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Purpose: Leber congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophy, and invariably leads
to blindness. LCA is a genetically and clinically heterogenous disorder. Although more than nine genes have been found
to be associated with LCA, they only account for about half of LCA cases. We performed a comprehensive mutational
analysis on nine known genes in 20 unrelated patients to investigate the genetic cause of LCA in Koreans.
Methods: All exons and flanking regions of the nine genes (AIPL1, CRB1, CRX, GUCY2D, RDH12, RPE65, RPGRIP1,
LRAT, and TULP1) were analyzed by direct sequencing. We also screened our patients for the common CEP290: c.
2991+1655A>G mutation found in Caucasian.
Results: Six different mutations including four novel ones were identified in three patients (15.0%): one frameshift, one
nonsense, one splicing, and three missense mutations. These patients were compound heterozygotes and harbored two
different mutations in CRB1, RPE65, and RPGRIP1, respectively. We identified three novel unclassified missense variants
in RPGRIP1 of the three patients. These patients were heterozygous for each variant and did not have a large deletion or
duplication in the same gene.
Conclusions: This comprehensive mutational analysis shows marked genetic heterogeneity in Korean LCA patients and
reveals a mutation spectrum that differs from those previously reported. In turn, this suggests that a different strategy
should be used for the molecular diagnosis of LCA in Koreans.

Leber congenital amaurosis (LCA; OMIM 204000), is
the most severe form of all inherited retinal dystrophies, and
is an important cause of congenital blindness in many
countries [1,2]. Its incidence has been estimated at 2–3 per
100,000 live births, and it is known that LCA accounts for 5%
of all inherited retinal dystrophies, and for up to 20% of
children attending schools for the blind worldwide.

LCA is a clinically and genetically heterogenous
disorder. Early onset blindness during the first year of life
(especially before six months), ocular features like
oculodigital signs (eye poking, rubbing, and pressing),
sluggish pupillary reaction, and extinguished or severely
reduced ERG are accepted highly suggestive criteria, but none
of these are diagnostic for LCA [1]. In addition to ocular
symptoms, systemic symptoms such as neurodevelopmental
delay can be associated with LCA. However, some systemic
diseases, such as Senior-Loken syndrome, Conorenal
syndrome, and Joubert syndrome, can manifest ocular
symptoms, which complicate the differential diagnosis [3,4].
Alternatively, early-onset retinal dystrophies like retinitis
pigmentosa (RP; OMIM 268000) and cone-rod dystrophy
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(CRD; OMIM 600624) may have clinical features resembling
those of LCA.

Nine genes, i.e., GUCY2D (LCA1), RPE65 (LCA2),
AIPL1 (LCA4), RPGRIP1, LCA5 (LCA6), CRB1 (LCA7),
CRX (LCA8), RDH12, and CEP290 (LCA10) are generally
accepted to be implicated in LCA, and three additional genes
(TULP1, LRAT, and IMPDH1) and two loci (LCA3 and
LCA9) may also be associated with the disease (RetNet,
Genetests). However, LCA may be associated with many
more genes: only an estimated 50% of cases have been
diagnosed by molecular methods even in large studies, and
about 130 genes are known to be implicated in inherited retinal
diseases [5]. Some genes related with LCA are involved in
other inherited retinal diseases, such as RP and CRD, and thus
these diseases may be viewed as a spectrum of genetically
related diseases [6,7].

The clinical and genetic heterogeneity of LCA hampers
its routine molecular diagnosis. The establishment of
phenotype-genotype correlations and the development of a
high-throughput screening method would offer a means of
overcoming these difficulties. The comprehensive mutational
analysis is required to both establish genotype-phenotype
correlations and determine mutation distribution patterns, but
few such studies have been conducted to date [5,8]. Moreover,
those results mainly came from Caucasian, so comprehensive
mutational analysis in non-Caucasian can be helpful to
understand pathogenic mechanism of LCA. Here, we report
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the results of a comprehensive mutational analysis conducted
on nine known LCA genes in 20 Korean LCA patients.

