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Abstract 

Background:  The fecal microbiota in pancreatic ductal adenocarcinoma (PDAC) and in autoimmune pancreatitis 
(AIP) patients remains largely unknown. We aimed to characterize the fecal microbiota in patients with PDAC and AIP, 
and explore the possibility of fecal microbial biomarkers for distinguishing PDAC and AIP.

Methods:  32 patients with PDAC, 32 patients with AIP and 32 age- and sex-matched healthy controls (HC) were 
recruited and the fecal microbiotas were analyzed through high-throughput metagenomic sequencing. Alterations of 
fecal short-chain fatty acids were measured using gas chromatographic method.

Results:  Principal coordinate analysis (PCoA) revealed that microbial compositions differed significantly between 
PDAC and HC samples; whereas, AIP and HC individuals tended to cluster together. Significant reduction of phylum 
Firmicutes (especially butyrate-producing bacteria, including Eubacterium rectale, Faecalibacterium prausnitzii and 
Roseburia intestinalis) and significant increase of phylum Proteobacteria (especially Gammaproteobacteria) were 
observed only among PDAC samples. At species level, when compared with HC samples, we revealed 24 and 12 dif-
ferently enriched bacteria in PDAC and AIP, respectively. Functional analysis showed a depletion of short-chain fatty 
acids synthesis associated KO modules (e.g. Wood-Ljungdahl pathway) and an increase of KO modules associated 
with bacterial virulence (e.g. type II general secretion pathway). Consistent with the downregulation of butyrate-
producing bacteria, gas chromatographic analysis showed fecal butyrate content was significantly decreased in PDAC 
group. Eubacterium rectale, Eubacterium ventrisum and Odoribacter splanchnicus were among the most important bio-
markers in distinguishing PDAC from HC and from AIP individuals. Receiver Operating Characteristic analysis showed 
areas under the curve of 90.74% (95% confidence interval [CI] 86.47–100%), 88.89% (95% CI 73.49–100%), and 76.54% 
(95% CI 52.5–100%) for PDAC/HC, PDAC/AIP and AIP/HC, respectively.

Conclusions:  In conclusion, alterations in fecal microbiota and butyrate of patients with PDAC suggest an underly-
ing role of gut microbiota for the pathogenesis of PDAC. Fecal microbial and butyrate as potential biomarkers may 
facilitate to distinguish patients with PDAC from patients with AIP and HCs which worth further validation.
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Introduction
Pancreatic cancer is one of the most common cause of 
cancer death and leads to an estimated 227,000 deaths 
annually worldwide [1], and more than 80% of the 
pancreatic malignancy are the pancreatic ductal ade-
nocarcinomas (PDAC). Because of the lack of an effec-
tive early detection methods, 80–85% of patients are 
past the optimal window for surgery once diagnosed, 
together with PDAC’s highly invasive behavior and 
poor sensitivity to conventional and targeted thera-
pies, leading to a very low 5-year survival rate of only 
5% among patients diagnosed with PDAC [2]. There-
fore, the pathogenesis, the new diagnostic strategies 
and preventive therapeutic means must be explored 
for PDAC.

Autoimmune pancreatitis (AIP), which belongs to 
the spectrum of immunoglobulin G4 (IgG4)-related 
diseases, is a chronic inflammatory disease of the 
pancreas, likely with an autoimmune etiology [3]. To 
date, the AIP and IgG4-related disease pathogeneses 
are largely unknown. Evidence suggests that Helico-
bacter pylori plays a role in the AIP pathogenesis via 
molecular mimicry [4]. AIP is mostly accompanied by 
an expanded pancreas; however, AIP remains chal-
lenging to diagnose at an early stage or to distinguish 
between PDAC and AIP patients via imaging, which 
can result in unnecessary surgical resection when 
PDAC is suspected [5]. Thus, new effective, noninva-
sive approaches for differentiating AIP from PDAC are 
urgently needed.

