finding of prospective studies of vitamin D supplementation in SLE patients.
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Table 1. Prospective studies on vitamin D effects in systemic lupus erythematosus (SLE) patients.

Author
(Publication Year) Type of Study Number of Enrolled

Patients Type of Supplementation Main Findings

Ruiz Irastorza et al. (2010) Longitudinal observational 80 Cholecalciferol, 600-800 IU day p.o. (24
mos)

Improved fatigue symptoms, no
correlation with SLEDAI or SDI. Side
effects: not reported

Terrier et al. (2012) Prospective 20 Cholecalciferol, 100.000 IU/wk p.o. (4 wks)

Improved naïve CD4+ T cells, regulatory T
cells; reduced Th1 and Th17 cells, memory
B cells, anti-DNA antibodies. No cases of
hypercalcemia

Petri et al. (2013) Prospective 1006 Ergocalciferol, 50.000 IU/wk p.o.,
calcium/vitamin D 200 IU/twice daily p.o.

Reduced SELENA-SLEDAI, decreased
urine protein-to-creatinine ratio.
Hypercalcemia rate, 0.002%

Andreoli et al. (2015) Prospective, cross-over 34

Cholecalciferol Intensive Regimen: 300.000
IU bolus plus 50.000 IU/mo p.o. (850.000
IU/yr). Standard Regimen: 25.000 IU/mo
p.o. (300.000 IU/yr) for 12 mos. Regimens
switched in the second year.

No effect on disease activity and SLE
serology. No cases of hypercalcemia. Slight
transient hypercalciuria in 3

Piantoni et al. (2015) Prospective, cross-over 34

Cholecalciferol Intensive Regimen: 300.000
IU bolus plus 50.000 IU/mo p.o. (850.000
IU/yr). Standard Regimen: 25.000 IU/mo
p.o. (300.000 IU/yr) for 12 mos. Regimens
switched in the second year.

Enhancement of T-reg cells and Th2
cytokines. No cases of hypercalcemia

Aranow et al. (2015) Randomized, double blind,
placebo controlled 57 Cholecalciferol, 2.000 or 4.000 IU/d p.o. Well-tolerated. No effect on IFN-alpha. No

cases of hypercalcemia

Lima et al. (2016) Randomized, double blind,
placebo controlled

40
(JoSLE) Cholecalciferol, 5000 IU/wk p.o.

Decreased disease activity and improved
fatigue symptoms in JoSLE patients. No
cases of hypercalcemia

Rifa’i et al. (2016) Randomized, placebo controlled 39 Cholecalciferol, 1.200 IU/d p.o. Decreased SLE disease activity and fatigue
symptoms. Side effects: not reported

Karimzadeh et al. (2017) Randomized, double blind,
placebo controlled 90 Cholecalciferol, 50.000 IU/wk p.o. for 12

wks and 50.000 IU/mo p.o. for 6 mos.
No effect on SLE disease activity. Side
effects: not reported

Assessment of safety: including hypercalcemia, hyperphosphatemia or lithiasis; JoSLE: juvenile-onset SLE; IFN-alpha: alpha interferon; SLEDAI: systemic lupus erythematosus disease
activity index, SDI: rheumatology damage index.



Nutrients 2020, 12, 789 8 of 30

Osteoporosis and fractures greatly contribute to bone damage in SLE patients, symptomatic
fractures being reported in 6–42% of patients following SLE diagnosis [113]. Vitamin D deficiency
is considered as a major risk factor for bone damage along with persistent activity of disease, use
of glucocorticoids, kidney disorders, premature menopause, and physical inactivity that is due to
chronic pain and fatigue. Vitamin D supplementation is indicated for both prevention and treatment
of osteoporosis in SLE patients at the daily oral dose of 800–2000 UI of cholecalciferol so as to maintain
serum vitamin D levels above the target of 30 ng/ml [114]. Of note, cardiovascular events are the
major comorbidities in SLE patients being accelerated atherosclerosis responsible for their premature
cardiovascular diseases [115], and a recent study suggested vitamin D and calcium supplementation
may have effects on the arterial stiffness of SLE patients. Longitudinal studies are indeed warranted on
larger affected populations with longer follow-ups [116].

Interventional studies also pinpointed the relevance of vitamin D supplementation safety. Vitamin
D toxicity is possible, although rare, and the main complications are hypercalcemia and hypercalciuria.
Globally, the dosages used in these studies appeared to be safe and none of these studies described an
increased occurrence of lithiasis.

In conclusion, vitamin D supplementation is strongly recommended in SLE patients. Firstly, for
the prevention of glucocorticoid induced osteoporosis, but also for possible immunomodulatory effects
that remain to be fully elucidated [117]. Current vitamin D supplementation strategies are not sufficient
in rising serum levels of vitamin D in every patient, therefore a treat-to-target approach could be a
possible solution. For this reason, an initial measurement of serum levels of vitamin D should be done
for each patient. As a general rule, 100 IU/day of vitamin D intake is needed to increase 1 ng/mL of
serum 25(OH)D, which takes about 3 months to became stable once supplementation is started [118].

3.2. Antiphospholipid Syndrome

The antiphospholipid syndrome (APS) is a systemic autoimmune disease characterized by
thrombotic manifestations and/or pregnancy-related complications in patients with confirmed
antiphospholipid antibodies (aPL). Lower vitamin D levels have been described in APS patients
when compared to healthy controls [119–121], particularly in patients with thrombotic disease [122].
However, no stringent lifestyle recommendations or dietary restrictions have been expressed for patients
with APS with reference with vitamin D deficiency [123]. Studies in vitro showed that, in monocytes
stimulated by anti-b2glycoprotein I (anti-b2GPI) antibodies derived from APS patients, vitamin D
can inhibit the expression of tissue factor [124]. The relationship between vitamin D and thrombosis
has been further investigated [125,126], as VDR activators can intervene to control the expression
of several thrombogenic factors [127]. Nevertheless, 25(OH)D3 supplementation in obese women
failed to improve haemostatic parameters as assessed by calibrated automated thrombogram [128].
Vitamin D deficiency was found as a risk factor also for recurrent pregnancy losses in patients with
aPL, in association with other signs of autoimmunity [129]. In early pregnancy, vitamin D is produced
by trophoblasts contributing to decidualization for successful pregnancy [130,131]. According to the
EULAR recommendations, supplementation with calcium, vitamin D, and folic acid should be offered
to patients with APS (and/or SLE), particularly in the case of vitamin D deficiency in the first trimester
of gestation and in patients receiving glucocorticoids and/or heparin for their detrimental effects on
bone mass [132].

4. Vitamin D and Autoimmune Endocrine Diseases

4.1. Type 1 Diabetes Mellitus

Type 1 diabetes (T1DM) is an autoimmune disease characterized by an immune-mediated
destruction of pancreatic beta-cells, which leads to a lifetime dependence on exogenous insulin [133,134].
The causes of T1DM onset are incompletely defined and a combined effect of genetic predisposition
and environmental triggers has been hypothesized [135,136]. It is estimated that 542,000 children
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aged under 14 years are affected by T1DM, with an incidence that has increased by 3-4% over the last
thirty years [137]. The pathogenetic role of vitamin D in T1DM onset is debated. The Type 1 Diabetes
Genetic Consortium, which genotypically characterized 38 single nucleotide polymorphisms (SNPs)
in more than 1500 families with T1DM, did not observe correlations between SNPs in the VDR and
T1DM [138], even if associations between some VDR polymorphisms (BsmI, FokI, TaqI, ApaI) and
T1DM have been pinpointed in several population studies [139–148]. In 2017, Sahin OA et al. [149]
published a meta-analysis, with the aim to evaluate the relationship between ApaI, BsmI, FokI, and
TaqI polymorphisms of VDR and T1DM in children. The authors analyzed 9 studies, including a total
of 2070 patients and controls. Their results showed that BsmIBb, BsmIBB, and TaqItt polymorphisms
were linked to a higher risk of T1DM onset, whilst BsmIbb and TaqITT seem to play a protective
role [149].