METHODS
Subjects: A total of 20 unrelated patients were recruited from
the ophthalmology clinics at Seoul National University
Hospital and Seoul National University Bundang Hospital
from 1999 to 2007. The median age of patients at initial
diagnosis was 8 months (range 3 to 33) and male to female
ratio was 2:3. Informed consent was obtained from all patients
or their legal guardians for the provision of clinical
information and blood samples. All patients received a
detailed ophthalmic examination including electroretinogram
and was diagnosed with LCA based on the following criteria,
suggested by De Laey [9]: early onset blindness or severe
visual impairment during the first year of life (especially
before six months), with oculodigital signs (eye poking,
rubbing, and pressing); an extinguished or severely reduced
ERG; and the exclusion of other systemic diseases.

The mutational analysis included 170 healthy individuals
as a control for a 1% polymorphism [10].

Sequence analysis of nine genes—Genomic DNA was
immediately extracted from peripheral blood using Gentra
PureGene DNA isolation kits (Gentra Systems, Inc.
Minneapolis, MN). The full sequence of nine genes that have
been associated with LCA or an LCA-like phenotype were
analyzed, i.e., seven genes associated with LCA: AIPL1,
CRB1, CRX, GUCY2D, RDH12, RPE65, and RPGRIP1, and
two genes associated with an LCA-like phenotype: LRAT, and
TULP. PCR was performed on patient genomic DNA using
primers designed to flank the splice junctions of coding exons.
The PCR parameters were as follows: 95 °C for 5 min,
followed by 35 cycles of 95 °C for 30 s, 60 °C for 30 s, and
72 °C for 1 min. Amplified products were sequenced
bidirectionally on an ABI Prism 3100 Genetic Analyzer
(Applied Biosystems, Foster City, CA), then analyzed using
Sequencher software (Gene Codes Co, Ann Arbor, MI).

c.2991+1655A>G mutation of CEP290—In addition to
full sequencing of nine genes, we performed allele-specific
PCR. This was to determine whether c.2991+1655A>G, an
intronic mutation in CEP290 and described as one of the most
frequent causes of LCA in a Caucasian, could also be a
common cause in the Korean population [11].

Gene dosage analysis—In the case of a single
heterozygote with one mutation, we performed
semiquantitative PCR to exclude the possibility of a large
deletion or duplication in the gene concerned. Each exon of
RPGRIP1 and the reference gene, B2MG, were co-amplified
with fluorescence-labeled primers through 18 limited cycles.
Then labeled PCR products were analyzed on the ABI Prism
3100 Genetic Analyzer, and the heights of the peaks of interest
were measured with the ABI Prism Data Collection Software
(v2.0). Normalized gene dosage for each exon was determined
by using the following equation:

Gene dosage=   [Peak target (patient)/Peakreference(patient)]/
[Peaktarget(control)/Peakreference(control)]

Allele frequency in control subjects—To investigate
allele frequencies, we screened control subjects by denaturing
high-pressure liquid chromatography (dHPLC). DNA, pooled
from three control subjects, was amplified. Next, PCR
products were denatured for 10 min at 95 °C and then
gradually reannealed by decreasing temperatures from 95 °C
to 25 °C over 30 min. PCR products were eluted at a flow rate
of 0.9 ml/min on the Wave 3500 (Transgenomics, Omaha,
NE). Pooled DNA samples displaying an abnormal profile
were analyzed by direct sequencing to determine the specific
genotype of each subject.

Information from amino acids and proteins—
Generally, in genetic mutation studies such as the present
study, it is critical to determine whether novel missense
variations are likely to be harmful to protein function or
structure. However, functional analysis is not always
available to investigate the effect of a missense variation on a
protein. We have predicted the functional effect of a novel
missense variation using information from the characteristics
of the amino acids substituted, interspecies amino acid
conservation using ClustalW [12], and protein structural
information from Uniprot.

In-silico prediction of novel missense variation using
different software—We compared the aforedescribed results
with those obtained using three protein function prediction
software: Polyphen [13], SIFT [14], and PMut [15]. All three
prediction software packages have been previously applied to
various disease-gene models [16-18].

