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Abstract
Decision-making involves a tradeoff between pressures for caution and urgency. Previous research has investigated how
well humans optimize this tradeoff, and mostly concluded that people adopt a sub-optimal strategy that over-emphasizes
caution. This emphasis reduces how many decisions can be made in a fixed time, which reduces the “reward rate”. However,
the strategy that is optimal depends critically on the timing properties of the experiment design: the slower the rate of
decision opportunities, the more cautious the optimal strategy. Previous studies have almost uniformly adopted very fast
designs, which favor very urgent decision-making. This raises the possibility that previous findings—that humans adopt
strategies that are too cautious—could either be ascribed to human caution, or to the experiments’ design. To test this, we
used a slowed-down decision-making task in which the optimal strategy was quite cautious. With this task, and in contrast
to previous findings, the average strategy adopted across participants was very close to optimal, with about equally many
participants adopting too-cautious as too-urgent strategies. Our findings suggest that task design can play a role in inferences
about optimality, and that previous conclusions regarding human sub-optimality are conditional on the task settings. This
limits claims about human optimality that can be supported by the available evidence.
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Introduction

Substantial effort has been invested in understanding the
optimality of perceptual decision-making (see Rahnev
and Denison, 2018 for a review). These investigations
have examined decisions about consumer choice (Tversky,
1972), the reported confidence for decisions (Baranski &
Petrusic, 1994), the sequence of presented stimuli (Cheadle
et al., 2014), and even life-or-death situations (Tversky &
Kahneman, 1981). One kind of optimality that is relevant for
speeded decision-making focuses on “reward rate”, which
is the number of correct decisions that are made per unit
of time (Drugowitsch et al., 2012; Bogacz et al., 2006;
Evans & Brown, 2017; Starns & Ratcliff, 2012; Simen et al.,
2009; Balci et al., 2011; Starns & Ratcliff 2010). Optimizing
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reward rate implies making the greatest number of correct
choices in the available time, and this requires a precise
balance between caution and urgency. Making decisions too
cautiously will result in a sub-optimal reward rate, as the
rewards will take too long to obtain. Making decisions too
urgently will also result in suboptimal reward rate, as the
increased errors associated with urgency mean that fewer
rewards can be obtained.

Previous work has shown that animals are sometimes
able to identify the optimal policy to maximize reward rate
(Chittka et al., 2003; Uchida & Mainen, 2003; Hawkins
et al., 2015). In contrast, humans mostly appear not to
maximize reward rate, instead adopting too-cautious strate-
gies (Starns & Ratcliff, 2012; Evans & Brown, 2017;
Bogacz et al., 2010; Starns & Ratcliff, 2010). Some studies
have found humans to adopt strategies that are only slightly
sub-optimal – but still too cautious – usually after train-
ing or other assistance (Simen et al., 2009; Balci et al.,
2011; Evans & Brown, 2017; Starns & Ratcliff, 2010). The
conclusion that participants, on average, prefer an overly
cautious approach has spurred the development of theo-
ries to account for this finding. For example, Bogacz et al.
(2006) investigated the asymmetry of rewards, and found
that too-cautious responding usually presented a lower
risk than too-urgent responding. Maddox and Bohil (1998)
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investigated whether participants might focus on a mix-
ture of error minimization and reward rate maximization,
rather than just the latter. Evans and Brown (2017) tested
the theory that participants were simply unaware of the
improvements in reward rate that could come from more
urgent strategies.

We investigate a different type of explanation for the
common finding of humans being sub-optimally cautious:
that previous findings may have been biased by their
task design. Most previous studies have shared a common
methodological element: short delays from one decision
to the next (see Table 1). Although this may seem like a
minor methodological detail, the between-trial timings have
a substantial impact on which strategy is optimal (Simen
et al., 2009), and the behavior of humans (Jentzsch &
Dudschig, 2009; Krueger et al., 2017). At the extreme limit,
as the time between decisions tends towards zero, more and
more urgent decisions with less and less caution will lead to
more and more rewards per unit time, even if the decisions
were no more accurate than chance. On the other hand, if the
time between decisions is very long, the extra decision time
added by increased caution represents a smaller relative cost
(see also Eq. 1). We hypothesize that previous conclusions
of humans being sub-optimally cautious may have been the
result of the short delays requiring a strategy more urgent
than participants could, or were willing to, implement.