The human gut is a large reservoir of microbes. 
The Bacteroidetes and Firmicutes phyla are the most 
dominant, followed by Actinobacteria, Proteobacteria 
and Verrucomicrobia [6]. Evidence suggests that the 
gut microbiota and inflammation play roles in many 
diseases, including several cancers such as colorectal 
cancer [7]. Patients with chronic pancreatitis present 
a high risk of PDAC, suggesting that inflammation 
may play a role in PDAC. The relationship between the 
oral microbiota and PDAC has been reported in sev-
eral studies [2, 8, 9]; however, little is known about the 
composition and role of the gut microbiota in PDAC 
and in AIP. Here, we thoroughly evaluated for the first 
time the compositional and butyric alterations in the 
fecal microbiota in PDAC and AIP patients, and inves-
tigated the possibility of gut microbial biomarkers as 
noninvasive methods for diagnosing PDAC and differ-
entiating between PDAC and AIP.

Materials and methods
Patient cohorts
Ninety-six participants were enrolled in our study, 
including 32 patients newly diagnosed with PDCA from 
Chinese PLA General Hospital, 32 patients with AIP 
and 32 age-and sex-matched healthy controls (HCs). All 
32 patients with PDCA were diagnosed via surgery and 
pathology. AIP was diagnosed according to the interna-
tional consensus diagnostic criteria for AIP proposed by 
the International Association of Pancreatology and only 
patients diagnosed as type 1 AIP characterized by ele-
vated serum IgG4 levels were enrolled in our study [10]. 
The subjects in HC group were selected from individuals 
who visited the Chinese PLA General Hospital for their 
health check and pass the exclusion criteria described 
below. Exclusion criteria for all participants included 
irritable bowel disease, celiac disease, other cancers, and 
autoimmune diseases (except AIP). Participants had not 
been administered antibiotics, antifungals, probiotics or 
prebiotics for at least 2 months before sampling. Table 1 
shows the details of all study participants. Fresh fecal 
samples were collected and transported to our laboratory 
in an ice bag within 2 h and then stored at −> 80 °C until 
testing.

Metagenomics sequencing
Fecal samples were processed for DNA extraction 
(QIAampPowerFecal Pro DNA Kit), quality control 
and DNA library construction (concentration > 3  nM). 
The library quality was controlled by Qubit2.0 (Thermo 
Fisher Scientific), qSep100 (BiOptic) and q-PCR (Thermo 
Fisher Scientific). Metagenomic shotgun sequencing was 
performed using an Illumina HiSeq Platform. Original 
sequencing reads (607.6G) were obtained with an average 
of 45,304,701 reads per sample. The numbers of reads per 
sample ranged from 30,751,784 to 73,847,648. High-qual-
ity clean reads were obtained by removing reads of less 
than 30  bp, low-quality reads (< 20), and contaminated 
human reads (Additional file  1). Using SOAPdenovo 
(v2.04, parameters “all -D1 -M3 -L500”), the high-quality 
clean reads were then de novo assembled into contigs 
(Additional file 2). Genes of the assembled contigs with 
more than 500 bp were predicted using MetaGeneMark 
[11]. The predicted genes were clustered to create a 
non-redundant gene catalogue using CD-HIT [12], with 
cutoffs of 90% overlap and 95% identity. Relative gene 
abundances were determined by aligning high-quality 
clean reads to the non-redundant gene catalogue using 
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BWA alignment tool, following normalization using the 
reads per kilobase per million (RPKM) method.

Taxonomic annotation and functional analysis 
of metagenomic sequences
MetaPhlAn2.0 [13], a method using clade-specific marker 
genes, was used to perform metagenomic taxonomic pro-
filing. Relative abundances at every taxonomic level were 
estimated based on reads counts. Moreover, metagen-
omic species (MGS) profiling was performed to comple-
ment MetaPhlAn2.0, following the method described 
by Nielsen et  al. [14] without using reference genomes. 
Here, co-abundance gene groups (CAGs) with more than 
500 genes (also called MGS) were used for further anno-
tation. MGSs were annotated to a bacterial species with a 
threshold of > 50% of the genes in any MGSs assigned to 
the integrated gut genome dataset constructed by Nan-
fach et  al. [15]. Co-occurrence analysis was performed 
using the CoNet app as previously described [16] and 
visualized usingCytoscape5. × (app version).

Genes in the non-redundant gene catalogue were 
translated into amino acids for further alignment against 
the proteins/domains in the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) ortholog (KO) database 
using DIAMOND (v0.7.9.58; parameters: blast -v -sensi-
tive -k 10). Each gene was then assigned to a KO group 
filtered by e-value < 1e−5 and percent identity > 70%. 

