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Abstract: Many regions around the globe are subjected to precipitation-data scarcity that often
hinders the capacity of hydrological modeling. The entropy theory and the principle of maximum
entropy can help hydrologists to extract useful information from the scarce data available. In this
work, we propose a new method to assess sub-daily precipitation features such as duration and
intensity based on daily precipitation using the principle of maximum entropy. Particularly in arid
and semiarid regions, such sub-daily features are of central importance for modeling sediment
transport and deposition. The obtained features were used as input to the SYPoME model (sediment
yield using the principle of maximum entropy). The combined method was implemented in seven
catchments in Northeast Brazil with drainage areas ranging from 10−3 to 10+2 km2 in assessing
sediment yield and delivery ratio. The results show significant improvement when compared with
conventional deterministic modeling, with Nash–Sutcliffe efficiency (NSE) of 0.96 and absolute
error of 21% for our method against NSE of −4.49 and absolute error of 105% for the deterministic
approach.

Keywords: maximum entropy; sediment transport; sediment yield; hydrology

1. Introduction

Climate change challenges our capacity to preserve natural resources, such as clean
water and productive soil. The Food and Agriculture Organization named erosion as one
of the most relevant threats to soil conservation and agriculture [1]. Climate change is
blamed for erosion rates increasing by nearly 17% in the USA and Europe until 2050 due to
higher rainfall erosivity [2,3]. This is why soil erosion turned into a key challenge for the
Sustainable Development Goals of the UN [4,5]. Soil erosion also imposes a threat to water
supply, as pollutants and heavy metals are transported along with sediment, augmenting
toxicity, turbidity and eutrophication in aquatic environments [6,7].

In addition, 30% of all land on Earth has an arid or a semiarid climate [8], which
causes some places to be especially vulnerable to climate change and soil erosion [9].
Special attention is required for semiarid regions, since they house and sustain over
14% of the global population and around 70% of the dry-land population [9]. Arid and
semiarid areas are commonly affected by data scarcity, particularly in Africa, Asia and
South America [10–12]. It is necessary to improve sedimentological and other models
in order to better estimate the amount of sediment reaching water bodies. Modelers
normally have information only on daily precipitation data, yet sub-daily processes play a
crucial role in sediment transport, as a substantial amount occurs during high-intensity
storms [13,14]. Therefore, we need a methodology to downscale precipitation duration and
to improve erosion models at the sub-daily scale.

Diverse branches of water sciences point out the use of stochastic methods in hy-
drology as being the next generation of models [15,16]. In this context, a powerful tool
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deployed in several studies over the last decades is the principle of maximum entropy
(PoME—[17,18]). The first applications of the PoME in water sciences were proposed
by Chiu [19] and by Singh and Chowdhury [20] for modeling velocity distribution in open
channels. Since then, several other applications in hydrology, hydraulics and sedimentol-
ogy have been presented [21–25].

de Araújo [26] proposed a PoME-based model to assess sediment yield and reservoir
siltation. The model (sediment yield using the principle of maximum entropy—SYPoME),
however, requires sub-daily data, such as rainfall duration and intensity measurements,
which are often unavailable in arid and semiarid regions [27], such as the Brazilian northeast
region. According to the Brazilian Water Management Agency [28], the country’s semiarid
region has 2163 operating rainfall stations connected to the national weather monitoring
system, which averages one rain gauge per 462 km2. Most of those instruments are
standard Ville de Paris gauges, providing only daily precipitation. Only 36 are active and
reliable automatic stations providing sub-daily precipitation data—one every 27,800 km2,
on average (Figure S1—Supplementary material). The gauging station density is much
lower than in other regions (e.g., the density of automatic stations is one per 3600 km2

in the United States and 77 km2 in Italy—[29,30]). The data series are also not long; only
16 stations have more than 15 years of continuous data.

The Brazilian northeast (106 km2) has an average annual temperature varying between
20 and 28 ◦C and is characterized by a high temporal and spatial rainfall variability [31],
with average annual rainfall between 400 mm and 800 mm (increasing towards the
coast—[32,33]) and evapotranspiration between 2000 and 2600 mm per year [34]. The veg-
etation is mainly Caatinga, formed by deciduous broadleaf bushes. The largest part of
the region is placed over Precambrian crystalline bedrock with shallow soils. In these
areas, groundwater is scarce and usually salty [35,36]. The simultaneous occurrence of
such geological features, concentrated precipitation patterns and high evaporation rates
leads to a scenario where rivers are predominantly intermittent [37]. As a result, water for
over twenty million people living in the Brazilian northeast region is mainly supplied by
reservoirs [6]. The region has a concentration of reservoirs as high as one per 5 km2 [38].
Due to excessive erosion and eutrophication, however, reservoir siltation is one of the key
threats to the water supply in the region [6].