Our hypothesis is consistent with some of the findings of
two previous reward rate studies: Simen et al. (2009), who
directly investigated the effects of the experiment’s tim-
ing properties on reward rate optimality, and Bogacz et al.
(2010), who manipulated the experiment’s timing proper-
ties, but mostly made general inferences about whether or
not participants performed the task in an overall optimal
manner. One of the experiments reported by Simen et al.
(2009) manipulated the response to stimulus interval (RSI),
which is the time delay between a participant making a
response for one decision and the onset of the next trial.
Using group-averaged data, Simen et al. found that with
long RSIs decision-making was close to optimal; but still,
on average, more cautious, and not more urgent. We aim
to take this result further, and identify whether human
decision-making can be optimal on average, or even overly
urgent, if the task was set up appropriately. We design our
task to push the optimal strategy towards caution even more
than that of Simen et al., by differentially adding delays to
the RSI following correct vs. incorrect decisions; a manip-
ulation that was also used by Bogacz et al. (2010). Impor-
tantly, extra delays following incorrect decisions reward
cautious decision-making Bogacz et al., and unlike stan-
dard RSI manipulations, do not force participants to wait
after every trial. This allowed us to extend the incorrect
decision RSI 30% longer than the longest used in the pre-
vious optimality studies (Table 1), without greatly reducing

the number of trials that could be completed in a short
experimental session, or risking participant disengagement
from consistently long RSIs. If the conclusions of previous
work are correct, and humans prefer too-cautious strategies,
then we would expect to once again observe too-cautious
decision-making in our experiment. On the other hand, if
our hypothesis is correct and the design of previous tasks
created an optimal strategy that was too urgent for humans
to achieve, then it is possible that decision-making in our
task with additional delays for error responses could be opti-
mal, or even too urgent. We address the statistical inference
side of this question using state-of-the-art methods, using
Bayesian hierarchical methods (as with Evans and Brown
2017), and a novel comparison between optimal and non-
optimal models via Bayes factors. These inferences have
been made possible by recent advances in the estimation of
marginal likelihoods for cognitive models (Evans & Annis,
2018).

Method

Participants

Eighty psychology students from the University of New-
castle completed the experiment online, which is a larger
sample (per condition) than most studies in the literature
have used (e.g., Bogacz et al., 2006; Simen et al., 2009;
Starns and Ratcliff, 2012; Evans and Brown, 2017). Fol-
lowing Evans and Brown (2017), we removed data from
one participant who failed to comply with the task instruc-
tions: that participant answered fewer than 70% of decisions
correctly.

Task and procedure

Participants made perceptual decisions about the motion
direction of a random dot kinematogram, implemented
with the “white noise” algorithm (Pilly & Seitz, 2009).
Participants were required to decide whether a cloud of 40
white dots on a black background was moving towards the
top-left (‘z’ key) or top-right (‘/’ key) of the screen, with
the actually direction being randomly presented on each
trial. The dots remained within a circular area, 150 pixels
in diameter, in the center of the screen. Any dot leaving
this area was randomly replaced within it. On each frame
(66.7 ms), eight dots (20%) were randomly chosen to move√
18 pixels in the coherent direction for the current trial, and

all other dots were randomly replaced within the circular
area. After each correct decision, participants were shown
the word “CORRECT” for 400 ms. After each incorrect
decision, they were shown the word “INCORRECT” for
2200 ms. Any responses that were too fast to have been
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Table 1 Properties and findings of key studies of reward rate optimality

Study RSIc (sec) RSIe (sec) Difficulties Relevant findings

Simen et al. (2009) 0.5/1/2a 0.5/1/2a Single Ps were approximately optimal

for the longest RSI, and too

cautious for shorter RSIs.