Reporter scores were calculated for each KO module per 
the method in [17]. The differentially enriched KO mod-
ules were identified with a threshold of ≥ 2.3 or ≤ − 2.3.

We compared the three groups’ potentials to produce 
butyrate per the method of Vital et al. [18]. Briefly, high-
quality clean reads were aligned against the database 
established by Vital et al. [18] with ≥ 70 bp alignment and 
≥ 80% identity. The abundances of the butyrate-produc-
ing pathways (the acetyl-CoA, lysine, 4-aminobutyrate, 
and glutarate pathways) and the involved genes were then 
calculated following the steps described by Vital et  al. 
[18]. We evaluated the three groups’ potentials to pro-
duce polyamines with HUMAnN2 which classifies the 
reads into MetaCyc pathways [19].

Determination of short‑chain fatty acids (SCFA)
The concentrations of SCFA in fecal samples was evalu-
ated by gas chromatography.

Classifier
The random forest method was performed, and the data-
set was partitioned into the training set (70%) and test-
ing set (30%). XGBOOST was applied to select features 
and the leave-one-out-cross-validation method was per-
formed to select the prediction model. The performance 
was evaluated using the receiver operation characteris-
tic curve (ROC) and area under the ROC curve (AUC). 

Table 1  Demographic and clinical details of samples

Data are expressed as mean ± SD or median (1st-3st quartile) according to the normality of distribution. F: female, PDAC: pancreatic ductal adenocarcinoma, AIP: 
autoimmune pancreatitis, HC: healthy control

Factor PDAC (n = 32) HC (n = 32) AIP (n = 32)

Age 59.31 ± 9.53 58.63 ± 10.28 58.83 ± 9.76

Gender (F/n) 21.87% (7) 18.75% (6) 18.75% (6)

BMI 23.21 ± 3.24 23.18 ± 3.07 24.37 ± 3.09

Hypertension (n) 34.38% (11) 25% (8) 6.25% (2)

Diabetes (n) 31.25% (10) 16% (5) 28.13% (9)

Jaundice (n) 25.00% (8) 0 (0) 0 (0)

Tumor location (n)

 Pancreatic head 40.63% (13) – –

 Pancreatic neck 12.50% (4) – –

 Pancreatic body 3.13% (1) – –

 Pancreatic tail 6.25% (2) – –

 Pancreatic head and body 12.50% (4) – –

 Pancreatic body and tail 25.00% (8) – –

TNS staging (n)

 I 37.50% (12) – –

 II 28.13% (9) – –

 III 18.75% (6) – –

 IV 15.63% (5) – –

CA-19–9 u/ml 137.10(15.54–379.60) – –
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Thresholds of each bacteria by which ROC analysis was 
performed was set at 0.5.

Linear discriminant analysis effect size (LEfSe) analysis
Characterized by combination of non-parametric test 
and biological significance, LEfSe is a robust tool for 
identifying biomarkers from microbial metagenome data 
[20]. Thus, LEfSe analysis was performed as an evaluation 
of robustness of classifier constructed through random 
forest method. Here, bacterial species with LDA score > 2 
and P < 0.05 were considered to be significant.

Statistical analysis
Continuous variables were expressed as mean ± SD for 
normal distribution and median with interquartile range 
for non-normal distribution. Discrete variables were 
expressed as percentages. Normal distribution was tested 
by one-way ANOVA test. Non-normal distribution was 
tested by the Kruskal–Wallis test followed by Steel–
Dwass test for pairwise comparison. Statistical analyses 
were performed using R software packages or SPSS19.0 
(IBM). P-values were corrected by Benjamini–Hochberg 
method for multiple comparisons.

The Bray–Curtis distance-based principal coordinate 
analysis (PCoA) was performed at the species level to 
assess species composition dissimilarity. Permutational 
multivariate analysis of variance (PERMANOVA) [21] 
(‘Adonis’ function, vegan package, R; 1000 permutations) 
was used to assess the influence of phenotypic variances 
to sample differences.