RESULTS
Mutations: We identified six different mutations in three
patients (15%), in CRB1 (5%), RPE65 (5%), and RPGRIP1
(5%; Table 1). No homozygous mutations were found in this
study. All three patients had a compound heterozygous
mutation: c.271C>T (R91W) and c.858+1G>T (IVS8+1G>T)
in RPE65 (case 5); c.1892A>T (H631P) and c.
3560_3566delAAGGCCG in RPGRIP1 (case 13); and c.
998G>A (G333D) and c.1576C>T (R526X) in CRB1 (case
17).

All six mutations uniquely occurred in families. Two
mutations in RPGRIP1 and two in CRB1 were novel, whereas
two mutations found in RPE65 have been reported previously
[19,20]. Two of four novel mutations produced null alleles: c.
3560_3566delAAGGCCG (premature protein translation
termination at codon 1195) and c.1576C>T (R526X).
Segregation of disease alleles was confirmed in case 13, for
whom DNA samples from both parents were available. We
classified the other two novel missense variations as
pathogenic mutations because each was accompanied by a
null allele and was predicted to be harmful to protein structure
or function on prediction analysis.
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Case 13, who had novel mutations in RPGRIP1, had a
history of photophobia and displayed peripheral
hyperpigmentation in the retina. The posterior pole and disc
had a relatively normal appearance. Visual acuity was 20/500
OD and 20/500 OS. Case 17, who had novel mutations in
CRB1, had a history of night blindness and diffuse
hyperpigmentation in the retina, with vascular attenuation.
Visual acuity was 20/300 OD and hand motion OS. These
findings were similar to the genotype-phenotype correlations
suggested by Hanein et al. [5].

The two novel missense variations were not found among
170 control subjects, which showed allele frequencies of
<0.01 for all variations (Table 1). We analyzed amino acid
conservation for the genes concerned in Homo sapiens, Pan
troglodytes, Bos taurus, Canis familiaris, Mus musculus, and
Rattus norvegicus. Two missense variations were well
conserved across these species and homologous proteins
(Figure 1). H631P was located in the structurally important
C2 domain [21] and G333D was located in an epidermal
growth factor (EGF)-like domain, near a disulfide bond
between codon 327 and 336. Moreover, all of the
aforedescribed substituted amino acids were quite different

from the original amino acids in terms of their
physicochemical characteristics. The BLOSUM62 [22]
matrix score was also negative for two missense variations,
which supports their pathogenic potential, and Polyphen,
SIFT, and PMut produced similar results. These variations
were predicted to be pathogenic by two or more of these
prediction tools. Therefore, we considered c.1892A>T
(H631P) in RPGRIP1, and c.998G>A (G333D) in CRB1 as
pathogenic mutations (Table 1).
Unclassified missense variants: Interestingly, we identified
three novel missense variations only in RPGRIP1: c.1295C>T
(S432F), c.1802C>G (S601W), and c.3170A>T (H1057L).
All patients with these missense variants were heterozygous
for each variant and a second mutation, and the presence of a
large deletion or duplication in the same gene were excluded
in these patients.

Three variants were located in structurally important
regions: S432F in the coiled-coil region, S601W in the C2
domain, and H1057L in the RPGR interacting domain. All
substitutions represented negative BLOSUM62 [22] matrix
score and were predicted to be pathogenic using the prediction
software packages. c.1295C>T (S432F) and c.3170A>T