Bogacz et al. (2010) 0.5/1/2/0.5b 0.5/1/2/2b Bothc ∼30% of Ps were close to

optimality, though others were

too cautious. Ps were closer

to optimality with larger RSI.

Starns and Ratcliff (2010) 0.25-0.75d 0.55-1.05d Multiple Young Ps were closer to optimal

than older Ps. Young Ps were

close to optimal, though overall,

both groups were too cautious.

Balci et al. (2011) 1e 1e Multiple Ps were approximately optimal

in easier conditions, though too

cautious in harder conditions.

Starns and Ratcliff (2012) 0.4 0.4 Multiple Young Ps were too cautious in

most conditions, old Ps were

always too cautious.

Evans and Brown (2017) 0.4 0.9 Single Ps were close to optimal with

guidance, though were still too

cautious, and this over-caution

was greater without guidance.

Current Study 0.8 2.6 Single Ps were optimal on average,

with approximately equal

numbers of Ps being too

cautious and too urgent.

a
RSI differed between blocks, and were random between trials according to a normal distribution with a standard deviation of 0.1 s;

b
These experiments used an error timeout in the final condition;

c
Exp1 used a single difficulty, whereas Exp2 used multiple difficulties;

d
Timings were variables between different experiments;

e
RSI differed between blocks, and were random between trials according to an exponential distribution

All of these have, at least to some extent, concluded that participants were more cautious than optimal on average. We include our study in the
final row as a comparison point, which found participants to be optimal on average. For each study, the columns show: the response-to-stimulus
interval (RSI) following correct decisions (RSIc), the RSI following incorrect decisions (RSIe), whether the study used a single level of decision
difficulty or mixed multiple levels of difficulty, and lastly, the relevant findings to our arguments

from actual decision-making processes (< 100 ms) resulted
in a 2500-ms timeout, with “TOO FAST” appearing on
the screen. After the feedback display, a blank screen was
shown for 400 ms, after which the next trial commenced.

Participants completed 20 blocks of 60 trials each.
Although previous research has commonly focused on
“fixed-time” paradigms, where each block runs for a fixed
amount of time and participants attempt to maximize their
correct responses, Evans and Brown (2017) found that
participants came closer to reward rate optimality in “fixed-
trial” conditions, when given instructions that made the
explicit goal to maximize reward rate. Following this, we

instructed participants that each correct response that they
made was worth one point, and that their goal in the
experiment was to obtain as many points in each 1-min
period of time (i.e., maximizing their reward rate).

Design and data analysis

We excluded trials with responses that were considered to
be too fast to have come from decision-making processes
(< 100 ms), or so slow that people likely had lost attention
during the trial (> 5000 ms). These exclusions eliminated
approximately 0.3% of the data. Reward rate is the expected
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number of correct decisions per unit time, which can be
calculated by Eq. 1:

PC

MRT + IT I + FDT + (1 − PC) ∗ ET
(1)

Here PC is average accuracy, MRT is mean response
time, IT I is the blank screen time after feedback (in our
experiment, 400 ms), FDT is the feedback display time com-
mon to all trials (i.e., 400 ms), and ET is the error timeout
added to FDT following incorrect trials (i.e., 1800 ms).

We used the diffusion model (Ratcliff, 1978) to estimate
changes in reward rate for different potential speed–accuracy
tradeoff strategies. The diffusion model is part of a general
class of models known as evidence accumulation models
(EAM; see Ratcliff, Smith, Brown, and McKoon, 2016, for
a review, and van Ravenzwaaij, Dutilh, and Wagenmakers,
2012; Brown, Marley, Donkin, and Heathcote, 2008; Evans,
Rae, Bushmakin, Rubin, and Brown, 2017; Evans, Hawkins,
Boehm, Wagenmakers, and Brown, 2017 for applications),
which propose that people make decisions by accumulating
evidence from the environment for the different alterna-
tives at some rate (known as the “drift rate”), until this
evidence reaches a threshold amount of evidence (known
as the “decision threshold”), and a response is triggered.
We used the “simple” diffusion model1, which includes
two additional parameters: the starting amount of evidence
prior to accumulation (known as the “starting point”), which
reflects a priori response biases, and the amount of time
required by other processes involved in responding (known
as “non-decision time”), such as perceptual and motor
processing. The model operationalizes speed–accuracy
tradeoff via the threshold parameter. Higher thresholds
indicate more cautious responding, as more evidence is accu-
mulated before a response is triggered, whereas lower
thresholds indicate more urgent responding, as little evi-
dence is required to trigger a response. The optimal strategy
was defined as the threshold setting that lead to the high-
est reward rate (conditional on all other parameters being
fixed at their estimated values). We identified the optimal
threshold through a grid search of all possible threshold val-
ues between 0.01 and 4 in increments of 0.01, and using
the closed form solutions of Bogacz et al. (2006) to calcu-
late the expected error rate and mean response time for each
possible threshold setting.