Results
Analysis of the microbial community structure in the PDAC 
and AIP groups
We constructed a non-redundant gene catalogue from 
96 participants, which contained 2585854, 2522210 and 
2538553 genes from the PDAC, AIP and HC groups, 
respectively. The three groups shared 1899961 genes, 
with 240991, 194826 and 219119 specific genes in the 
PDAC, AIP and HC groups, respectively.

To investigate the microbial compositional differ-
ences among groups, we performed principal coordinate 
analysis (PCoA) (Fig.  1a). The results revealed that axis 
2 discriminated most of the HC samples from most of 
the PDAC samples (PERMANOVA, p = 0.001). Moreo-
ver, PERMANOVA analysis revealed that the overall 
microbial compositions differed significantly between 
PDAC and AIP samples (PERMANOVA, p = 0.004). 
However, samples in the AIP and HC groups tended to 
cluster together with a p-value > 0.05 (PERAMANOVA) 
(Fig.  1a). Here, to evaluate how diabetes and hyper-
tension affect the microbial compositional differences 
between participants, a permutation test with `adonis2` 

function (R package: vegan) was performed and results 
showed no statistically significant effect of both meta-
bolic disorders on the microbial compositional differ-
ences (diabetes: R2 = 0.009, p = 0.648; hypertension: 
R2 = 0.009, p = 0.334).In addition, no statistically signifi-
cant differences in α-diversity were observed between 
any two of the three groups as indicated by the Shannon 
index, Simpson index, richness and evenness (Additional 
file 7: Figure S1).

We further investigated and compared the rela-
tive microbial community abundances at every level 
(Fig. 1b–e, Additional file 3). At the phylum level (Fig. 1b 
and Additional file  3), Firmicutes and Bacteroidetes 
remained the dominant phyla, followed by Proteobacte-
ria in the case groups; However, we observed a signifi-
cantly decreased prevalence of Firmicutes (p = 0.0013, 
Steel–Dwass test) and increased prevalence of Proteo-
bacteria (p = 0.013, Steel–Dwass test), especially Gam-
maproteobacteria (p = 0.0062, Steel–Dwass test), among 
PDAC samples, but not among AIP samples. Notably, 
colorectal cancer-associated Phylum Fusobacteria [22, 
23] were also found differentially enriched between HC 
and PDAC groups with an adjusted p-value of < 0.2 (Ben-
jamini–Hochberg corrected Kruskal–Wallis test), show-
ing a relative increase among PDAC samples (p = 0.075, 
Steel–Dwass test). At the genus level (Fig. 1c and Addi-
tional file  3), Megamonas, Faecalibacterium, Eubacte-
rium and Coprococcus were significantly decreased in the 
PDAC group, while only Megamonas and Faecalibacte-
rium were significantly decreased in the AIP group. The 
genus Veillonella was significantly increased in both the 
AIP and PDAC groups, while Escherichia was signifi-
cantly increased only in the PDAC group. We identified 
24, 12 and 15species differentially enriched between the 
PDAC/HC, AIP/HC and PDAC/AIP groups, respec-
tively (Additional file  3). We observed a depletion of 
SCFA-producing bacteria, including Faecalibacterium 
prausnitzii, Eubacterium rectale, Roseburia intestinalis, 
and Ruminococcussp 5_1_39BFAA, along with an enrich-
ment of Escherichia coli, Fusobacterium nucleatum and 
some Clostridium spp among PDAC individuals (Fig. 1d 
and e). However, only Faecalibacterium prausnitzii was 
decreased among AIP individuals. Megamonas spp, Veil-
lonella atypica, Veillonella parvula and Prevotella ster-
corea were enriched in both PDAC and AIP samples 
(Fig. 1d and e). Although we also annotated several spe-
cies of viruses and archaea, no statistically significant dif-
ferences were observed among the three groups (data not 
shown).