Our objectives are as follows: (1) to propose a temporal down-scaling method to
estimate sub-daily precipitation data from daily precipitation data based on the principle
of maximum entropy (MEDRID); (2) to assess the method quality when implemented on
ungauged regions (spatial-scalability); and (3) to evaluate the effect of the method on the
performance of long-term sediment yield modeling.

In order to achieve these objectives, measured data of high-resolution precipitation
were used to calibrate and validate the MEDRID method, and the statistical distance mea-
sures after Kullback [39] and Fedotov et al. [40] were used to assess spatial scalability.
Measured sediment yield data of seven catchments of different sizes and series durations
were employed to test and validate the improved sediment yield modeling using scaled pre-
cipitation together with the model by de Araújo [26], which is based on entropy equations
and quantifies gross erosion by means of the universal soil loss equation (USLE).

2. Materials and Methods

Sediment yield can be quantified by multiplying gross erosion and sediment delivery
ratio (SDR—[41–43]). These terms are highly nonlinear, and deterministic models do
not always account for their uncertainties [15,43,44]. Therefore, such processes need to be
modeled stochastically and event-wise [15,45]. In this study, the sediment yield of sub-daily
events was quantified using the principle of maximum entropy (PoME). To incorporate
sub-daily rainfall information, we developed temporal-downscaling equations to assess
the effective rainfall duration (D) and its respective 30-min intensity (I30). As proposed
by de Araújo [26], the rainfall duration was drawn on to calculate the SDR, and the I30
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to calculate the erosivity factor of the universal soil loss equation [46], so as to assess
gross erosion.

A new method (Figure 1) was proposed to estimate sediment yield: it consists of
an entropy-based approach to downscale rainfall duration and intensity (the MEDRID—
maximum entropy distribution of rainfall intensity and duration method). We coupled
MEDRID with the SYPoME model to determine an event-wise SDR [26].

Figure 1. Flowchart of the proposed model. The processing is divided in two main parts, the MEDRID
method and the SyPOME model. The two parts are coupled by a Monte Carlo process with multiple
random seeds generated.

2.1. Maximum Entropy Distribution of Rainfall Intensity and Duration—MEDRID Method

Two sub-daily variables were selected to be assessed from daily rainfall data: (1) the
duration–precipitation ratio D/H (D for duration and H for total daily precipitation) and
(2) intensity–precipitation ratio I30/H (where I30 stands for 30-minute intensity). Three
probability density functions were tested to fit D/H frequencies: the beta (B3), the gamma
(G2) and the generalized gamma (G3) distributions [24,47]. For the intensity–precipitation
ratio (I30/H), two probability density functions were tested: the beta (B3) and the uniform
distribution. After calibrating the equations using the principle of maximum entropy [48],
we tested the best fitting equations to measured data, as well as spatial scalability.

Table 1 presents the three probability density functions (PDFs—beta, gamma and
generalized gamma), their constraints and the respective system of equations for parame-
terization. Ψ(·) is the digamma function, the first derivative of Γ(·), the gamma function.
Ψ′(·) is the tri-gamma function, the second derivative of Γ(·). The terms a, b and c in
the three distributions are parameters obtained maximizing entropy using the Lagrange
multipliers method [25]. The systems of equations in Table 1 can be solved using empirical
data (e.g., rain gauge readings, as for this study—[20]). The parameter r in the beta distri-
bution (B3) is a scale factor. For this specific distribution, the random variable X ∈ [0, 1].
The systems of equations were solved with help of the software Octave (v. 5.1.0.0).
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Table 1. Parameterization of PDFs beta (B3), gamma (G2) and generalized gamma (G3). We present the list of constraints
used for each equation and the obtained system after solving with the Lagrange multipliers method.