In preclinical studies, an intriguing role for vitamin D in the pathogenesis of T1DM has been
postulated. Vitamin D prevents β-cell apoptosis caused by cytokine exposure and restores insulin
secretion [150]. In vitro and animal studies suggested that vitamin D could exert a modulatory effect on
the immune system by showing that supplementary treatment with vitamin D may have a protective
role against the T1DM onset in experimental models [151]. In humans, the prevalence of T1DM is
associated with ultraviolet B radiation, altitude and latitude as well as it displays a seasonal pattern,
suggesting a pathogenetic role for vitamin D in this context [152–154]. Moreover, lack of vitamin D
supplementary treatment in childhood and lower maternal 25(OH)D3 plasma levels during pregnancy
could be related to an increased risk of T1DM onset later in life [155,156]. Furthermore, a meta-analysis
including five observational studies reported that vitamin D supplementary treatment during infancy
is associated with a lower risk of T1DM [151]. Finally, other studies and meta-analyses demonstrated
that patients with T1DM harbor lower serum levels of vitamin D compared to controls and showed how
vitamin D deficiency could be associated with a worse glycaemic control [157–165]. However, two large
population-based Danish studies did not observe any association between vitamin D concentrations
and later risk of developing T1DM [166], while other studies did not find significant differences in
vitamin D levels between patients with T1DM and controls [167–169].

The results of interventional studies are also conflicting. An open-label randomized trial on
70 T1DM patients, treated with low dose of calcitriol or nicotinamide for one year, did not observe
differences in C-peptide or HbA1c levels, while a modest effect of calcitriol on the residual pancreatic
beta-cell function was observed [170]. In 2013, Papadimitriou et al. demonstrated that 0.25 µg/day
of calcitriol administered to 12 high-risk children with T1DM was able to abolish the presence for
anti-GAD65 antibodies and insulin autoantibodies after 6 months [171]. Moreover, the supplementary
treatment with calcitriol in subjects with latent autoimmune diabetes in adults (LADA) seems to
exert a protective effect on residual pancreatic beta-cell function compared with patients treated
only with insulin analogue [172]. On the contrary, Walter et al. observed that 0.25 mg per day of
calcitriol did not seem to preserve beta-cell function [173]. According to a later systematic review of
7 randomized controlled clinical trials, supplementary treatment with vitamin D, in particular with
alpha-calcidol and cholecalciferol, might attenuate the natural course of the T1DM [174]. Finally, vitamin
D supplementation seems to reduce glycaemic variability, insulin requirements and hypoglycaemia
rates [175].

In conclusion, these data suggest that an adequate supplementary treatment with vitamin D
could be able to improve glycemic control in T1DM patients and to prevent the disease onset in high
risk subjects.

4.2. Thyroid Autoimmunity

Autoimmune thyroid disorders (AITD) are the most common autoimmune diseases with a
prevalence of 5% in the general population and an increasing trend in the incidence over the
years [176]. The aetiology of AITD is multifactorial, involving genetic predisposition and environmental
factors [177]. Hashimoto’s thyroiditis (HT), and Graves’ disease (GD) represent the most frequent
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AITD, immunologically characterized by circulating antithyroid antibodies and thyroid glandular
infiltration of lymphocytes, respectively [178].

Several preclinical and clinical studies observed a relationship between hypovitaminosis D and
AITD [179,180]. Figure 2 illustrates the main pathophysiological correlates of vitamin D effects on AITD.

Figure 2. Hashimoto’s thyroiditis (HT) is a T-cell-mediated endocrine autoimmune disease. Patients
harbor higher thyroid peroxidase antibodies (TPOAb) and TgAb serum levels and thyroid intraglandular
infiltration of B and T lymphocytes with CD4+ Th1 subtype predominance. Graves’ disease (GD)
is characterized by a prominent Th2-mediated humoral response, which induce the expression of
stimulatory antibodies. Vitamin D is able to reduce the proliferation and differentiation of B cells
into plasma cells and induce the apoptotic cascade of immunoglobulin. In this context, vitamin D
inhibits the Th1 cells proliferation as well as the Th1-mediated cytokines production (IL-2, IFN-γ,
and TNFα) and modulates Th2 cells and cytokines production (IL-4, IL-5, and IL-10) inducing Th2
phenotype. Arrows are used to illustrate decreased (↓) or increased (↑) production of specific actions,
cells or molecules.

In a 1990 study based on evidence that in vitro inhibition by cyclosporin A (CsA) is potentiated by
calcitriol, Fournier et al. investigated in vivo the influence of both molecules by using an experimental
mouse model of AITD [181]. The study demonstrated a synergistic role of calcitriol in reducing the
incidence of thyroid autoimmunity and the severity of histological lesions. Several years later, Borgogni
et al. investigated the effects of elocalcitol, compared with methimazole, on CXCL10 secretion induced
by proinflammatory cytokines in human thyrocytes. Their results showed that elocalcitol inhibited
IFN-γ and TNFα-induced CXCL10 protein secretion more effectively than methimazole and promoted
a shift toward a Th2 response [182].

Animal models deploying an immunization protocol with thyroid stimulating hormone receptor
antibody (TSHR Ab) showed that vitamin D deficiency promoted persistent hyperthyroidism, leading
to speculate on a potential modulatory effect of vitamin D on thyroid function [183]. One year later,
Liu S et al. analyzed the effect of calcitriol on thyroid inflammation and Th1/Th2 cells in mice with
experimental autoimmune thyroiditis [184]. The authors demonstrated that calcitriol can help to
maintain normal autoantibodies and citokines levels as well as the thyroid glandular structure when
administered before the onset of the experimental damage.

The mechanisms behind the putative beneficial effects of vitamin D on AITD mentioned above
are unclear, but they are possibly related to its known immunomodulatory and anti-inflammatory
properties.
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Hashimoto’s thyroiditis (HT) is often characterized by hypothyroidism and the production of
thyroid autoantibodies like thyroid peroxidase antibodies (TPOAb) and thyroglobulin antibodies
(TgAb), and with thyroid glandular lymphocytic infiltration [185].

Several observational and interventional studies found a potential link between hypovitaminosis
D and a higher risk of HT onset. The first observational study was published by Goswami et al. in
2009 and observed an inverse correlation between serum vitamin D levels and TPOAb titres [186].
Later, studies confirmed this negative association [187–192] and also reported a negative correlation
between vitamin D and TgAb serum concentrations [189,191]. Several studies demonstrated that
TPOAb positivity was more frequent in subjects with hypovitaminosis D compared to subjects
with sufficient hormone levels [187,193–199]. Further studies also demonstrated an association
between the VDR polymorphisms and a higher incidence of HT, particularly VDR rs731236, rs1544410,
and rs2228570 [200].

Human intervention studies demonstrated that cholecalciferol supplementation was associated
with an important decrease in TPOAb and TgAb levels both in patients with vitamin D sufficiency
and deficiency [201–204]. In a recent 3-month RCT on women with HT, Chahardoli R et al. not only
observed a significant decrease of TgAb after cholecalciferol supplementation (50.000 U), but also
reported a significant reduction of TSH levels [205].

Graves’ disease (GD) is a common autoimmune disease with an incidence of 14/100,000 per year
and is characterized by the presence of thyroid stimulating hormone (TSH) receptor autoantibodies
which cause hyperthyroidism, goiter, and ophthalmopathy [206,207]. Although some studies observed
an increased prevalence of GD in subjects with hypovitaminosis D, the association between these
two conditions is not so straightforward [208]. The first observational study on this topic examined
vitamin D levels in female population with and without remission of GD [209]. The authors found
higher vitamin D in GD women with remission as compared to those without. One year later, Unal
et al. showed that patients with GD harbor lower vitamin D levels than normal controls [189]. These
results have been further confirmed by three recent observational studies [197,210,211]. Moreover,
Xu and colleagues conducted a meta-analysis with 26 clinical studies, showing that hypovitaminosis D
seems to double the risk of GD onset [212]. Recently, an interventional study was designed to evaluate
whether daily supplementary treatment with vitamin D reduces GD recurrence. The results showed
that GD recurrence occurred earlier in patients not receiving vitamin D supplementation [213]. Finally,
as in the case of HT, polymorphisms of VDR gene seem to be related to a higher risk of GD occurrence
in several investigations, but with a low statistical power [214].