Metagenomic species profiling for PDAC and AIP groups
To better learn about the microbial compositional char-
acterization of PDAC and AIP individuals, we performed 
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metagenomic species (MGS) profiling to complement 
MetaPhlAn2.0. Results showed among all the MGSs 
(also called co-abundance gene groups(CAGs)) with 
genes > 500, a total of 21 CAGs were differently enriched 
between groups with an adjusted p-value < 0.2 (Benja-
mini–Hochberg corrected Kruskal–Wallis test); And 18, 
9 and 10 of the 21 CAGs differed significantly between 
the PDAC/HC, AIP/HC and PDAC/AIP groups, respec-
tively (Fig.  2a and Additional file  4), In detail, Faecali-
bacterium sp. and Roseburia intestinalis were decreased, 
and Clostridium bolteae and Clostridium symbiosum 
were increased in only the PDAC group. Megamonas 
funiformis and Dialister succinatiphilus were decreased, 
and Veillonella dispar and Streptococcus parasanguinis 
were increased in both the PDAC and AIP groups. It’s 

interesting to note that Veillonella dispar and Streptococ-
cus parasanguinis were mostly oral species [24]. In addi-
tion, 7 species were unknown because less than 50% of 
the genes were assigned a specific species, indicating that 
unknown microbial organisms may be associated with 
the PDAC and AIP statuses.

To gain new insights into the possible interactions 
between the differentially abundant microbes, a co-
occurrence analysis [16] was performed (Fig.  2b). In 
healthy controls, species from Lachnospiraceae and 
Oscillospiraceae tended to cluster and have more correla-
tions, while in the case samples, species from Streptococ-
caceae and Veillonellaceae tended to cluster. Additionally, 
more unknown CAGs played roles in the network in 
the case samples. When comparing the PDAC and AIP 

Fig. 1  Alterations in the gut microbiota among patients with PDAC and AIP. a Principal coordinate analysis (PCoA) based on Bray–Curtis distance 
at the species level. Each data point represents an individual sample. P-value was calculated by PERMANOVA. b Comparison of the gut microbiota 
among PDAC, AIP and HC groups at the phylum level and box and whisker plot of Firmicutes to Bacteroidetes ratios. c–e Species enriched in 
healthy controls and species enriched in case groups, respectively. The phylum, genus and species levels are colored as follows: purple, both 
enriched in PDAC and AIP; blue, both depleted in PDAC and AIP; red, enriched in PDAC only; green, depleted in PDAC only. Significance was set 
at adjusted p-value < 0.2 (FDR-corrected Kruskal–Wallis test) and p-value (Steel–Dwass test) < 0.05. Only taxa with adjusted p-value < 0.2 (except 
Bacteroidetes) are shown. Steel–Dwass test for pairwise comparisons following FDR-corrected Kruskal–Wallis test. PDAC: pancreatic ductal 
adenocarcinoma; AIP: autoimmune pancreatitis; HC: healthy controls
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samples, the correlations in the PDAC group were closer 
and more complex; CAG0282 played a central role in the 
network of the PDAC samples and CAG0122 in the AIP 
group. Although these results showed a profound dys-
biosis in both the gut microbial compositions and inter-
actions among cases, large cohort studies are needed to 
further elucidate these interactions.

Overall analysis of microbial community functions 
in the PDAC and AIP groups
To improve our knowledge of gut microbial func-
tions among PDAC and AIP individuals, we identi-
fied the differentially enriched KO modules among 
groups according to reporter score (Fig.  3 and Addi-
tional file  5). Results showed the gut microbiota of 
PDAC patients displayed a higher potential to degrade 
fatty acids and a notably lower metabolic capacity to 
synthesize short-chain fatty acids (SCFAs), especially 
acetate and butyrate. Among PDAC individuals, the 

Wood-Ljungdahl pathway (the classic acetate-produc-
ing pathway) was depleted; in addition, pyruvate is an 
important intermediate product of SCFA biosynthe-
sis [18, 25], whereas the potential to produce pyruvate 
through D-galacturonate and glucuronate degradation 
was decreased; furthermore, the PDAC samples exhib-
ited lower potential for transporting many saccharides, 
such as fructooligosaccharide and glucose.