Figure 1. Multiple alignments using
ClustalW and amino acid conservation
of four novel missense sequence
variations identified in RPGRIP1: c.
1295C>T (S432F), c.1802C>G
(S601W), c.1892A>T (H631P), and c.
3170A>T (H1057L). The first six amino
acid sequences in each segment
represent RPGRIP1 proteins of several
species, and the last four denoted with
(L) represent RPGRIP1-like proteins.
Alignment results show that histidine at
codon 631 is highly conserved, but
amino acids at codon 432, 601, and 1057
are poorly conserved.
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(H1057L) were also found in control subjects (Table 1).
Amino acid conservation at these positions was restricted to
some species (Figure 1), suggesting a possibility of rare
polymorphism. c.1802C>G (S601W) was not found among
170 control subjects, although serine at codon 601 was not
well conserved among different species. Therefore, it is
uncertain at this point whether c.1802C>G (S601W) is a rare
polymorphism or not.
Polymorphisms: In addition to the aforedescribed mutations
and unclassified variants, we observed 82 sequence
variations, of which 24 were located in exons and 58 in introns
(Table 2). The following three among 13 nonsynonymous
sequence variations were novel: c.2809G>A (A937T) in
CRB1, c.460A>G (T154A) in CRX, and c.783G>C (K261N)
in TULP1. A nonsynonmous sequence variation in CRB1, c.
2809G>A (A937T), was found in EGF-like domain 14, but it
was felt that this substitution was unlikely to impair protein
function because the two amino acids have similar
physicochemical characteristics. All three software tools
predicted that this substitution would not be pathological
(Polyphen score of 0.428, SIFT score of 0.70, and PMut score
of 0.22). A nonsynonymous sequence variation in CRX, c.
460A>G (T154A) was also considered to be a polymorphic
sequence variation, because it is located outside the homeobox
domain (35–101), even though the amino acid is well
conserved. The three programs concurred that substitution is
unlikely to be pathologic (Polyphen score of 1.449, SIFT
[score of 0.26, and PMut score of 0.25). We did not find these
two nonsynonymous mutations in control subjects, and
therefore, we consider them rare polymorphic sequence
variations. Finally, c.783G>C (K261N) in TULP1 was
frequently found in controls and patients.

We identified 58 intronic sequence variations in patients.
Intronic sequence variations flanking exon-intron boundaries
potentially capable of affecting exon splicing were as follows:
IVS2–14G>A (allele frequency, 0.03) and IVS5+18G>A
(allele frequency, 0.08) in AIPL1, and IVS2–13insT (allele
frequency, 0.08) in the RDH12, IVS2+18G>A (allele
frequency, 0.08) in TULP1. However, we could not exclude
the possibility of splice disruption because we had failed to
recover the mRNA of concerned genes from peripheral blood
cells.

DISCUSSION
The mutation spectrum revealed in this study shows marked
genetic heterogeneity as well as different features from those
found in previous studies. In previous studies except ones
about CEP290, mutation in GUCY2D was most common
(6%–21%), followed by CRB1, and RPE65, and the mutations
in RPGRIP1 accounted for less than 5% of all mutations [5,
7,8]. In our series, however, neither GUCY2D mutation nor
the intronic mutation, CEP290: c.2991+1665A>G was never
found [11]. In addition, the molecular detection rate was only
15% in this study, despite the inclusion of all nine known

genes, which is substantially lower than about 50% in other
large studies. Finally, all three patients harboring two
mutations were compound heterozygotes, and all mutations
were restricted to families. This mutation spectrum suggests
that there might be no founder mutation, but rather that Korean
LCA patients show marked genetic heterogeneity. Our
findings also mean that it will be difficult to develop an
effective screening method, and that a search for new
candidate genes is warranted.

We identified three novel unclassified variants in
RPGRIP1. A possibility of pathogenic mutation remains
questionable; patients heterozygous for each variant do not
have a second mutation in the same gene, and functional
effects of such a substitution is controversial on predictions.
However, a large gene rearrangement or hidden mutation in
the unscreened region could be complicated with these
variants observed in this study. We excluded the possibilities
of a large deletion or duplication using the gene dosage test,
but we could not exclude the possibility of a hidden splice
mutation because we had failed to recover the mRNA of
RPGRIP1 from peripheral blood cells. Mutation in another
gene may have an additive effect to these variants of unknown
significance. Interestingly, all these heterozygous missense
variations were in RPGRIP1. Because RPGRIP1 protein
closely interacts with RPGR in the retinal pigment epithelium
and RPGR causes severe X-linked RP, a digenism by
RPGRIP1 and RPGR may be a potential cause of many
heterozygotes in this study.

The locus heterogeneity and allelic heterogeneity of LCA
necessitate the development of an effective screening tool,
such as a microarray, or the establishment of genotype-
phenotype correlations, and is also require comprehensive
mutational analysis in this field. This study is not only one of
a few reports of comprehensive mutational analysis but to our
knowledge is also the most comprehensive one in the non-
Caucasian. In summary, our study shows marked genetic
heterogeneity in Korean LCA patients and reveals a mutation
spectrum that differs from those previously reported,
indicating a different strategy should be used for the molecular
diagnosis of LCA in the Korean population.
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