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Abstract

Butana and Kenana are two types of zebu cattle found in Sudan. They are unique amongst

African indigenous zebu cattle because of their high milk production. Aiming to understand

their genome structure, we genotyped 25 individuals from each breed using the Illumina

BovineHD Genotyping BeadChip. Genetic structure analysis shows that both breeds have

an admixed genome composed of an even proportion of indicine (0.75 ± 0.03 in Butana,

0.76 ± 0.006 in Kenana) and taurine (0.23 ± 0.009 in Butana, 0.24 ± 0.006 in Kenana) ances-

tries. We also observe a proportion of 0.02 to 0.12 of European taurine ancestry in ten indi-

viduals of Butana that were sampled from cattle herds in Tamboul area suggesting local

crossbreeding with exotic breeds. Signatures of selection analyses (iHS and Rsb) reveal 87

and 61 candidate positive selection regions in Butana and Kenana, respectively. These

regions span genes and quantitative trait loci (QTL) associated with biological pathways that

are important for adaptation to marginal environments (e.g., immunity, reproduction and

heat tolerance). Trypanotolerance QTL are intersecting candidate regions in Kenana cattle

indicating selection pressure acting on them, which might be associated with an unexplored

level of trypanotolerance in this cattle breed. Several dairy traits QTL are overlapping the

identified candidate regions in these two zebu cattle breeds. Our findings underline the

potential to improve dairy production in the semi-arid pastoral areas of Africa through breed-

ing improvement strategy of indigenous local breeds.

Introduction

The history of African cattle started ~5000 BC with the initial migration of taurine (Bos taurus
taurus) cattle to the continent from their center of domestication in the Near East [1, 2]. This

was followed by the introduction of indicine (Bos taurus indicus (zebu)) cattle from their cen-

tre of domestication in the Indus valley [3]. It is widely accepted that the zebu cattle introduc-

tion to Africa took place in two waves, ~2000 BC and 700 AD [4]. The later was considered to
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be the major event that led to the genetic introgression with the native African taurine cattle.

Indeed, all African cattle analyzed to date carry taurine mtDNA [5–7] indicating a male-medi-

ated zebu introgression. This introgression lead to African cattle populations with zebu pheno-

types and an admixed genome composed of both African taurine and zebu ancestries [4, 8, 9].

More than 150 cattle breeds are found in Africa with an estimated population size of about

312 million heads (FAOSTAT 2014; accessed May 02 2017; http://www.fao.org/faostat/en/

#data/QA). The estimated cattle population size in Sudan is about 44 million heads (Annual

report of the Federal Ministry of Animal Resources, Fisheries and Ranges, 2016). These are

mainly of zebu type commonly referred to as Kenana, Butana, Baggara and Nilotic cattle [10].

Butana and Kenana cattle are classified as Large East African zebu cattle [11]. Butana cattle

are kept mainly by nomadic pastoralists (Batahin and Shukria ethnic groups) and agro-pasto-

ralists (Dongola and Shendi ethnic groups). The Kenana cattle have remained largely under

the guardianship of semi-nomadic pastoralists (Fung and White Nile ethnic groups).

The Butana cattle, also referred to as Dar El Reih cattle across the White Nile in the north-

ern part of Darfur and Kordofan, inhabit the Butana plains in central Sudan between the Blue

Nile and Atbara rivers. The Butana plain receives around 300 mm of rainfall annually and has

an eight months dry season. The traditional habitat of the Kenana cattle is the Blue Nile prov-

ince, which is to the east of the confluence of the Blue and White Niles at Khartoum, and

south-east to the Ethiopian border as well as south of Khartoum. The area receives 300–800

mm of rainfall annually with a six months dry season. Some irrigation agricultural schemes,

e.g. the Gezira scheme, are found in the area [11, 12]. Various infectious diseases are prevalent

in Butana and Kenana habitats, such as theileriosis, foot and mouth disease, brucellosis and

trypanosomosis [12, 13].