Equation B3 G2 G3

PDF f (x) =
Γ(a + b)

Γ(a) + Γ(b)

( x
r

)a−1(
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c

[
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iii.
1
c2 ψ′

(
b
c

)
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Additionally, sub-daily data are scarce and stations may cover a large area. It is
important to assess the loss in performance of the method when using data from a distant
station. This loss of performance can be measured as the difference between the calibrated
PDF for the weather station and the expected PDF, if the region of study had such a station.
In this study we compared the variations among four stations with sub-daily data (Aiuaba,
Sobral, Sumé and Gilbués) using the Kullback–Leibler divergence [49] and the Kolmogorov–
Smirnov distance [50,51]. These statistical measures allow us to find similarities between
the areas, and therefore to determine which areas can be modeled with which calibrated
PDF without a significant performance loss.

Let m and n be two populations (sets)—in our study, automatic stations—each with
an associated PDF pm and pn. Kullback and Leibler [49] present a measure that allows
us to compare how different those two distributions are. Known as the Kullback–Leibler
divergence, the DKL is an asymmetric measure, given by Equation (1).

DKL(Pm ‖ Pn) = I(m : n) =
∫ +∞

0
pm(x)ln

[
pm(x)
pn(x)

]
dx (1)

J(m, n) =
I(m : n) + I(n : m)

2
(2)

where pm and pn are continuous probability distributions. I(m : n) can be understood as
the loss of information if the population m is modeled using pn instead of pm. Furthermore,
ref. [39] introduces a symmetric measure, given by Equation (2). J(m, n) is also a measure
of divergence between the distributions pm and pn and can be interpreted as how easily
we can distinguish the two distributions, henceforth called symmetric divergence.

The Kolmogorov–Smirnov distance (δ—Equation (3)) is the maximum distance be-
tween two distributions in their domain and is related to the Kullback–Leibler divergence
by Pinsker’s inequality (Equation (4)).

δ(Pm, Pn) := sup
{∣∣∣∣∫ x

0
pm(x)dx−

∫ x

0
pn(x)dx

∣∣∣∣} (3)

δ(Pm, Pn) ≤
√

1
2

DKL(Pm||Pn) (4)

It is also important to note that J is not an actual distance, while δ is. The PDFs
obtained for each of the four stations will be compared pairwise. The lower the values of
DKL and δ are, the more alike are the two distributions and the lower the loss of information
is between the areas.
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Other Literature Approach

de Araújo [52] also attempted to assess event duration using stochastic modeling
using Equations (5 to 7). D is duration and H daily precipitation. S• is the standard
deviation of the sample. j is a counter index (j-th event). χ is a random number such that
χj ∈ [0, χmax]. χmax is calibrated for each watershed. The author proposes that for each
event j, at least 20 values of χj should be drawn. The simulated duration D would be the
arithmetic average of the 20 produced results.

Dj = D̄ + kjSD (5)

kj =
H j − H̄

SH
χj (6)

D̄− Dj

H̄ − H j =
SD
SH

χj (7)

2.2. Sediment Yield-PoME—SYPOME Method

de Araújo [26] proposed an entropy-based model for event-based SDR (Equation (8))
and sediment yield (SSY – Mg km−1 yr−1). ε̄ (Mg km−1 yr−1) is the gross erosion obtained,
for example, by using the universal soil loss equation—USLE [46], L0 the hill slope length
(m), Lm the maximum sediment travel distance (m), x0 the initial position of erosion in the
hillslope and λ a Lagrange multiplier.

SSY = ε̄× SDR = ε̄×
eλLm(L0 − x0)λ−

(
eλ(L0−x0) − 1

)
λL0

(
eλ(x0+Lm) − 1

) (8)

The SDR is the ratio of sediment yield (SSY) and mobilized sediment (ε̄). The SDR is
physically constrained to a closed interval (SDR ∈ [0, 1]), and it can be interpreted as the
average probability of a detached particle reaching the river system [26]. The SYPoME
model uses as input the duration of the sub-daily precipitation which, in our case, is not
known. The MEDRID method can solve this gap, based on daily precipitation.

2.3. Monte Carlo and MEDRID-SYPoME Coupling

A Monte Carlo approach was used to adapt the SYPoME model [26] and its output to
an interval of possible values of sediment yield associated to a probability function [53].
The results were compared with measured data from seven catchments (Figure 2 and
Table 2) and values from the literature model [41].

Using the MEDRID method we can find the probability distribution function (PDF)
for the duration–precipitation ratio D

H . To model the inherent uncertainty of the duration–
precipitation ratio we used the Monte Carlo approach. For each event in the time interval
∆t, a large number of random seeds (#rand ∈ [0,1]—Equation (9)) are generated and used
as input in the calibrated PDF to assess the duration (Figure 1).