Summarizing, studies observed a correlation between hypovitaminosis D and thyroid autoimmune
diseases. Cholecalciferol supplementation seems to exert beneficial effects on thyroid autoimmunity.
However, large multicenter studies are needed to determine the impact of supplementary treatment
with vitamin D on clinical outcomes in AITD.

4.3. Addison’s Disease

Addison’s disease (AD) represents a rare adrenal autoimmune disease characterized by a current
prevalence of 100–140 cases per million population [215]. A steady increase of the prevalence of AD
has been observed over the years, particularly in women [216]. AD clinically occurs with adrenal
insufficiency, caused by an autoimmune-mediated destruction of adrenal cortex [217]. Although the
pathogenesis of AD has not been completely elucidated, an interplay role between HLA haplotypes
and environmental factors has been postulated [218,219]. In addition, different genes responsible for
vitamin D metabolism and VDR gene polymorphisms are implicated in AD onset [220–223]. Only few
studies evaluated the potential relationship between AD and circulating vitamin D levels. In 2013,
Ramagopalan and colleagues investigated the potential role of hypovitaminosis D in influencing
the pathogenesis of immune-mediated diseases [224]. The authors observed that in patients with
hypovitaminosis D there were significantly higher rates of AD and other autoimmune diseases.
Subsequently, Pazderska et al. demonstrated that subjects born in the winter had a higher risk of
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AD occurrence [225]. These results suggested that hypovitaminosis D, coupled with exposure to
seasonal viral infections, could deregulate the innate immunity increasing the risk of AD onset [225].
In 2018, Penna-Martinez and colleagues conducted a pilot trial to investigate the effects on the immune
response of patients with AD of high dose cholecalciferol therapy (4000 IU/day) over a 3-month period.
The authors observed that supplementation with cholecalciferol could interfere with the late activation
of monocytes and T-cells in subjects with AD, providing novel insights about immunomodulation in
AD [226].

It may thus be concluded that only preliminary evidence exists to suggest that hypovitaminosis
D and AD could be closely related, considering the potential role of vitamin D in modulating the
immune response.

4.4. Autoimmune Polyendocrine Syndromes

Autoimmune polyendocrine syndromes (APS) represent rare conditions characterized by
autoimmune activity against multiple endocrine organs [227]. The two major APS, APS-1 (AD,
hypoparathyroidism and candidiasis), and APS-2 (AD, AITD and T1DM), have Addison’s disease
as a prominent component. APSs include APS-3 (AITD and other autoimmune diseases) and APS-4
(autoimmune polyendocrinopathies that do not fulfil the criteria of APS 1 to 3) [228]. Across different
countries, the estimated prevalence of APS is reportedly around 1:80,000 [229]. To date, only a single
clinical study evaluated the potential association between circulating vitamin D levels and APS.
The authors observed that subjects with APS showed lower 25-OHD serum concentrations compared
to healthy controls [230]. It is currently unclear if hypovitaminosis D could represent a cause of APS
onset rather than a consequence.

5. Vitamin D and Autoimmune Liver Diseases

Autoimmune liver diseases, despite being relatively rare, represent a relevant cause of liver-related
morbidity and mortality. Autoimmune hepatitis (AIH) is an immune-mediated chronic liver disease
with no defined cause, accounting for about 16–18 cases per 100,000 inhabitants in Europe. The main
target of auto-inflammation are primarily hepatocytes. AIH can range from a mild, asymptomatic
disease to a severe form of acute or even fulminant hepatitis and appears to be more frequent in
women, although its incidence among men is on the rise [231].

Cholestatic autoimmune liver diseases include primary biliary cholangitis (PBC), which is a chronic
small bile duct cholangitis affecting about 1 in 1000 women aged over 40 worldwide and presents
with non-suppurative granulomas [232,233], and primary sclerosing cholangitis (PSC), affecting
mainly young men with both small and large bile ducts involvement [234]. Although the complex
pathogenesis of autoimmune liver diseases is still incompletely understood, it has been hypothesized
a role for vitamin in this setting. Many studies have investigated the influence of 1,25(OH)2D3 in
the liver. It is known that it directly influences cytoplasmic calcium levels in rat hepatocytes [235]
and promotes liver regeneration after hepatectomy in murine models [236]. It has been found that
vitamin D increases the expression of P450 cytochromes (CYP3A4, CYP2D6, CYP2C9) in human
primary cultured hepatocytes [237]. In addition, it has been reported that the isoenzyme CYP2D6
could potentially convert vitamin D3 into 25-hydroxy-vitamin D [238]. CYPs are common targets of
immune-mediated reactions in autoimmune liver diseases. In particular, CYP2D6 expressed on the
membrane of hepatocytes is the major auto-antigen for anti-liver kidney microsome type 1 (LKM1)
antibodies in type 2 AIH [239]. The clinical relevance of anti-CYP2D6 auto-reactivity in autoimmune
hepatitis is supported by animal models: mice infection with CYP2D6-expressing Ad5 adenovirus
leads to the production of anti-CYP2D6 IgG that cause immune-mediated liver injury by recognizing
the same epitopes targeted by human auto-antibodies [240].

There are several potential implications of vitamin D in AIH, due to both genomic and non-genomic
functions, such as suppression of MCH-II antigen expression and increase of CTLA-4 production [241].
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As shown in a model of Concanavalin A (Con-A) induced autoimmune hepatitis in mice [242], calcitriol
decreases serum ALT levels, attenuates histological liver damage, and decreases IFN-γ levels.

The liver immunomodulatory effect of vitamin D appears to be related to the 25-hydroxylation,
which creates a negative feedback for local inflammation and leads to Th2 polarization [243], due to the
inhibition of pro-inflammatory TNF-α, IL-2, IL-12, IL-17, IFN-γ, and promotion of IL-4, IL-5, and IL-10
production [244]. In addition, calcitriol may exert an anti-oxidant by increasing intracellular glutathione
and counteracting reactive oxygen species, which have been suggested to be involved in AIH and PBC.
In fact, a vitamin-D poor diet has been shown to increase NADPH in rat hepatocytes [245]. Moreover,
a putative immunomodulatory role of vitamin D seems to be linked to its influence in hepatic invariant
natural killer T-lymphocytes (iNKT) development. These are mostly found in hepatic sinusoids and
are able to activate hepatic stellate cells, as well as to mediate hepatocytes’ killing [246]. Liver iNKT
cells constitutively express OX40, which is involved in inducing proinflammatory and profibrotic liver
injury, as reported by Lan and colleagues [247]. Although iNKT role in autoimmune liver disease
is still not fully understood, it has been reported that these activated cells mediate a major role in
inflammation and hepatocyte death in a murine model of Con-A-induced autoimmune hepatitis [248].

In this setting, animal models have shown that adequate levels of vitamin D are essential for
normal iNKT development. It seems that vitamin D accounts for the number of iNKT cells, whereas the
VDR plays a role for both iNKT number and function [249]. Interaction of vitamin D with its receptor
VDR results in many effects other than its role in T cell differentiation. This receptor is expressed by
CD4+ T lymphocytes, CD8+ T lymphocytes, B lymphocytes, DCs, NK cells and macrophages [250].
VDR receptor is widely expressed at low levels within hepatocytes, whereas high levels of VDR
expression have been demonstrated in hepatic non parenchymal cells, such as biliary epithelial cells
and hepatic stellate cells (HSCs) [251]. VDR-mediated signaling in HSCs seems to act by antagonizing
the potent hepatic profibrogenic TGF-β/SMAD-dependent transcriptional pathway [252].