We performed two key analyses to assess whether, and
if so how, participants’ threshold settings differed from
optimality. Both analyses involved fitting the diffusion model
to the empirical data, which we did through Bayesian hier-
archical methods (Shiffrin, Lee, Kim, and Wagenmakers,

1Our choice of the “simple” diffusion model over the “full” diffusion
model (i.e., with between-trial variability parameters) was based upon
findings indicating the simple diffusion to have superior recovery of
parameters (Lerche & Voss, 2016).

2008; see Evans and Brown 2018 for a discussion), and like-
lihood functions extracted from the fastdm package (Voss &
Voss, 2007). Bayesian methods of estimation involve esti-
mating a distribution of possible values for the parameters
(known as the “posterior distribution”), which captures the
uncertainty in the value of the parameter, as opposed to
other methods that only obtain the most likely value of the
parameter (e.g., maximum likelihood). Hierarchical models
involve estimating the parameters of each individual partici-
pant while also constraining their parameter values to follow
some group-level distribution, providing mutual constraint
between the parameter estimation of different individuals.

Our first analysis follows Evans and Brown (2017),
where we estimated the diffusion model with a different
threshold parameter for each block. This additional freedom
in the model allowed for the possibility that participants
adjusted their threshold over blocks in response to their
performance and feedback. Our key interest was in the
estimated group-level distribution of threshold for each
block, which we compared to an “optimal distribution”
for each block, computed using the joint group-level
posterior of the other three parameters of the model. We
also performed these same analyses separately for each
individual, to see whether these patterns appeared to be
consistent across our entire sample.

Our second analysis used a novel model-based contrast to
test whether participants were using the reward rate optimal
strategy, and, if not, how they differed from optimality. We
estimated four versions of the diffusion model, beginning
with the regular diffusion model described above. The
second version was the same, but had the threshold
parameter constrained to the reward rate optimal value. The
third model version constrained the threshold parameter
to be greater than the optimal setting (i.e., a “too-
cautious” model), and the fourth version constrained the
threshold to be lower than the optimal setting (i.e., a “too-
urgent” model). We compared these four models using
their marginal likelihoods (i.e., Bayes factors), which were
calculated with the TIDEz algorithm (Evans & Annis,
2018). This algorithm uses the Bayes factor calculations
of thermodynamic integration (Annis et al., 2018; Friel &
Pettitt, 2008) integrated with DE-MCMC (Turner et al.,
2013) under the logic of thermodynamic integration through
population MCMC (Calderhead & Girolami, 2009).

Results

Group-level analyses

Figure 1 illustrates the results of our first analysis, focusing
on the group-level estimates of the threshold parameter for
each block of the experiment. The dots display the posterior
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Fig. 1 Posterior distribution over the population-level threshold
parameter, compared with its optimal setting, over different blocks of
trials. Black circles indicate the median of the threshold μ posterior,
and error bars give the 2.5% and 97.5% quantiles. The green region
is the distribution over the optimal threshold, calculated from the joint
posterior of the values of the other parameters. The brightest regions of
green show the center of the distribution (40% to 60% quantiles), and
the more transparent regions being the tails (10 to 20% and 80 to 90%
quantiles). Thresholds move towards the optimal region over blocks,
eventually ending up within the optimal region