Another notable result among PDAC samples was 
that we observed a possible higher potential for putres-
cine and spermidine transportation. Then we performed 
further analysis per HUMAnN2 and results showed two 
(superpathway of arginine and polyamine biosynthesis, 
superpathway of polyamine biosynthesis I) of the three 
identified MetaCyc pathways involved in polyamine bio-
synthesis increased in the guts of PDAC patients and E. 
coli may be the main contributary species (Additional 
file 7: Figure S2). However, polyamines were not detected 
in case feces in our lab (data not shown), which may be 

Fig. 2  Differentially abundant CAGs in the three groups. a Heatmap of CAGs with a p-value < 0.05determined by the Kruskal–Wallis testis shown 
in rows. Gene abundance is indicated by color gradient (white represents “undetected”, red represents “most abundant”). The p-value is shown on 
the right. b Abundance-based CAG co-abundance correlation network enriched in PC group (left), AIP group (media) and AIP group (right). The 
node size was proportional to the enrichment extent. The node shape was as follows: rectangle, PDAC enriched; rhombus, AIP enriched; diamond, 
case enriched; circle, HC enriched. Nodes are colored by family level. PDAC: pancreatic ductal adenocarcinoma; AIP: autoimmune pancreatitis; HC: 
healthy control
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due to the low sensitivity of our method or a considerable 
degradation of polyamines.

Other observations among PDAC samples included 
increased type II general secretion pathway (T2S), type 

VI secretion system (T6S), lipopolysaccharide (LPS) bio-
synthesis and upregulated M00210which can increase 
gram-negative bacterial vitality through contributing to 
asymmetric lipid distribution [26]. In contrast, among 

Fig. 3  Differentially enriched KO modules in the PDAC, AIP and HC groups. Modules with a reporter score > 2.3 (the former enriched) or < -2.3 
(the latter were enriched) are shown. *reporter score > 2.3 or < − 2.3; **, reporter score > 3 or < 3. PDAC: pancreatic ductal adenocarcinoma; AIP: 
autoimmune pancreatitis; HC: healthy control
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AIP samples, we only found significantly increased T2S, 
M00335, M00210 and decreased T4S, but no significant 
changes were observed in SCFA and polyamine produc-
tion compared to HC samples.

Downregulated butyrate production in feces of patients 
with PDAC, but not in feces of patients with AIP as revealed 
by bioinformatic analysis and gas chromatography
Considering a profound change was observed in 
butyrate-producing bacteria among PDAC samples, we 
further investigated the differences in the butyrate-pro-
ducing pathways and involved genes described by Vital 
et al. [18] (Fig. 4a and b, Additional file 7: Figure S3 and 
Additional file  6). Results showed among PDAC sam-
ples three of the four main pathways displayed a down-
ward trend, especially the acetyl-CoA pathway (PDAC 
vs HC, p = 1.6e-05); In addition, all genes involved in 
this pathway were downregulated, especially gene HBD, 
BUK, PTB with a p value < 0.05 compared with HC sam-
ples. Here, the 4-aminobutyrate pathway was slightly 
increased, although not statistically, and the involved 
gene, X4HBT, was significantly increased in the PDAC 
group which may be associated with the increase in Fuso-
bacterium [18]. Then we performed quantitative detec-
tion of fecal butyrate among PDAC samples and results 
further confirmed a significate reduction of butyrate con-
tent compared with HC samples (p = 0.02, Fig. 5), along 
with a downtrend in acetate content (p = 0.12, Fig. 5). In 

contrast, although butyrate-producing Faecalibacterium 
prausnitzii [18] was decreased among AIP patients, AIP 
and HC patients did not differ significantly in any of the 
four pathways or their involved genes or butyrate content 
in feces, which was consistent with the idea that butyrate 
producers were a functional cohort, and the gut can par-
tially maintain butyrate production [18].

Bacterial markers that identify patients with PDAC
To test whether the microbiota composition can distin-
guish PDAC patients from either healthy controls or AIP 
patients, a classifier was constructed using the Random 
Forest method. Here, 11, 15 and 14 species were selected 
as biomarkers to discriminate PDAC/HC, AIP/HC and 
PDAC/AIP individuals, respectively (Fig.  6b, d and f ). 
Interestingly, Eubacterium rectale, Eubacterium ventri-
sum and Odoribacter splanchnicus was among the most 
important biomarkers in distinguishing PDAC from HC 
and from AIP individuals. To increase the robustness of 
the identified biomarkers, we performed LEfSe analysis 
and results showed that most of the identified biomark-
ers exhibit biological significance with a linear discrimi-
nant analysis (LDA) score > 2 (Additional file  7: Figure 
S4). ROC analysis showed an AUC of 90.74% (95% con-
fidence interval [CI] 77.4–100%), 88.89% (95% CI 73.49–
100%) and 76.54% (95% CI 52.5–100%) in the PDAC/HC, 
PDAC/AIP and AIP/HC cohort, respectively (Fig.  6a, 
c, e), indicating a potential role of the gut microbial 