Phenotypically, the Butana cattle have deep-red coat color while the Kenana spot brown-

red coats as calves which turns to grey between three and six months of age [14]. With a milk

production performance approximating that of their counterparts from the Indian sub-conti-

nent, viz Sahiwal, Red Sindhi, Radhi, Tharparkar, Hariana, Kankrej and Gir, the Butana and

Kenana cattle are considered to be African indigenous zebu types of dairy cattle [11]. Under

farmer management they produce, on average, 538.26 and 598.73 Kg of milk per lactation,

respectively [12]. However, in research stations Butana cattle produce about 1662 kg of milk

per lactation [15], whilst Kenana cattle produce between 1400 to 2100 kg of milk per lactation

[14]. The average length of lactation for the Butana is 268.17 days [15] while that of Kenana

ranges between 198 to 257 days [14]. Although these two cattle breeds show high potential

dairy production, genetic studies to improve their productivity are scarce. Recently, a study in

Butana cattle identified haplotypes in the milk protein casein genes cluster on BTA 6, which

might be associated with milk protein percentage [16].

The investigation of genome-wide signatures of selection for production or adaptive traits

have now been undertaken for several cattle breeds using either genome-wide single nucleo-

tide polymorphism (SNP) and/or full genome sequence data, e.g., [17–20]. Candidate regions

with signatures of positive selection have been identified in the genomes of commercial breeds,

such as Holstein, Angus, Charolais and Fleckvieh [20–22]. These sweep regions span genes,

e.g. DGAT1 and GHR [22, 23], and quantitative trait loci (QTL) associated with productivity

traits, such as milk yield and composition [21], and muscle development gene (MSTN) [22].

The genomes of indigenous cattle populations from tropical regions have also been character-

ized (e.g. East African Shorthorn Zebu [18, 19], West and East African [24, 25] and the Carib-

bean (Creole) cattle [26]), for candidate signatures of positive selection using genome-wide

SNP chips as well as full genome sequence data. These regions span genes associated with dif-

ferent biological traits, such as immunity, reproduction and heat tolerance. Unlike the com-

mercial breeds, whose phenotypic and production traits are mainly influenced by human-
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mediated selection, natural rather than human selection seems to have shaped the genome of

these indigenous cattle.

In this study, we assessed the genomic profile of two indigenous populations of East African

zebu-type dairy cattle, Butana and Kenana, using genotype data generated using the BovineHD

Genotyping BeadChip [27]. We explored their genomes for signatures of positive selection

using intra- and inter-population approaches. As observed in other African cattle populations,

our analysis revealed the genomes of the two populations to be an admixture of indicine and

taurine ancestries. We also identified several candidate selection sweep regions that spanned

genes associated with different biological pathways, such as reproduction, heat stress and coat

color, and QTL linked to different milk-production traits and trypanotolerance. These results

may help in improving the designing of breeding programs in indigenous African cattle breeds

and in particular in crossbreeding or within-breed selection programmes for the Butana and

Kenana breeds.

Material and methods

Studied samples, SNP genotyping and quality control

Genomic DNA was extracted from whole blood, spotted on FTA1 cards (Whatman Inc., New

Jersey, USA), from 25 samples each of Butana (BUT) and Kenana (KEN) using an in-house

protocol. Standard techniques were used to collect blood samples. The procedure was reviewed

and approved by the University of Khartoum, Sudan. Informed consent was sought from ani-

mal owners and research stations. Eleven samples of Butana were collected from Atbara Live-

stock Research Station, while 14 were sampled from farmer’s herds in Tamboul area. The

Kenana samples were collected from farmers herds in Rabak area “S1 Table and S1 Fig”. All

the samples were genotyped for 786,799 SNPs using the Illumina BovineHD Genotyping Bead-

Chip [27]. SNP genotype data generated using the same chip were included in this study from

92 non-European introgressed small East African shorthorn zebu (EASZ) from [19] and 59

Holstein-Friesian (HOL), 32 Jersey (JER), 24 N’Dama (NDM), 35 Nelore (NEL) and 18 Sheko

(SHK) cattle were provided by Dr Tad Sonstegard (USDA-ARS, Maryland) and previously

described in [19].