The locally produced 1,25(OH)2D3 is also responsible for a negative feedback for the expression
of VDR in bile duct cells [243]. VDR could be involved in maintaining bile duct integrity, suggesting a
potential involvement in cholestatic liver damage. Firrincieli et al. found that VDR knockout mice
presented an impairment in bile acid homeostasis, ductal reaction, as well as disruptions in biliary
epithelial junctions following a biliary-type liver injury [253]. Moreover, the signaling activated by
vitamin D-VDR interaction can modulate the transcriptional response related to bile acid resulting in a
putative protection of hepatocytes from cholestatic injuries [254].

An additional anti-inflammatory action of 1,25(OH) is related to the fact that it increases the activity
of MPK-1, consequently inactivating the mitogen-activated protein kinases (MAPKs); the subsequent
modulation of nuclear factor of activated T-cells (NFAT), NF-κB, and nuclear histone deacetylase,
reduces inflammatory activity in immune-mediated diseases [244].

Vitamin D also increases the glucocorticoid anti-inflammatory function by stimulating the synthesis
of mediator complex subunit 14 (MED14); it induces the binding of the activated glucocorticoid receptor
to the glucocorticoid-responsive element in the MPK-1 gene promoter. In addition, 1,25(OH)2D3
emphasizes the negative effect of glucocorticoids on the production of LPS-induced IL-6 [255] and
interferes with the translocation of NF-κB to the nucleus [256]. As glucocorticoids are the main
therapeutic agents used for autoimmune hepatitis, this finding might have potentially therapeutic
implications for a putative role of vitamin D supplementation to booster steroidal treatment efficacy.

Calcitriol has antifibrotic and anti-proliferative effect on the liver, as shown both in in vitro
and in vivo models [257]. Liver damage and inflammation frequently result in hepatic fibrosis.
Pro-inflammatory cytokines activate HSCs, which transform into myofibroblasts with consequent
proliferation, contractility, loss of intracellular retinoid stores, cytokine production, and extracellular
matrix deposition [258]. It has resulted that 1,25(OH)2D3 inhibits proliferation, activation,
and transformation of HSCs into myofibroblasts in a murine model of live injury induced by
thioacetamide [259].
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Emerging evidence suggests that vitamin D could protect against liver fibrogenesis, due to
different mechanisms. One of the most important is the signaling mediated by VDR [257] which,
as discussed before, is extensively expressed on HSCs: Ding et al. showed that VDR knockout mice
develop spontaneous liver fibrosis [252], because of an impairment in VDR/SMAD genomic feedback.

It has been shown that 1,25(OH)2D3 decreased the mRNA transcription for type 1 collagen in
cultured human HSCs by interacting with VDR [260]. Vitamin D, besides repressing collagen I and III
expression, strengthens the expression of matrix metalloproteinase-8 (MMP-8), a collagen cleaving
enzyme [261].

Moreover, activated HSCs secrete connective tissue growth factor (CTGF) as well as other
matricellular proteins [262]. In a rat model, a significant reduction of CTGF expression has been
observed after vitamin D treatment [263]. Similar results were obtained by evaluating the correlation
between circulating levels of CTGF and severity of liver fibrosis in a cohort of patients with biliary
atresia [264].

Supplementation of vitamin D may prevent liver fibrosis development, as resulted in murine
models of primary sclerosing cholangitis [265] and thioacetamide-induced cirrhosis [259].

It is widely reported the higher frequency of vitamin D insufficiency or deficiency among
autoimmune liver diseases patients compared to healthy subject. Scarcity of vitamin D has been
evaluated as a prognostic marker, linked to disease severity [266–268]. Serum levels of 1,25(OH)2D3
lower than 20 ng/mL have been described in a large proportion of patients with non-cholestatic
autoimmune liver diseases (51–92%), and vitamin D insufficiency has been reported in 17–23% of
patients [244].

There are several studies focusing on the potential relation of low vitamin D level and chronic
liver disease, irrespective of the cause, as reviewed by Chen et al. [243]. Stokes et al. have found low
vitamin D concentration to be independent predictor of mortality in cirrhotic patients (OR 6.3; 95% CI
1.2–31.2, P = 0.012): they also reported an inverse correlation between serum levels of vitamin D and
the stage of cirrhosis (Child–Pugh score and model of end-stage liver disease–MELD score), mainly
associated with liver failure and infections [269]. Despite that vitamin D deficiency has not resulted
as a predictor of poor prognosis in AIH by itself, it has been proposed as a biomarker with potential
prognostic role in this setting, as it resulted associated to more severe interface hepatitis and worse
fibrosis scores; the lower the vitamin D levels, the higher appeared to be the rate of a poor response to
treatment [270]. Comparable results were found by Ebadi et al. [266].

Moreover, it has been reported that 25(OH)D3 level increases in patients with AIH who are
responsive to classic steroid therapy, while it does not rise in non-responders [270].

A potential prognostic value of vitamin D levels has also been described in PBC. Agmon-Levin
et al., in fact, have shown that vitamin D levels resulted significantly reduced among PBC patients
compared to controls, and they correlated to higher alkaline phosphatase levels as well as advanced
liver damage. Patients treated with ursodeoxycholic acid (UDCA) have been described to have higher
vitamin D levels [267].

It has also been postulated that pre-treatment vitamin D level could be independently associated
to subsequent UDCA response [271].

Regarding VDR, it has been described an association between autoimmune liver diseases and
VDR polymorphisms: in particular, Vogel et al. found out that Fok1 polymorphism associated to AIH,
whereas BsmI polymorphism was increased in PBC affected patients in a German population [272].
The same result has been shown in a Chinese population [273] and in a Canadian group of PBC patients,
in which has been postulated that VDR polymorphisms could be an independent risk factor for a lower
bone mineral density [274]. These findings suggest a putative involvement of these polymorphisms
with regard to D-mediated immunomodulation, although the mechanisms remain unknown.

The implication of vitamin D-VDR signaling pathway has been studied in the PBC and PSC
pathogenic process. Kempinska-Podhorodecka et al. found that in PBC livers, either cirrhotic or
not, there is a significant impairment in VDR expression, resulting in enhancement of non-coding
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miR155 and consequent SOCS1 reduction, which probably interferes with the negative feedback
on pro-inflammatory cytokines response [275]. Actually, VDR is also an important receptor for
ursodeoxycholic acid (UDCA) inducing cathelicidin expression in biliary epithelial cells [243]; it also
mediates many epigenetic effects, which contribute to the reduction of pro-inflammatory cytokines
synthesis [276].

It should also be taken into consideration that low serum concentration of vitamin D in chronic liver
disease patients might reflect a deficiency in hepatic hydroxylation due to impaired liver function [277].
The lack of proper hydroxylation may be a consequence of liver disease, but it cannot be excluded that
it may pre-exist liver disease, playing a role in its pathogenesis and progression [244].

Based on what was previously discussed, we can hypothesize that 1,25(OH)2D3 may be used as a
potential prognostic biomarker of disease severity and treatment response [270].

The putative therapeutic benefit provided by vitamin D supplementation in chronic liver diseases
needs further study to be confirmed. A recent systematic review published in 2017 [278], including
15 trials and 1034 patients in total, concluded that no strong evidence has been found supporting
the hypothesis that vitamin D supplementation confers an advantage in this setting, though none
of the trials included patients with autoimmune liver disease. However, considering the synergistic
cooperation of vitamin D and glucocorticoids in suppressing inflammation, it would be interesting to
conduct a prospective investigation to determine whether correction of vitamin D deficiency could
strengthen the effect of corticosteroids or contribute to dose reduction and individualization.

Summarizing, vitamin D, along with its relative VDR is possibly inter-related with the occurrence,
treatment, and prognosis of autoimmune liver diseases and represents an interesting and intriguing
topic to further explore in order to improve prevention and management of immune-mediated
liver diseases.

6. Conclusions

Knowledge on the role of vitamin D in the control of bone health physiology has been progressively
integrated by evidence that vitamin D yields pleiotropic “non-calcemic” effects in vitro and in vivo,
potentially linking vitamin D status with general health. A main extra-skeletal effect of vitamin D
activity is related to the immune system homeostasis. Hence, a disturbed vitamin D-VDR axis is
potentially viewed as a trigger for a wide spectrum of autoimmune diseases, such as inflammatory
arthritis, connective tissue diseases, endocrinopathies, and different categories of autoimmune liver
diseases. In vitro and in vivo data support this link and demonstrate that, at least in experimental
conditions, the modulation of vitamin D of innate and adaptive immunity can contribute to prevent
the susceptibility to autoimmune diseases and improve their therapeutic management.