median of the group-level threshold parameter, with error
bars. The green region shows the posterior distribution for
the optimal setting of the threshold parameter. These results
are in agreement with those of Evans and Brown (2017),
although there is now greater precision due to the increased
sample size in the current experiment. In the first blocks
of the experiment (i.e., blocks 2-5), participants were more
cautious than optimal for maximizing reward rate. Over
time, their threshold settings move closer to the optimal
region (in line with the findings of Starns and Ratcliff, 2010;
Balci et al., 2011; Evans and Brown, 2017). After block
10, the thresholds appear to be fairly consistent until the
end of the experiment, and are close to the optimal region.
Interestingly, Evans and Brown (2017) found the group with
the level of feedback used in our experiment (labeled “Info”
in their study) to begin to approach optimality, there was
still some distance between their adopted threshold and
the optimal threshold. The participants in our experiment,
with slower trial-to-trial timing, appear to have achieved
optimality better than those studied by Evans and Brown
(2017).

Our second analysis compared the four models using
Bayes factors. For this, the models were estimated using
data from blocks 11–20, during which behavior was approxi-
mately stationary. When data from all participants were
treated together, hierarchically, the log-marginal likelihood

was highest for the non-optimal, freely estimated thresh-
old model (10,594), followed by the too-cautious model
(10,222), then the too-urgent model (10,054), and lastly
the optimal model (9965). These findings indicate that
(1) despite participants approaching optimality and occa-
sionally being within the optimal region, there is decisive
evidence in favor of participants being suboptimal, based
on the non-optimal models all beating the optimal model,
(2) participants seem to be more on the too-cautious side
than the too-urgent side, as the too-cautious model was pre-
ferred over the too-urgent model, and (3) the preference for
too-cautious responding may have been inconsistent over
participants, as the completely free threshold was preferred
over both the too-cautious and too-urgent models. This last
conclusion is important, as it suggests that people were not,
on average, too cautious.

Individual-level analyses

Taken together, the initial analyses and the model compari-
son analyses suggest an interesting pattern: Fig. 1 suggests
that, after the first few blocks, participants are on average
optimal, or very close to optimal, but the model compar-
isons suggest that free (non-optimal) threshold estimates are
important. To investigate this more carefully, we performed
the same analyses as above, but for each individual sub-
ject. The results for the first analysis—comparing estimated
thresholds against the optimal threshold, across blocks of
the experiment—are summarized in Fig. 2. This figure
combines results across participants using Z-scores of the
difference between the median of the posterior distribution
for the threshold parameter from distribution of the opti-
mal threshold parameter, with values above zero indicating
too-cautious responding and values below zero indicating
too-urgent responding. The results mirror the group-based
analysis, with the average Z-score starting above zero (i.e.,
too cautious) and moving close to zero (i.e., optimal) over
blocks. The most striking feature of the analysis, though, is
the very large individual variation, with participants rang-
ing from far too-urgent to far too-cautious, with these
differences being centered on about 0 (i.e., optimality).

The second analysis compared the four model versions
separately for each participant. Around 30% of the
participants were best described by each of the too-cautious
(n = 24), too-urgent (n = 24), and optimal (n = 21)
models. The remaining 13% of participants (n = 10) were
best fit by the freely-varying model.

Discussion

Our study aimed to assess whether the previous findings of
humans generally being overly cautious—when compared
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Fig. 2 Estimated thresholds compared to optimal settings, for each
individual participant. Dots show Z scores calculated for each block,
and for each participant on the difference between the estimated
threshold posterior and the optimal threshold distribution, with the
optimal threshold distribution calculated based on the joint poste-
rior of the other parameters for that individual participant. The lines
connect the subjects across blocks. The color of the dots and lines dif-
fers between subjects, and reflects each subject’s average difference
from optimality across all blocks. Green dots/lines show partici-
pants who were on average extremely overly cautious, red dots/lines

show participants who were on average extremely overly urgent,
and black dots/lines show participants who were on average optimal.
Different shades of green/black and red/black indicate intermediate
values, with dots with more green/red indicating greater discrepan-
cies from optimality from being too cautious/urgent. On the y-axis,
positive values indicate overly cautious responding, negative values
indicate overly urgent responding, and the blue line (0) indicates opti-
mal responding. There appears to be a near-equal amount of subjects
who are too urgent and too cautious, with many being near the line of
perfect optimality