Quality control (QC) filtering was conducted using the check.marker function of the GenA-

BEL package [28] for R version 2.15.1 [29] on 741,959 autosomal SNPs with known mapping

positions on the UMD3.1 bovine reference genome [30] that did not conflict with those on the

Btau4.2 genome assembly (957 SNPs). Minor allele frequency (MAF) of less than 1% and SNP

genotyping call rate of 95% were set as two filtering criteria that resulted in pruning out 24,424

and 22,099 SNPs, respectively. These included 8,465 SNPs that failed both criteria, leaving

703,901 SNPs for downstream analyses. Low genotyping call rate (< 95%) and high identity by

state (IBS� 95%) were also set as two filtering criteria. Two Nelore samples failed the IBS cri-

teria and the one with the lower genotyping call rate was excluded from analysis.

Analysis of genetic relationships and structure

Principal component analysis (PCA) and admixture analysis were conducted to assess the

within as well as the between population genetic differentiation and admixture. PCA was per-

formed for all the samples dataset, as well as for Butana and Kenana only. The prcomp function

implemented in GenABEL package for R version 2.15.1 was used to perform the PCA.

Admixture analysis using ADMIXTURE 1.23 software [31] with cross-validation and 200

bootstraps for (1� K� 8) was conducted on the whole dataset to determine the European tau-

rine, Asian zebu and African taurine ancestries at genome-wide level and for each autosome

separately. The optimal number of clusters was determined following [32] by calculating Delta
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K (ΔK) for each K value. The output files were graphically displayed by the ggplot2 package

[33] for R software.

Analysis of signatures of positive selection

Two Extended Haplotype Homozygosity (EHH) based statistics, Rsb and integrated haplotype

score (iHS), were used to assess genome-wide signatures of positive selection in Butana and

Kenana cattle. Separate inter-population Rsb [34] analyses were performed between each of

the Butana and Kenana cattle breeds and the European taurine (HOL and JER), EASZ, NDM,

NEL and SHK cattle populations, respectively using the rehh package [35] of R version 2.15.1.

The integrated site-specific EHH (EHHS) of each SNP for each population (iES) was calcu-

lated. The natural logarithm of the ratio between iESpop1 and iESpop2 was used to calculate the

unstandardized Rsb values which were then standard-transformed based on the calculated

median and standard deviation values. As the standardized Rsb values were normally distrib-

uted “S2A Fig”, one-tailed Z-tests were applied to identify statistically significant SNPs under

positive selection in Butana or Kenana populations (positive Rsb values). One-sided P-values

were derived as–log10(1-F(Rsb)), where F(Rsb) represents the Gaussian cumulative distribu-

tion function. A value of 4, equivalent to P-value = 0.0001, was used as a significant threshold.

Intra-population iHS analyses [36] were conducted separately for Butana and Kenana cattle

populations, using the rehh package of R version 2.15.1. The integrated EHH of the reference

and alternative alleles (iHHref and iHHalt) were calculated for each SNP with a within-popula-

tion MAF� 5%. The natural log of the ratio between iHHref and iHHalt was used to derive the

iHS values. As the standardized iHS values were also normally distributed “S2B Fig”, two-tailed

Z-tests were applied to identify statistically significant SNPs under positive selection. Two-

sided P-values were derived as–log10(1–2|(iHS)-0.5|), where F(iHS) represents the Gaussian

cumulative distribution function. A value of 4, equivalent to P-value = 0.0001, was used to

define the significant threshold. A candidate selection sweep region was defined if five conse-

cutive SNPs with a maximum inter-marker distance of 500 kb passed the significance thresh-

old. This inter-marker distance approximates the extent of linkage disequilibrium (LD) in

different taurine and zebu cattle breeds [37] and has been used previously [19]. Moreover,

beyond this genomic distance the mean pairwise LD statistic (r2) estimated using the r2fast
function of the GenABEL package for the Butana and Kenana cattle drops below 0.1 “S3 Fig”.