Fig. 4  Box-and-Whisker plot of four pathways for butyrate synthesis (a) and bar plot of involved genes in acetyl-CoA pathway (b). p-value shown in 
(a) was determined by Steel–Dwass test for pairwise comparison following FDR-corrected Kruskal–Wallis test. Pathways are shown as described by 
Vital et al. [14]



Page 9 of 12Zhou et al. J Transl Med          (2021) 19:215 	

biomarkers as a non-invasive screening strategy for 
PDAC diagnosis and PDAC/AIP discrimination but not 
for AIP/HC discrimination.

Discussion
The gut microbiota has been associated with many 
human diseases including gastrointestinal cancer [27, 
28]. In this study, we revealed that patients with PDAC 
harbored an evidently different microbiota in their guts 
compared with healthy controls, whereas AIP patients 
displayed relatively mild alterations in both composition 
and function. Furthermore, we provided a possible new 
method of non-invasively identifying PDAC from HC or 
AIP, although large cohort studies are needed for further 
validation.

In our study, the samples of PDAC displayed sig-
nificantly reduced phylum Firmicutes, mainly due toa 

significant reduction in butyrate-producing bacteria, 
including Faecalibacterium prausnitzii, Eubacterium rec-
tale and Roseburia intestinali, which are important in gut 
health maintenance [18]. Faecalibacterium prausnitzii, 
a major commensal gut bacterium, has an important 
anti-inflammatory property by blocking NF-κB activa-
tion and interleukin-8 (IL-8) and is often underrepre-
sented in many inflammatory diseases [29]. Pieter et.al 
found Eubacterium rectale and Roseburia intestinalis can 
play protective roles by colonizing mucins [30] through 
which they occupy an ecological niche and, together with 
antimicrobials, limit pathogen translocation. Moreover, 
Roseburia intestinalis has been recently suggested to be 
positively associated with tight-junction integrity in the 
gut [31]. These results together suggest an inflamma-
tory status and dysregulated gut barrier in the PDAC 
gut, which provides a potential means for opportunistic 

Fig. 5  Butyrate was downregulated only in feces of PDAC patients as revealed by gas chromatography analysis. Shown are relative content of 
acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid and total acid in PDAC, AIP and HC groups. PDAC: pancreatic 
ductal adenocarcinoma; AIP: autoimmune pancreatitis; HC: healthy controls CI: confidence interval
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pathogen translocation, thus affecting the pancreatic 
oncogenesis and tumor progression.

It’s worth noting that Gammaproteobacteria (especially 
E. coli), which consists of a large number of pathogenic 
bacteria, was found a significant increase among PDAC 
samples. Some species of Proteobacteria, including E. 
coli, can increase the mutation in the infected cells, at 
least in part through releasing colibactin and cytole-
thal distending toxin (CDT) [32]. Colibactin and CDT 
are also associated with E. coli’s survival in the micro-
environment by killing competitors [32]. Furthermore, 
functional analysis suggested that E. coli in the PDAC 
participants exhibits a phenotype of enhanced virulence. 
To be specific, T2S, which has been reported only in Pro-
teobacteria, especially at a higher incidence [33], was 
predicted an increase among PDAC samples, which can 
enhance virulence by allowing heat-labile toxin transpor-
tation into extracellular and even host cells [33]; in addi-
tion, increased T6S among patients with PDAC has been 

reported in E. coli, which is associated with bacterial vir-
ulence and is likely to play an important role in favoring 
E. coli growth [34]. Oral-resident Fusobacterium nuclea-
tum [35], which has a suggested role in colorectal can-
cer [22], was also found enriched among PDAC samples 
in our study. Notably, Fusobacterium colonization was 
indeed identified in pancreatic cancer tissue and in adja-
cent normal tissue in a previous study [36]. In addition, 
existing evidence in literature supported that by interact-
ing with endothelial cell and epithelial cells through two 
main virulence factors (FadA and Fap2), Fusobacterium 
nucleatum can promotes a proinflammatory and immu-
nosuppressive tumor microenvironment, thereby pro-
moting tumor growth and progression (eg. colorectal 
cancer) [37]. Intriguingly, prevalence of Fusobacterium in 
pancreatic cancer tissue was described to be associated 
with a worse prognosis by Mitsuhashi K et al. [36]. Alto-
gether, Fusobacterium nucleatum is a potential patho-
genic bacterium for pancreatic cancer and the underlying 
molecular mechanism is worthy of further validation.