Unfortunately, studies cannot exclude reverse causality, i.e., that low levels of vitamin D may
derive from impaired kinesis or avoidance of sunlight in people with autoimmune diseases. For these
reasons, randomized controlled trials are needed on treatment with vitamin D in patients with or at
risk for autoimmune diseases, so as to heighten data and accuracy on the information available on
vitamin D efficiency in the clinical setting of autoimmune disorders.
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204. Krysiak, R.; Szkróbka, W.; Okopień, B. The effect of vitamin D on thyroid autoimmunity in
levothyroxine-treated women with Hashimoto’s thyroiditis and normal vitamin D Status. Exp. Clin.
Endocrinol. Diabetes 2017, 125, 229–233. [CrossRef]

205. Chahardoli, R.; Saboor-Yaraghi, A.A.; Amouzegar, A.; Khalili, D.; Vakili, A.Z.; Azizi, F. Can supplementation
with vitamin D modify thyroid autoantibodies (Anti-TPO Ab, Anti-Tg Ab) and thyroid profile (T3, T4, TSH)
in Hashimoto’s thyroiditis? A double blind, Randomized clinical trial. Horm. Metab. Res. 2019, 51, 296–301.
[CrossRef]

206. Menconi, F.; Marcocci, C.; Marino, M. Diagnosis and classification of Graves’ disease. Autoimmun. Rev. 2014,
13, 398–402. [CrossRef]

207. Cooper, G.S.; Stroehla, B.C. The epidemiology of autoimmune diseases. Autoimmun. Rev. 2003, 2, 119–125.
[CrossRef]

208. Wiersinga, W.M. Clinical relevance of environmental factors in the pathogenesis of autoimmune thyroid
disease. Endocrinol. Metab. 2016, 31, 213–222. [CrossRef]

209. Yasuda, T.; Okamoto, Y.; Hamada, N.; Miyashita, K.; Takahara, M.; Sakamoto, F.; Miyatsuka, T.; Kitamura, T.;
Katakami, N.; Kawamori, D.; et al. Serum vitamin D levels are decreased in patients without remission of
Graves’ disease. Endocrine 2013, 43, 230–232. [CrossRef]

210. Planck, T.; Shahida, B.; Malm, J.; Manjer, J. Vitamin D in Graves Disease: Levels, Correlation with Laboratory
and Clinical Parameters, and Genetics. Eur. Thyroid J. 2018, 7, 27–33. [CrossRef]

211. Mangaraj, S.; Choudhury, A.K.; Swain, B.M.; Sarangi, P.K.; Mohanty, B.K.; Baliarsinha, A.K. Evaluation of
vitamin D status and its impact on thyroid related parameters in new onset Graves’ disease- A cross-sectional
observational study. Indian J. Endocrinol. Metab. 2019, 23, 35–39. [PubMed]

212. Xu, M.Y.; Cao, B.; Yin, J.; Wang, D.F.; Chen, K.L.; Lu, Q.B. Vitamin D and Graves’ disease: A meta-analysis
update. Nutrients 2015, 7, 3813–3827. [CrossRef] [PubMed]

http://dx.doi.org/10.1089/thy.2009.0200
http://www.ncbi.nlm.nih.gov/pubmed/21751884
http://dx.doi.org/10.4158/EP12376.OR
http://www.ncbi.nlm.nih.gov/pubmed/23337162
http://dx.doi.org/10.1089/thy.2013.0460
http://www.ncbi.nlm.nih.gov/pubmed/24320141
http://dx.doi.org/10.4274/jcrpe.2011
http://www.ncbi.nlm.nih.gov/pubmed/26316435
http://dx.doi.org/10.14310/horm.2002.1681
http://dx.doi.org/10.3390/ijerph13090850
http://dx.doi.org/10.1007/s12020-017-1425-z
http://dx.doi.org/10.1155/2018/2846943
http://www.ncbi.nlm.nih.gov/pubmed/28163731
http://www.ncbi.nlm.nih.gov/pubmed/27186560
http://dx.doi.org/10.1016/j.pharep.2018.12.006
http://www.ncbi.nlm.nih.gov/pubmed/30844687
http://dx.doi.org/10.1055/s-0042-123038
http://dx.doi.org/10.1055/a-0856-1044
http://dx.doi.org/10.1016/j.autrev.2014.01.013
http://dx.doi.org/10.1016/S1568-9972(03)00006-5
http://dx.doi.org/10.3803/EnM.2016.31.2.213
http://dx.doi.org/10.1007/s12020-012-9789-6
http://dx.doi.org/10.1159/000484521
http://www.ncbi.nlm.nih.gov/pubmed/31016150
http://dx.doi.org/10.3390/nu7053813
http://www.ncbi.nlm.nih.gov/pubmed/26007334


Nutrients 2020, 12, 789 27 of 30

213. Cho, Y.Y.; Chung, Y.J. Vitamin D supplementation does not prevent the recurrence of Graves’ disease. Sci. Rep.
2020, 10, 16. [CrossRef] [PubMed]

214. Zhou, H.; Xu, C.; Gu, M. Vitamin D receptor (VDR) gene polymorphisms and Graves’ disease: A meta-analysis.
Clin. Endocrinol. 2009, 70, 938–945. [CrossRef] [PubMed]

215. Erichsen, M.M.; Løvås, K.; Fougner, K.J.; Svartberg, J.; Hauge, E.R.; Bollerslev, J.; Berg, J.P.; Mella, B.;
Husebye, E.S. Normal overall mortality rate in Addison’s disease, but young patients are at risk of premature
death. Eur. J. Endocrinol. 2009, 160, 233–237. [CrossRef]

216. Meyer, G.; Neumann, K.; Badenhoop, K.; Linder, R. Increasing prevalence of Addison’s disease in German
females: Health insurance data 2008-2012. Eur. J. Endocrinol. 2014, 170, 367–373. [CrossRef]

217. Barthel, A.; Benker, G.; Berens, K.; Diederich, S.; Manfras, B.; Gruber, M.; Kanczkowski, W.; Kline, G.;
Kamvissi-Lorenz, V.; Hahner, S.; et al. An Update on Addison’s Disease. Exp. Clin. Endocrinol. Diabetes 2019,
127, 165–175. [CrossRef]

218. Bratland, E.; Husebye, E.S. Cellular immunity and immunopathology in autoimmune Addison’s disease.
Mol. Cell. Endocrinol. 2011, 336, 180–190. [CrossRef]

219. Kraus, A.U.; Penna-Martinez, M.; Meyer, G.; Badenhoop, K. Vitamin D effects on monocytes’ CCL-2, IL6 and
CD14 transcription in Addison’s disease and HLA susceptibility. J. Steroid Biochem. Mol. Biol. 2018, 177,
53–58. [CrossRef]

220. Pani, M.A.; Seissler, J.; Usadel, K.H.; Badenhoop, K. Vitamin D receptor genotype is associated with Addison’s
disease. Eur. J. Endocrinol./Eur. Fed. Endocr. Soc. 2002, 147, 635–640. [CrossRef]

221. Lopez, E.R.; Zwermann, O.; Segni, M.; Meyer, G.; Reincke, M.; Seissler, J.; Herwig, J.; Usadel, K.H.;
Badenhoop, K. A promoter polymorphism of the CYP27B1 gene is associated with Addison’s disease,
Hashimoto’s thyroiditis, Graves’ disease, and type 1 diabetes mellitus in Germans. Eur. J. Endocrinol./Eur.
Fed. Endocr. Soc 2004, 151, 193–197. [CrossRef] [PubMed]