For both EHH based statistics, haplotypes were constructed through phasing the genotyped

SNPs using fastPHASE version 1.4 [38]. For this, the K10 and T10 criteria’s applied by [19, 39]

were used.

Functional characterization of the candidate regions

Candidate genes were considered if their boundaries fell within 25 kb from the most signifi-

cant SNP in the candidate regions. A list of the protein-coding and RNA genes found within

the candidate regions were also retrieved from the Ensembl Genes 81 database, based on the

UMD3.1 bovine reference genome, using the BioMart tool [40]. All the identified genes were

processed using the functional annotation tool implemented in DAVID Bioinformatics

resources 6.7 [41] to determine enriched functional terms. An enrichment score of 1.3, which

is equivalent to the Fisher exact test P-value of 0.05, was used as a threshold to define the signif-

icantly enriched functional terms in comparison to the whole bovine reference genome

background.

The bovine QTL that have been mapped on the bovine Btau 4.0 reference genome assembly

were downloaded from the cattle QTL database (http://www.animalgenome.org/cgi-bin/

QTLdb/BT/index). The QTL genome coordinates were then re-mapped on the bovine UMD

Signatures of selection in Butana and Kenana cattle
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3.1 reference genome assembly using the NCBI genome remapping online service (https://

www.ncbi.nlm.nih.gov/genome/tools/remap). The intersectBed function of the BedTools soft-

ware [42] was used to overlap these QTL with the identified candidate regions.

Results

Genetic relationship between the cattle populations

The PCA and admixture analyses were used to assess genetic admixture and structure between

the study populations and within the Butana and Kenana cattle. The first (PC1) and second

(PC2) principal components reveals the previously described triangle-like 2-dimensional

global organization of cattle genetic diversity “Fig 1A” [26]. The PC1, which explains 23.56%

of the total variation, separates the indicine cattle from their taurine (African (NDM) and

European (HOL, JER)) counterparts. The PC2, which explains 5.06% of the total variation, dif-

ferentiates the African taurine (NDM) from the European taurine (JER, HOL). This PC also

appears to separate the Asian indicine (NEL) from their African counterparts (EASZ, BUT,

KEN). Generally, all the cattle found in East Africa (EASZ, SHK, KEN and BUT) are closely

clustered together and occur at an intermediate position with respect to the location of the

Asian zebu (NEL) and the African taurine (NDM) cattle. We also performed a separate PCA

for Butana and Kenana cattle “Fig 1B”. Based on the clustering pattern, it reveals a lower level

of genetic homogeneity in the Butana compared to the Kenana cattle. The latter clusters closely

together while the former spreads out across the PCA plot with the highest variation being

observed in Butana cattle from Tamboul, which are separated from the samples from Atbara

Research station.

Fig 1. PCA plots showing the genetic relationship between cattle breeds. (A) all cattle breeds and (B) Butana and Kenana cattle.

https://doi.org/10.1371/journal.pone.0190446.g001
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The ΔK approach indicates that the most optimal number of genetic clusters in the overall

dataset is K = 2 “S4 Fig”. This level of clustering corresponds to the two ancestries defining the

global cattle populations; indicine and taurine “Fig 2”. At K = 3, the African taurine differenti-

ates from its European counterparts, with a minor level of shared background in Holstein-

Friesian and Jersey animals “Fig 2”. Moreover, the genomes of Butana and Kenana are com-

posed of indicine and taurine backgrounds “Fig 2”. The average proportions of these two back-

grounds are in Butana 0.75 ± 0.03 and 0.23 ± 0.01, respectively. For Kenana, they are

0.76 ± 0.006 and 0.24 ± 0.006, respectively. European taurine genetic proportions, ranging

from 0.02 to 0.12, can also be observed in ten Butana cattle sampled from farmers herds in

Tamboul “Fig 2”.

At K = 4, the Jersey cattle separate from the Holstein-Friesian with a minor and variable

level of common ancestry “Fig 2”. From K = 5 to K = 8, a separate African specific genome

background can be identified in the cattle populations from East Africa (EASZ, SHK, KEN

and BUT) as well as a substantial indicine ancestry and a lower level of taurine ancestry shared

with the N’Dama cattle “S5 Fig”.