to the most efficient strategy—could be explained by
methodological choices about the timing of the experiments.
Previous studies assessing how human decision-strategies
compared to the reward rate optimal strategy used fast task
designs, where the participants’ responses were quickly
followed by the next experimental trial. These fast designs
cause the reward-rate-optimal strategy to be very urgent,
and studies using these fast designs have mostly found
participants to be more cautious than optimal (Simen et al.,
2009; Balci et al., 2011; Evans & Brown, 2017; Starns &
Ratcliff, 2012; Evans & Brown, 2017).

We introduced a long delay following incorrect responses,
which makes the optimal strategy more cautious. As in other
investigations, participants in our study began more cautious
than optimal. During the second half of the experiment, the
average speed–accuracy tradeoff setting was approximately
optimal. More detailed analyses of individual participants
showed that, on average, people were optimal, but there was
substantial variation between people, with equally many

participants adopting too-cautious as too-urgent strategies.
These results suggest that the task design does have an
impact on how close humans come to optimality. The
impact was not as large as we hypothesized a priori, because
our manipulations did not result in people adopting—on
average—-too urgent speed–accuracy tradeoff settings. Our
findings imply that previous studies may have concluded
that humans behave more cautiously than optimal due to
their settings of the experiments’ procedures (short delays
between trials), and so generalizations about overly cautious
strategies may not be warranted. Results reported by Simen
et al. (2009), who manipulated RSI and interpreted their
findings in terms of participants changing their strategy
in qualitatively optimal manner, as well as Bogacz et al.
(2010), who manipulated RSI and interpreted their findings
in terms of most participants being overly cautious in
general, are consistent with our explanation, as both of their
results showed a decrease in the distance from optimality as
RSI increased.
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Our study also shows one of the first examples of a
substantial proportion of participants (30%) adopting more
urgent than optimal strategies (also see Malhotra, Leslie,
Ludwig and Bogacz, 2017). Previous research in reward
rate optimality has mostly made group-level inferences
and has rarely shown evidence for overly urgent behavior.
Our findings indicate that humans sometimes choose to be
more urgent than optimal (without resorting to guessing).
We also identified substantial variation between individuals
in how close they come to optimality, and especially in
which direction they are suboptimal (i.e., too urgent or too
cautious). Interestingly, these findings are consistent with
findings from a very different study, by Malhotra et al.
(2017), who directly measured participants’ strategy using
an expanded judgment task. They assessed whether strate-
gies became more urgent as more time was spent on the
decision (also known as “collapsing thresholds”; Ditterich
2006; Drugowitsch et al., 2012; Hawkins et al., 2015).
When compared to an ideal observer model, Malhotra et al.
found that in a slow-paced task participants were on aver-
age optimal in their urgency increase, with some increasing
more than optimal (i.e., overly urgent behavior), but that
in a fast-paced task participants were on average more
cautious than optimal. Previous results that have only made
group-level inference (e.g., Simen et al., 2009; Balci et al.,
2011; Starns and Ratcliff, 2012; Evans and Brown, 2017)
should be interpreted with caution, and future research
should aim to better explore these individual differences.

Lastly, with our task we attempted to make the
optimal strategy very cautious. This resulted in participants’
strategies being centered around optimal. On the other
hand, earlier experiments have used tasks that make the
optimal strategy very urgent, and these have resulted in
participants’ strategies centered around overly cautious
responding. The combination of these findings may suggest
that although it is easy to push participants to being overly
cautious with task design, it is much harder to make them
overly urgent. An alternative explanation is that participants
have a preferred speed–accuracy tradeoff policy (something
close to the optimal strategy in our experiment) and it
is difficult to push them far from this strategy. It will
require future research investigating other manipulations (or
tougher criteria) to disentangle these accounts. In addition,
future research should also explore other experimental
factors that may influence participant strategy, such as the
task instructions provided.
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