222. Jennings, C.E.; Owen, C.J.; Wilson, V.; Pearce, S.H. A haplotype of the CYP27B1 promoter is associated with
autoimmune Addison’s disease but not with Graves’ disease in a UK population. J. Mol. Endocrinol. 2005, 34,
859–863. [CrossRef] [PubMed]

223. Fichna, M.; Zurawek, M.; Januszkiewicz-Lewandowska, D.; Gryczynska, M.; Fichna, P.; Sowinski, J.
Association of the CYP27B1 C(-1260)A polymorphism with autoimmune Addison’s disease. Exp. Clin.
Endocrinol. Diabetes 2010, 118, 544–549. [CrossRef] [PubMed]

224. Ramagopalan, S.V.; Goldacre, R.; Disanto, G.; Giovannoni, G.; Goldacre, M.J. Hospital admissions for vitamin
D related conditions and subsequent immune-mediated disease: Record-linkage studies. BMC Med. 2013,
11, 171. [CrossRef] [PubMed]

225. Pazderska, A.; Fichna, M.; Mitchell, A.L.; Napier, C.M.; Gan, E.; Ruchała, M.; Santibanez-Koref, M.; Pearce, S.H.
Impact of Month of Birth on the Risk of Development of Autoimmune Addison’s Disease. J. Clin. Endocrinol.
Metab. 2016, 101, 4214–4218. [CrossRef] [PubMed]

226. Penna-Martinez, M.; Filmann, N.; Bogdanou, D.; Shoghi, F.; Huenecke, S.; Schubert, R.; Herrmann, E.;
Koehl, U.; Husebye, E.S.; Badenhoop, K. High-dose vitamin D in Addison’s disease regulates T-cells and
monocytes: A pilot trial. Nutrition 2018, 49, 66–73. [CrossRef]

227. Cutolo, M. Autoimmune polyendocrine syndromes. Autoimmun. Rev. 2014, 13, 85–89. [CrossRef]
228. Altieri, B.; Muscogiuri, G.; Barrea, L.; Mathieu, C.; Vallone, C.V.; Mascitelli, L.; Bizzaro, G.; Altieri, V.M.;

Tirabassi, G.; Balercia, G.; et al. Does vitamin D play a role in autoimmune endocrine disorders? A proof of
concept. Rev. Endocr. Metab. Disord. 2017, 18, 335–346. [CrossRef]

229. Husebye, E.S.; Anderson, M.S.; Kämpe, O. Autoimmune Polyendocrine Syndromes. N. Engl. J. Med. 2018,
378, 1132–1141. [CrossRef]

230. Bellastella, G.; Maiorino, M.I.; Petrizzo, M.; De Bellis, A.; Capuano, A.; Esposito, K.; Giugliano, D. Vitamin D
and autoimmunity: What happens in autoimmune polyendocrine syndromes? J. Endocrinol. Investig. 2015,
38, 629–633. [CrossRef]

231. Lohse, A.W.; Chazouillères, O.; Dalekos, G.; Drenth, J.; Heneghan, M.; Hofer, H.; Lammert, F.; Lenzi, M.
EASL Clinical Practice Guidelines: Autoimmune hepatitis. J. Hep. 2015, 63, 971–1004.

232. Hirschfield, G.M.; Beuers, U.; Corpechot, C.; Invernizzi, P.; Jones, D.; Marzioni, M.; Schramm, C. EASL
Clinical Practice Guidelines: The diagnosis and management of patients with primary biliary cholangitis.
J. Hepatol. 2017, 67, 145–172. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/s41598-019-55107-9
http://www.ncbi.nlm.nih.gov/pubmed/31913301
http://dx.doi.org/10.1111/j.1365-2265.2008.03413.x
http://www.ncbi.nlm.nih.gov/pubmed/18782354
http://dx.doi.org/10.1530/EJE-08-0550
http://dx.doi.org/10.1530/EJE-13-0756
http://dx.doi.org/10.1055/a-0804-2715
http://dx.doi.org/10.1016/j.mce.2010.12.015
http://dx.doi.org/10.1016/j.jsbmb.2017.07.026
http://dx.doi.org/10.1530/eje.0.1470635
http://dx.doi.org/10.1530/eje.0.1510193
http://www.ncbi.nlm.nih.gov/pubmed/15296474
http://dx.doi.org/10.1677/jme.1.01760
http://www.ncbi.nlm.nih.gov/pubmed/15956353
http://dx.doi.org/10.1055/s-0029-1241206
http://www.ncbi.nlm.nih.gov/pubmed/19998245
http://dx.doi.org/10.1186/1741-7015-11-171
http://www.ncbi.nlm.nih.gov/pubmed/23885887
http://dx.doi.org/10.1210/jc.2016-2392
http://www.ncbi.nlm.nih.gov/pubmed/27575942
http://dx.doi.org/10.1016/j.nut.2017.10.021
http://dx.doi.org/10.1016/j.autrev.2013.07.006
http://dx.doi.org/10.1007/s11154-016-9405-9
http://dx.doi.org/10.1056/NEJMra1713301
http://dx.doi.org/10.1007/s40618-014-0233-z
http://dx.doi.org/10.1016/j.jhep.2017.03.022
http://www.ncbi.nlm.nih.gov/pubmed/28427765


Nutrients 2020, 12, 789 28 of 30

233. Jepsen, P.; Grønbæk, L.; Vilstrup, H. Worldwide Incidence of Autoimmune Liver Disease. Dig. Dis. 2015, 33
(Suppl. 2), 2–12. [CrossRef] [PubMed]

234. Hirschfield, G.M.; Karlsen, T.H.; Lindor, K.D.; Adams, D.H. Primary sclerosing cholangitis. Lancet 2013, 382,
1587–1599. [CrossRef]

235. Baran, D.T.; Milne, M.L. 1,25Dihydroxyvitamin D increases hepatocyte cytosolic calcium levels. A potential
regulator of vitamin D-25-hydroxylase. J. Clin. Investig. 1986, 77, 1622–1626. [CrossRef] [PubMed]

236. Rixon, R.H.; Isaacs, R.J.; Whitfield, J.F. Control of DNA polymerase-alpha activity in regenerating rat liver by
calcium and 1 alpha,25(OH)2D3. J. Cell. Physiol. 1989, 139, 354–360. [CrossRef]

237. Drocourt, L.; Ourlin, J.C.; Pascussi, J.M.; Maurel, P.; Vilarem, M.J. Expression of CYP3A4, CYP2D6, and
CYP2C9 is regulated by the vitamin D receptor pathway in primary human hepatocytes. J. Biol. Chem. 2002,
277, 25125–25132. [CrossRef]

238. Lin, C.J.; Dardis, A.; Wijesuriya, S.D.; Abdullah, M.A.; Casella, S.J.; Miller, W.L. Lack of mutations in CYP2D6
and CYP27 in patients with apparent deficiency of vitamin D 25-hydroxylase. Mol. Genet. Metab. 2003, 80,
469–472. [CrossRef]

239. Sutti, S.; Rigamonti, C.; Vidali, M.; Albano, E. CYP2E1 autoantibodies in liver diseases. Redox. Biol. 2014, 3,
72–78. [CrossRef]

240. Lapierre, P.; Djilali-Saiah, I.; Vitozzi, S.; Alvarez, F. A murine model of type 2 autoimmune hepatitis:
Xenoimmunization with human antigens. Hepatology 2004, 39, 1066–1074. [CrossRef]

241. Luong, K.V.; Nguyen, L.T. The role of vitamin d in autoimmune hepatitis. J. Clin. Med. Res. 2013, 5, 407–415.
[CrossRef] [PubMed]

242. Hu, X.D.; Jiang, S.L.; Liu, C.H.; Hu, Y.Y.; Liu, C.; Sun, M.Y.; Chen, G.F.; Liu, P. Preventive effects of
1,25-(OH)2VD3 against ConA-induced mouse hepatitis through promoting vitamin D receptor gene
expression. Acta Pharmacol. Sin. 2010, 31, 703–708. [CrossRef] [PubMed]

243. Chen, E.Q.; Shi, Y.; Tang, H. New insight of vitamin D in chronic liver diseases. Hepatobiliary Pancreat. Dis.
Int. 2014, 13, 580–585. [CrossRef]