Candidate regions under positive selection in Butana and Kenana cattle

The intra-population iHS analyses reveal eight and two candidate regions in Butana and

Kenana cattle, respectively “Fig 3 and S2 Table”. The eight regions in Butana are located on

BTA 4 (five regions), BTA 5 (two regions), and BTA 21 (one region). The two regions observe

in Kenana were on BTA 6 and BTA 7. The Rsb analyses of Butana cattle show 7, 5,42, 21 and 4

candidate regions across 20 autosomes against European taurine (HOL and JER), NDM,

EASZ, SHK and NEL cattle populations, respectively “Fig 4 and S2 Table”. The Rsb analyses

between Kenana cattle and the five groups of non-Sudanese cattle, identify 6, 8, 26, 14 and 5

candidate regions across 17 autosomes “Fig 5 and S2 Table”.

None of the candidate regions identified by the iHS analysis in Butana cattle overlaps with

those identified in Kenana cattle. However, 20 regions identified by the Rsb analysis overlap

between Butana and Kenana populations. These regions include nine from the comparison

with EASZ, four with European taurine, one with N’Dama, four with Sheko and two with

Nelore “S3 Table”. A total of nine candidate regions identified by the different Rsb analyses

overlap with the ones identified by the iHS analyses, i.e. five in Butana and four in Kenana “S4

Table”.

Overlap with candidate regions under positive selection in other cattle

populations

Four and 28 of the Butana candidate regions, identified by iHS and Rsb analyses, respectively,

have been identified in other studies. Twenty-five of the Rsb candidate regions, but none of

iHS candidate regions, in Kenana cattle have been identified in other studies. These include

indigenous tropical-adapted cattle such as Creole [26], Gir [43], West African Borgou [44],

EASZ [18] and Ankole [25], and commercial beef and dairy cattle, e.g Holstein [21], Jersey,

Angus, Charolais, Hereford and Murray Grey [22, 45] “S2 Table”.

Identification of genes and QTL within the candidate regions

A total of 366 and 245 genes are found in the candidate regions identified in Butana and

Kenana cattle, respectively “S5 and S6 Tables”. The functional annotation analysis conducted

on these genes identifies 32 and 14 functional term clusters in Butana and Kenana, respectively

“S7 Table”. A total of five and three functional term clusters for Butana and Kenana cattle,

Signatures of selection in Butana and Kenana cattle
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respectively, are significantly enriched (enrichment score > 1.3), relative to the bovine genome

“Table 1”.

Fig 2. ADMIXTURE bar plots of genomic membership proportions from K = 2 to K = 4. Each sample is represented by a vertical line

divided into K colours. HOL: Holstein, JER: Jersey, NDM: N’Dama, NEL: Nelore, SHK: Sheko, KEN: Kenana, BUT: Butana.

https://doi.org/10.1371/journal.pone.0190446.g002

Signatures of selection in Butana and Kenana cattle

PLOS ONE | https://doi.org/10.1371/journal.pone.0190446 January 4, 2018 7 / 20

https://doi.org/10.1371/journal.pone.0190446.g002
https://doi.org/10.1371/journal.pone.0190446


Based on the 25 kb interval distance up- and down-stream of the most significant SNPs in

the candidate regions (see materials and methods section), 71 and 51 genes “S8 and S9 Tables”

were considered as probable candidates under selection in Butana and Kenana, respectively.

Functional annotation analysis shows that these genes are associated with different biological

functions, including olfactory receptor activity, component of plasma membrane and kinase

activity “S10 Table”. A total of 25 candidate regions (nine in Butana and 16 in Kenana) did not

span any genes (i.e. gene deserts) based on the UMD 3.1 reference genome assembly “S11

Table”.