Consistent with the reduction of butyrate-producing 
bacteria and downregulation of butyrate pathways, we 
detected a significant decrease of butyrate content in 
fecal samples of PDAC. The butyrate is the main pre-
ferred energy source of colonic epithelial cells (ECs), 
as the essential part of first line of defense, the normal 
energy supply of colonic ECs is the basis for its’ nor-
mal barrier function [18, 38]. In addition, butyrate is an 
important anti-inflammatory product of the gut micro-
biota [18, 38], leading to its key role in maintaining gut 
homeostasis. Importantly, butyrate is also a histone 
deacetylase inhibitor (HDACi) [34]. Studies have shown 
that abnormal histone deacetylation is associated with 
malignant tumors and HDACi can inhibit cancer pro-
gression through remodeling histone acetylation [39]. As 
an HDACi, in  vitro studies have indicated that butyrate 
can inhibit the growth of colon, prostate, and cervical 
carcinomas by inducing apoptosis, differentiation and 
cell-cycle arrest [39]. Interestingly, butyrate is a preferred 
energy substrate for normal colonocytes instead of inhib-
iting cell growth, whereas butyrate concentrations are 
much higher in cancer cells by acting as an HDACi [25]. 
What’s more, in vitro studies have indicated that butyrate 
may play a role in inhibiting pancreatic cancer invasion 
by downregulating β4 integrin expression [40]. Above 
all, our study provides new support for the link between 
butyrate and PDAC, but how butyrate is involved in the 
progression of PDAC needs more studies.

We also found a possible higher potential to produce 
polyamines mainly due to the increased prevalence of 
E. coli in the guts of patients with PDAC. Dysregulated 
polyamine levels have been associated with toxic effects 
and carcinogenesis, and increased polyamine levels in 

Fig. 6  Microbial biomarkers classify PDACC patients from healthy 
controls and AIP patients. a, c, e ROC curves for testing cohort are 
shown. b, d, f Shown are the importance of the selected biomarkers. 
PDAC vs AIP (a and b), AIP vs HC (c and d), PDAC vs AIP (e and 
f). PDAC: pancreatic ductal adenocarcinoma; AIP: autoimmune 
pancreatitis; HC: healthy controls CI: confidence interval
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urine and blood specimens have been found among other 
cancers, such as skin cancer [41]. However, we failed to 
measure polyamines in our subjects, whether there is a 
relationship between polyamines and PDAC needs fur-
ther study.

Here, we identified a combination of fecal microbial 
biomarkers that could distinguish patients with PDAC 
from healthy controls (AUC = 90.74%) with relatively 
high specificity. However, we failed to perform valida-
tion study in the cohort of early PDAC patients due to 
the limited sample size. In addition, we also identified 
a microbial combination that could distinguish PDAC 
from AIP individuals (AUC = 88.89%), Considering the 
difficulty in distinguishing PDAC from AIP, the result is 
promising. However, large studies are needed to further 
investigate whether the established classifier here will be 
clinically helpful. As we depicted, fecal microbial species 
failed to discriminate AIP patients from healthy controls 
(AUC = 76.54%), which is consistent with the mild gut 
microbial disturbance in AIP samples. Differences in gut 
microbial alterations between the PDAC and AIP groups 
may explain the low cancer rate in AIP patients.

Conclusions
Our study revealed an obviously disturbed fecal microbial 
composition and function among PDAC individuals and 
notably, butyrate-producing bacteria and butyrate con-
centration were significantly downregulated, suggesting 
an association between the gut microbiota and PDAC. 
Fecal bacterial species and butyrate may be helpful bio-
markers in PDAC diagnosis and differentiating PDAC 
from AIP patients. All in all, these results indicate that 
the specific mechanisms and roles of the gut microbiota 
in PDAC patients are worth to be further investigated.
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