244. Czaja, A.J.; Montano-Loza, A.J. Evolving Role of Vitamin D in Immune-Mediated Disease and Its Implications
in Autoimmune Hepatitis. Dig. Dis. Sci. 2019, 64, 324–344. [CrossRef]

245. Bachelet, M.; Bader, C.; Merlot, A.M.; Laborde, K.; Snarska, J.; Ulmann, A. Cellular utilization of cytosolic
NADPH in kidney and liver cells from rats fed a normal or a vitamin D-deficient diet. Cell Biochem. Funct.
1983, 1, 25–29. [CrossRef]

246. Kumar, V. NKT-cell subsets: Promoters and protectors in inflammatory liver disease. J. Hepatol. 2013, 59,
618–620. [CrossRef]

247. Lan, P.; Fan, Y.; Zhao, Y.; Lou, X.; Monsour, H.P.; Zhang, X.; Choi, Y.; Dou, Y.; Ishii, N.; Ghobrial, R.M.; et al.
TNF superfamily receptor OX40 triggers invariant NKT cell pyroptosis and liver injury. J. Clin. Investig.
2017, 127, 2222–2234. [CrossRef]

248. Smyk, D.S.; Mavropoulos, A.; Mieli-Vergani, G.; Vergani, D.; Lenzi, M.; Bogdanos, D.P. The Role of Invariant
NKT in Autoimmune Liver Disease: Can Vitamin D Act as an Immunomodulator? Can. J. Gastroenterol.
Hepatol. 2018, 2018, 8197937. [CrossRef]

249. Yu, S.; Cantorna, M.T. Epigenetic reduction in invariant NKT cells following in utero vitamin D deficiency in
mice. J. Immunol. 2011, 186, 1384–1390. [CrossRef]

250. Bhalla, A.K.; Amento, E.P.; Clemens, T.L.; Holick, M.F.; Krane, S.M. Specific high-affinity receptors for
1,25-dihydroxyvitamin D3 in human peripheral blood mononuclear cells: Presence in monocytes and
induction in T lymphocytes following activation. J. Clin. Endocrinol. Metab. 1983, 57, 1308–1310. [CrossRef]

251. Gascon-Barré, M.; Demers, C.; Mirshahi, A.; Néron, S.; Zalzal, S.; Nanci, A. The normal liver harbors the
vitamin D nuclear receptor in nonparenchymal and biliary epithelial cells. Hepatology 2003, 37, 1034–1042.
[CrossRef] [PubMed]

252. Ding, N.; Yu, R.T.; Subramaniam, N.; Sherman, M.H.; Wilson, C.; Rao, R.; Leblanc, M.; Coulter, S.; He, M.;
Scott, C.; et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell 2013, 153,
601–613. [CrossRef]

253. Firrincieli, D.; Zúñiga, S.; Rey, C.; Wendum, D.; Lasnier, E.; Rainteau, D.; Braescu, T.; Falguières, T.; Boissan, M.;
Cadoret, A.; et al. Vitamin D nuclear receptor deficiency promotes cholestatic liver injury by disruption of
biliary epithelial cell junctions in mice. Hepatology 2013, 58, 1401–1412. [CrossRef] [PubMed]

http://dx.doi.org/10.1159/000440705
http://www.ncbi.nlm.nih.gov/pubmed/26641102
http://dx.doi.org/10.1016/S0140-6736(13)60096-3
http://dx.doi.org/10.1172/JCI112478
http://www.ncbi.nlm.nih.gov/pubmed/3084563
http://dx.doi.org/10.1002/jcp.1041390218
http://dx.doi.org/10.1074/jbc.M201323200
http://dx.doi.org/10.1016/j.ymgme.2003.10.004
http://dx.doi.org/10.1016/j.redox.2014.11.004
http://dx.doi.org/10.1002/hep.20109
http://dx.doi.org/10.4021/jocmr1505w
http://www.ncbi.nlm.nih.gov/pubmed/24171052
http://dx.doi.org/10.1038/aps.2010.53
http://www.ncbi.nlm.nih.gov/pubmed/20523341
http://dx.doi.org/10.1016/S1499-3872(14)60295-2
http://dx.doi.org/10.1007/s10620-018-5351-6
http://dx.doi.org/10.1002/cbf.290010105
http://dx.doi.org/10.1016/j.jhep.2013.02.032
http://dx.doi.org/10.1172/JCI91075
http://dx.doi.org/10.1155/2018/8197937
http://dx.doi.org/10.4049/jimmunol.1002545
http://dx.doi.org/10.1210/jcem-57-6-1308
http://dx.doi.org/10.1053/jhep.2003.50176
http://www.ncbi.nlm.nih.gov/pubmed/12717384
http://dx.doi.org/10.1016/j.cell.2013.03.028
http://dx.doi.org/10.1002/hep.26453
http://www.ncbi.nlm.nih.gov/pubmed/23696511


Nutrients 2020, 12, 789 29 of 30

254. Ogura, M.; Nishida, S.; Ishizawa, M.; Sakurai, K.; Shimizu, M.; Matsuo, S.; Amano, S.; Uno, S.; Makishima, M.
Vitamin D3 modulates the expression of bile acid regulatory genes and represses inflammation in bile
duct-ligated mice. J. Pharmacol. Exp. Ther. 2009, 328, 564–570. [CrossRef] [PubMed]

255. Zhang, Y.; Leung, D.Y.; Goleva, E. Vitamin D enhances glucocorticoid action in human monocytes:
Involvement of granulocyte-macrophage colony-stimulating factor and mediator complex subunit 14.
J. Biol. Chem. 2013, 288, 14544–14553. [CrossRef] [PubMed]

256. De Bosscher, K.; Vanden Berghe, W.; Haegeman, G. The interplay between the glucocorticoid receptor and
nuclear factor-kappaB or activator protein-1: Molecular mechanisms for gene repression. Endocr. Rev. 2003,
24, 488–522. [CrossRef] [PubMed]

257. Abramovitch, S.; Dahan-Bachar, L.; Sharvit, E.; Weisman, Y.; Ben Tov, A.; Brazowski, E.; Reif, S.
Vitamin D inhibits proliferation and profibrotic marker expression in hepatic stellate cells and decreases
thioacetamide-induced liver fibrosis in rats. Gut 2011, 60, 1728–1737. [CrossRef]

258. Lee, U.E.; Friedman, S.L. Mechanisms of hepatic fibrogenesis. Best Pract. Res. Clin. Gastroenterol. 2011, 25,
195–206. [CrossRef]

259. Abramovitch, S.; Sharvit, E.; Weisman, Y.; Bentov, A.; Brazowski, E.; Cohen, G.; Volovelsky, O.; Reif, S.
Vitamin D inhibits development of liver fibrosis in an animal model but cannot ameliorate established
cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 308, G112–G120. [CrossRef]

260. Potter, J.J.; Liu, X.; Koteish, A.; Mezey, E. 1,25-dihydroxyvitamin D3 and its nuclear receptor repress human
α1 (I) collagen expression and type I collagen formation. Liver Int. 2013, 33, 677–686. [CrossRef]

261. Artaza, J.N.; Norris, K.C. Vitamin D reduces the expression of collagen and key profibrotic factors by inducing
an antifibrotic phenotype in mesenchymal multipotent cells. J. Endocrinol. 2009, 200, 207–221. [CrossRef]
[PubMed]

262. Liu, Y.; Liu, H.; Meyer, C.; Li, J.; Nadalin, S.; Königsrainer, A.; Weng, H.; Dooley, S.; ten Dijke, P. Transforming
growth factor-β (TGF-β)-mediated connective tissue growth factor (CTGF) expression in hepatic stellate
cells requires Stat3 signaling activation. J. Biol. Chem. 2013, 288, 30708–30719. [CrossRef] [PubMed]