A total of 778 and 702 QTL intersect with the candidate regions identified in Butana and

Kenana, respectively “S12 Table”. These QTLs are associated with several biological functions,

such as immunity (e.g. tick resistance), reproduction (e.g. ovulation rate and gestation length)

and dairy production traits (e.g. milk protein percentage and milk yield). Five of the QTLs

controlling trypanotolerance, which were identified in a cross between the trypanotolerant

Fig 3. Manhattan plots of genome-wide iHS analyses on (A) Butana and (B) Kenana cattle. two-tailed Z-test is applied and the

significance threshold is set at–log10 (two-tailed P-value) = 4.

https://doi.org/10.1371/journal.pone.0190446.g003
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West African N’Dama and the susceptible Kenyan Boran cattle [46], overlapped candidate

regions identified in the Kenana cattle “S13 Table”. None of the trypanotolerant reported QTL

[46] overlaps with candidate signature of selection in Butana.

Discussion

Butana and Kenana genomic structure

In this study, we analyzed two breeds of indigenous East African zebu dairy cattle from Sudan

(Butana and Kenana), using genome-wide high density SNP genotype data, to assess their

genomic structure and identify possible candidate signatures of positive selection. Based on

prior knowledge regarding the origins of cattle breeds (Europe, Africa and Asia), and previous

findings of the presence of three genetic backgrounds in cattle breeds [4, 8, 9, 47], we believe

that K = 3, rather than K = 2 as suggested by the ΔK approach, represents the optimal number

of genetic clusters explaining the greatest variation in the dataset. The latter result (K = 2)

might be due to the overwhelming effect of the ancient divergence between indicine and tau-

rine cattle relative to the hierarchical relationships between the different cattle populations

examined here [8, 48]. Interestingly, fine-scale sub-structure between population are revealed

in our study at values of K� 4, suggesting a common genetic background unique to the East

African cattle population examined here. The origin of this background (e.g. African specific

or of Asian origin) remains at this stage speculative.

As already known for other African zebu cattle [8, 9], the PCA and ADMIXTURE analyses

revealed the genomes of the Butana and Kenana cattle to be an admixture of indicine and Afri-

can taurine ancestries. Similar findings were reported previously on these two cattle breeds

using autosomal microsatellite markers [49]. It is now well established that the first domestic

cattle on the African continent were of taurine type. Humped cattle, in Africa, are of more

recent origin following a likely process of male-mediated zebu introgression into African tau-

rine cattle [50] with all African cattle analyzed so far carrying taurine mtDNA haplotypes [5, 7,

51].

The PCA plot on Butana and Kenana cattle indicates a genetic distinction between the

Butana from farmers in Tamboul area and the Butana from the Atbara Livestock Research Sta-

tion, with the former showing higher genetic heterogeneity. This may be explained by higher

level of inbreeding in cattle from the research station, where a small number of bulls are used

for mating, in comparison to cattle from farmers’ stocks, where random mating with larger

number of bulls is usually followed. Moreover, a signature of European taurine introgression

was observed in ten individuals of Butana, which were sampled from farmers’ herds in Tam-

boul area. This may be the outcome of individual farmer past efforts of crossbreeding with

European dairy breeds to increase milk production.

Signatures of selection in Butana and Kenana

We investigated signatures of positive selection in the genomes of Butana and Kenana cattle

using two approaches (iHS and Rsb). A total of 87 and 61 candidate genomic regions under

positive selection were identified in Butana and Kenana cattle, respectively. These candidate

regions harbor genes, and overlap with QTL, associated with different biological traits, such as

milk-production, immunity, thermotolerance, coat color and reproduction.

Fig 4. Manhattan plots of genome-wide autosomal Rsb analyses of Butana cattle. (A) European taurine (Holstein-Friesian and Jersey),

(B) African taurine (N’Dama), (C) East African shorthorn zebu, (D) Sheko, and (E) Asian zebu (Nelore). One-tailed Z-test is applied and the

significance threshold is set at–log10 (one-tailed P-value) = 4.

https://doi.org/10.1371/journal.pone.0190446.g004
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About 38% (n = 57) of the candidate signatures of selection overlap with candidate regions

identified previously in other cattle populations. Moreover, 20 candidate regions overlap

between the five Rsb comparative analyses, and nine between Rsb and iHS analyses. These

observations support the role of selection pressures, rather than bottlenecks, migration and

introgression on these signals [52], considering the different demographic history of the popu-

lations examined here. The lower number of regions that overlapped between the iHS and Rsb
analyses can be due to the weakness of the iHS approach to detect haplotypes approaching fixa-

tion. Moreover, Rsb cannot detect signatures of selection if the same region is under selection

in the two populations compared [53].

The Butana cattle show a higher number of iHS candidate regions (8 regions) than Kenana

cattle (2 regions). This might be attributed to the higher heterogeneity and the recent Euro-

pean taurine introgression in Butana cattle, which may lead to the excess of haplotypes under

selection with intermediate frequencies.

Milk production traits

Lactase persistence is present among the people of Africa and in particular within the pastoral

communities of Sudan [54–56], where milk represents a major source of nutrition. However,

to which extent this might have shaped, through a process of co-evolution, the genetic make-

up of some of the indigenous African cattle breeds remains unknown.

A total of 30 candidate regions of positive selection, 15 each in Butana and Kenana, overlap

with regions under selection identified in commercial dairy cattle, e.g. Holstein [21] and Jersey

[22]. However, none of the well-known genes associated with milk-production, such as

DGAT1, GHR and ABCG2 [57] are intersecting with any of the candidate regions of positive

selection identified in these two indigenous African dairy cattle breeds.

Evidences of selection for dairy production trait in Kenana and Butana requires further

investigation. In particular, the following explanation in relation to possible selection for milk

production trait in Kenana and Butana following our result may be proposed. Selection pres-

sures may be acting on other genes in the regions that are associated with milk production in

Butana and Kenana cattle compared to dairy taurine breed, milk production traits may be

under the genetic control of regulatory sequences or genes with pleiotropic effects and/or in

linkage disequilibrium with other genes influencing milk production may be under selection

Fig 5. Manhattan plots of genome-wide autosomal Rsb analyses of Kenana cattle. (A) European taurine (Holstein-Friesian and Jersey),

(B) African taurine (N’Dama), (C) East African shorthorn zebu, (D) Sheko and (E) Asian zebu (Nelore). One-tailed Z-test is applied and the

significance threshold is set at–log10 (one-tailed P-value) = 4.

https://doi.org/10.1371/journal.pone.0190446.g005

Table 1. Significantly enriched functional term clusters and their enrichment scores following DAVID analysis for genes identified in Butana and

Kenana candidate regions.

Butana Kenana

Functional cluster Enrichment score* Functional cluster Enrichment score*

Olfactory receptor activity 7.37 Peptidase inhibitor activity 2.09

Lipid metabolism 5.25 Olfactory receptor activity 5.12

Peptidase activity 3.16 Serum Ablumin 3.27

Blood coagulation 1.79

Lipoxygense activity 1.74

*Enrichment score following DAVID analysis (a score equals to 1.3, equivalent to Fisher exact test P-value = 0.05, was used as a significant threshold).

https://doi.org/10.1371/journal.pone.0190446.t001
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in the candidate regions. Further studies are necessary to ascertain this (e.g transcriptome

analysis in relation to milk production records [58]).

Acquired and innate immunity

Due to the widespread presence of infectious and parasitic diseases in the Butana and Kenana

areas [12, 13], immunity-related genes and QTL are expected to be a target of selection in

these two cattle breeds. Interleukin-1 receptor-associated kinase 3 (IRAK) is found in a candi-

date region on BTA 5 in both Butana and Kenana cattle. This gene plays a role in controlling

the inflammation process [59]. Another critical gene within this functional category is inter-

leukin 17B (IL17B). This gene, which occurs within a Kenana candidate region on BTA 7, is a

member of a cytokine family involved in autoimmunity [60].