263. Wang, L.; Yuan, T.; Du, G.; Zhao, Q.; Ma, L.; Zhu, J. The impact of 1,25-dihydroxyvitamin D3 on the
expression of connective tissue growth factor and transforming growth factor-β1 in the myocardium of rats
with diabetes. Diabetes Res. Clin. Pract. 2014, 104, 226–233. [CrossRef] [PubMed]

264. Honsawek, S.; Udomsinprasert, W.; Chirathaworn, C.; Anomasiri, W.; Vejchapipat, P.; Poovorawan, Y.
Correlation of connective tissue growth factor with liver stiffness measured by transient elastography in
biliary atresia. Hepatol. Res. 2013, 43, 795–800. [CrossRef]

265. Hochrath, K.; Stokes, C.S.; Geisel, J.; Pollheimer, M.J.; Fickert, P.; Dooley, S.; Lammert, F. Vitamin D modulates
biliary fibrosis in ABCB4-deficient mice. Hepatol. Int. 2014, 8, 443–452. [CrossRef]

266. Ebadi, M.; Bhanji, R.A.; Mazurak, V.C.; Lytvyak, E.; Mason, A.; Czaja, A.J.; Montano-Loza, A.J. Severe vitamin
D deficiency is a prognostic biomarker in autoimmune hepatitis. Aliment. Pharmacol. Ther. 2019, 49, 173–182.
[CrossRef]

267. Agmon-Levin, N.; Kopilov, R.; Selmi, C.; Nussinovitch, U.; Sánchez-Castañón, M.; López-Hoyos, M.;
Amital, H.; Kivity, S.; Gershwin, E.M.; Shoenfeld, Y. Vitamin D in primary biliary cirrhosis, a plausible
marker of advanced disease. Immunol. Res. 2015, 61, 141–146. [CrossRef]

268. Kempinska-Podhorodecka, A.; Milkiewicz, M.; Jabłonski, D.; Milkiewicz, P.; Wunsch, E. ApaI polymorphism
of vitamin D receptor affects health-related quality of life in patients with primary sclerosing cholangitis.
PLoS ONE 2017, 12, e0176264. [CrossRef]

269. Stokes, C.S.; Krawczyk, M.; Reichel, C.; Lammert, F.; Grünhage, F. Vitamin D deficiency is associated with
mortality in patients with advanced liver cirrhosis. Eur. J. Clin. Investig. 2014, 44, 176–183. [CrossRef]

270. Efe, C.; Kav, T.; Aydin, C.; Cengiz, M.; Imga, N.N.; Purnak, T.; Smyk, D.S.; Torgutalp, M.; Turhan, T.;
Ozenirler, S.; et al. Low serum vitamin D levels are associated with severe histological features and poor
response to therapy in patients with autoimmune hepatitis. Dig. Dis. Sci. 2014, 59, 3035–3042. [CrossRef]

271. Guo, G.Y.; Shi, Y.Q.; Wang, L.; Ren, X.; Han, Z.Y.; Guo, C.C.; Cui, L.N.; Wang, J.B.; Zhu, J.; Wang, N.; et al.
Serum vitamin D level is associated with disease severity and response to ursodeoxycholic acid in primary
biliary cirrhosis. Aliment. Pharmacol. Ther. 2015, 42, 221–230. [CrossRef] [PubMed]

272. Vogel, A.; Strassburg, C.P.; Manns, M.P. Genetic association of vitamin D receptor polymorphisms with
primary biliary cirrhosis and autoimmune hepatitis. Hepatology 2002, 35, 126–131. [CrossRef] [PubMed]

http://dx.doi.org/10.1124/jpet.108.145987
http://www.ncbi.nlm.nih.gov/pubmed/18988769
http://dx.doi.org/10.1074/jbc.M112.427054
http://www.ncbi.nlm.nih.gov/pubmed/23572530
http://dx.doi.org/10.1210/er.2002-0006
http://www.ncbi.nlm.nih.gov/pubmed/12920152
http://dx.doi.org/10.1136/gut.2010.234666
http://dx.doi.org/10.1016/j.bpg.2011.02.005
http://dx.doi.org/10.1152/ajpgi.00132.2013
http://dx.doi.org/10.1111/liv.12122
http://dx.doi.org/10.1677/JOE-08-0241
http://www.ncbi.nlm.nih.gov/pubmed/19036760
http://dx.doi.org/10.1074/jbc.M113.478685
http://www.ncbi.nlm.nih.gov/pubmed/24005672
http://dx.doi.org/10.1016/j.diabres.2014.01.031
http://www.ncbi.nlm.nih.gov/pubmed/24613393
http://dx.doi.org/10.1111/hepr.12015
http://dx.doi.org/10.1007/s12072-014-9548-2
http://dx.doi.org/10.1111/apt.15029
http://dx.doi.org/10.1007/s12026-014-8594-0
http://dx.doi.org/10.1371/journal.pone.0176264
http://dx.doi.org/10.1111/eci.12205
http://dx.doi.org/10.1007/s10620-014-3267-3
http://dx.doi.org/10.1111/apt.13244
http://www.ncbi.nlm.nih.gov/pubmed/25982180
http://dx.doi.org/10.1053/jhep.2002.30084
http://www.ncbi.nlm.nih.gov/pubmed/11786968


Nutrients 2020, 12, 789 30 of 30

273. Fan, L.; Tu, X.; Zhu, Y.; Zhou, L.; Pfeiffer, T.; Feltens, R.; Stoecker, W.; Zhong, R. Genetic association of
vitamin D receptor polymorphisms with autoimmune hepatitis and primary biliary cirrhosis in the Chinese.
J. Gastroenterol. Hepatol. 2005, 20, 249–255. [CrossRef] [PubMed]

274. Springer, J.E.; Cole, D.E.; Rubin, L.A.; Cauch-Dudek, K.; Harewood, L.; Evrovski, J.; Peltekova, V.D.;
Heathcote, E.J. Vitamin D-receptor genotypes as independent genetic predictors of decreased bone mineral
density in primary biliary cirrhosis. Gastroenterology 2000, 118, 145–151. [CrossRef]

275. Kempinska-Podhorodecka, A.; Milkiewicz, M.; Wasik, U.; Ligocka, J.; Zawadzki, M.; Krawczyk, M.;
Milkiewicz, P. Decreased Expression of Vitamin D Receptor Affects an Immune Response in Primary Biliary
Cholangitis via the VDR-miRNA155-SOCS1 Pathway. Int. J. Mol. Sci. 2017, 18, 289. [CrossRef] [PubMed]

276. Czaja, A.J. Epigenetic changes and their implications in autoimmune hepatitis. Eur. J. Clin. Investig. 2018, 48.
[CrossRef]

277. Fisher, L.; Fisher, A. Vitamin D and parathyroid hormone in outpatients with noncholestatic chronic liver
disease. Clin. Gastroenterol. Hepatol. 2007, 5, 513–520. [CrossRef]

278. Bjelakovic, G.; Nikolova, D.; Bjelakovic, M.; Gluud, C. Vitamin D supplementation for chronic liver diseases
in adults. Cochrane Database Syst. Rev. 2017, 11, CD011564. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1440-1746.2005.03532.x
http://www.ncbi.nlm.nih.gov/pubmed/15683428
http://dx.doi.org/10.1016/S0016-5085(00)70423-9
http://dx.doi.org/10.3390/ijms18020289
http://www.ncbi.nlm.nih.gov/pubmed/28146070
http://dx.doi.org/10.1111/eci.12899
http://dx.doi.org/10.1016/j.cgh.2006.10.015
http://dx.doi.org/10.1002/14651858.CD011564.pub2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Vitamin D and Inflammatory Arthritis 
	Rheumatoid Arthritis 
	Spondyloarthritis 

	Vitamin D and Autoimmune Connective Tissue Diseases 
	Systemic Lupus Erythematosus 
	Antiphospholipid Syndrome 

	Vitamin D and Autoimmune Endocrine Diseases 
	Type 1 Diabetes Mellitus 
	Thyroid Autoimmunity 
	Addison’s Disease 
	Autoimmune Polyendocrine Syndromes 

	Vitamin D and Autoimmune Liver Diseases 
	Conclusions 
	References