Moreover, several immunological-related QTL, such as tick resistance and white blood cell

count, are found within the identified candidate regions in Butana and Kenana. The presence

of a trypanotolerance QTL overlapping candidate regions for positive selection in Kenana cat-

tle is the first documented evidence that the breed may display some trypanotolerance follow-

ing environmental pressures, as trypanosomosis is widespread in Sudan [13]. These QTL are

associated with different traits, such as decrease in percentage of packed cell volume, parasitae-

mia and the mean body weight following infection. A degree of trypanotolerance has been

reported in other East African cattle breeds (e.g. Orma Boran, Sheko and Mursi cattle) [61–

63], this result is therefore not unexpected. The combination of the dairy characteristics of

Kenana and its likely trypanotolerance makes it unique so far amongst African indigenous

cattle.

Thermotolerance

Butana and Kenana cattle inhabit a hot environment (mean annual temperature in Atbara is

30˚C, Tamboul and Rabak is 28.6˚C (http://www.sudan.climatemps.com/) with a long dry sea-

son lasting for 6–8 months [12]. Genes eliciting response to adaptation to heat stress may be

therefore the targets for selection in the two populations. Heat shock transcription factor fam-

ily member 5 (HSF5) was found in a candidate region in Butana cattle (BTA 19: 9,525,262–

9,783,489). Like other HSF family members, HSF5 binds to DNA elements upstream to heat-

inducible genes (e.g. heat shock proteins) to activate their expression [64]. Under thermal

stress, these heat-inducible genes maintain protein folding and structures [65, 66].

Coat color

Butana cattle are characterized by a deep red coat color while Kenana cattle are born with red

coats, which turn grey upon maturity [11, 14]. One of the genes identified in a candidate

region in Butana cattle (BTA 5: 57,508,578–57,945,083), which might be linked to this phe-

nomenon, is pre-melanosome (PMEL). This gene is involved in the synthesis of eumelanin

and may therefore regulate coat color [67, 68]. PMEL has also been found in a candidate region

under selection in the West African Borgou [44] and small East African shorthorn zebu [18]

cattle.

Reproduction and fertility

As for the East African shorthorn zebu and other African zebu cattle previously studied [18,

19, 44], we identified several signatures of selection including genes associated with reproduc-

tion and fertility. Steroid 5-alpha reductase 3 (SRD5A3) is a gene that is associated with the

development of male reproductive system. This gene, which was found in a candidate region
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in both Butana and Kenana cattle (BTA 6: 72,468,365–72,518,226), is involved in the conver-

sion of testosterone to dihydrotestosterone to maintain prostate and external genitalia differ-

entiation [69]. Alpha-fetoprotein (AFP) is another gene that was present in a candidate region

(BTA 6: 90,258,976–90,280,522) in Kenana cattle. Experiments using AFP knockout mice

showed that it plays a role in ovulation [70].

Also, following functional terms clustering analysis, several olfactory receptor genes were

significantly enriched in the Butana and Kenana candidate regions relative to the whole

genome. Given their expression in human testes and more specifically in mature spermatozoa,

olfactory receptor gene families have been linked to reproduction performance [71–73]. These

receptors interact with chemo-attractants that are secreted by oocyte-cumulus cell complexes

to direct spermatozoa towards the oocyte [73–75]. Moreover, olfactory receptors in male nasal

cavity are involved in detecting pheromones released from females during oestrus [76, 77].

Gene desert regions

The identification of 25 candidate regions in Butana and Kenana cattle with no annotated

genes requires further investigations. These regions may carry unannotated regulatory ele-

ments, e.g. long non-coding RNA (lnRNA), or coding genes, which can be validated by RNA

sequencing analysis.

Conclusion

By using high density genome-wide SNP genotype data, we reported here the indicine–taurine

genomic admixture of two indigenous East African zebu dairy cattle, Butana and Kenana,

from Sudan. The genomes of these two cattle breeds are targeted by different selection pres-

sures associated with immunity, thermotolerance and coat color. Our findings open avenues

aimed at identifying causative variants that confer adaptation of indigenous cattle to semi-arid

environments. Furthermore, our findings may help the designing of foundation breeding pro-

grammes to enhance the performance of the Butana and Kenana cattle in their production

environments through within-breed selection as well as crossbreeding approaches, in addition

to improving management.
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