#rand = F
(

x ≤ D
H

)
=
∫ D/H

0
f (x)dx (9)

where f is the calibrated PDF according to Table 1 and F the associated cumulative dis-
tribution function of x. Solving Equation (9) for D/H, with known H, we can obtain the
rainfall duration for each random seed #rand. The set of pairs (D, H) is used as input for
the SYPoME model.

2.4. Gross Erosion and Siltation Assessment

To estimate gross erosion in the catchments we used the universal soil loss equation
(Equation (10)—[46,54]). A more detailed description of each factor and the values for the
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study areas can be found in the supplements to this paper. Siltation (∆V) and sediment
yield are proportional and related according to Equation (11).

ε̄ = R K LS C P (10)

SSY =
∆V ρs

η A ∆t
(11)

where ∆ V is the volumetric siltation, or the reservoir capacity loss (in m3), ρs is the bulk
density of the silted sediment (in Mg m−3), η the trap efficiency of the reservoir (using,
e.g., the method by [55]), A is the catchment area in hectares and ∆ t the interval of time
in analysis.

In order to assess the performance gain by using the MEDRID+SYPoME model, we
compared the measured data with empirically based SDR equations [42]. Gaiser et al. [35]
found that, for the Brazilian northeast region, the most fit among those equations is the one
by Maner [41], (hereafter Equation (12)). Simplício et al. [56] had the same result for the
dry Cerrado region of Gilbués (Figure 2).

SDR = exp
[

2.943− 0.824 log10

(
FL
FR

)]
(12)

FL (m) is the length factor, measured as the maximum distance in the catchment with
a straight line from the outlet to the water divide approximately parallel to the main river.
FR (m) is the relief factor, calculated as the difference between the outlet altitude and the
average altitude of the water divide.

2.5. Study Area

We selected seven catchments in three different states of the Brazilian northeast, all
under dry conditions (Figure 2) to test the method approach for precipitation downscaling
(MEDRID) and the sediment yield assessment model (SYPoME). The catchments vary
widely in area and availability of data (number of years in a time series). They also vary in
terms of land use and land cover. The characteristics of the studied catchments are listed in
Table 2.

Figure 2. Location of study areas (catchments) and automatic rain gauges. All areas are located in
the Brazilian northeast.
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Table 2. Study area information. Lines with same color indicate areas that share automatic rain gauge data.

Basin Area

(km2)

Control

System
Land Use Location

Catchment

Position
Bathymetry Time

Series

Automatic Weather Station

Name Position Recording

Lon Lat First a Second Lon Lat Start End

Canabrava 2.9 Reservoir Agriculture and open range cattle raising Ceará 39.56 W 6.97 S 1944 2000 57 Aiuaba 40.22 W 6.69 S 2004 2014

Aiuaba 11.53 Reservoir Conservation area with native vegetation
(Caatinga) Ceará 40.24 W 6.65 S 2003 2009 7 Aiuaba 40.22 W 6.69 S 2004 2014

Várzea da
Volta 155 Reservoir Agriculture and open range cattle raising Ceará 40.62 W 3.50 S 1917 1997 81 Sobral 40.36 W 3.69 S 2017 2019

Acarape 208 Reservoir Agriculture and open range cattle raising Ceará 38.69 W 4.20 S 1924 1999 74 Sobral 40.36 W 3.69 S 2017 2019

Sumé 2 0.0107 Sediment load Experimental area—preserved vegetation Paraíba 36.88 W 7.67 S - 10 Sumé 36.88 W 7.67 S 1982 1991

Sumé 4 0.0048 Sediment load Experimental area—degraded land without
vegetation Paraíba 36.9 W 7.66 S - 10 Sumé 36.88 W 7.67 S 1982 1991

Gilbués 0.0004 Check dam Abandoned land under desertification
process without vegetation Piauí 45.34 W 9.88 S 2018 2019 1 Gilbués 45.34 W 9.88 S 2018 2019

a The first bathymetry corresponds to the topography in the year of construction.
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The Brazilian northeastern region houses the country’s semiarid region (BSh climate,
according to the Köpper Classification—[35]) and the Caatinga Biome. The Caatinga is
the largest tropical dry forest in the world and houses the highest endemic genera of
all [57,58]. The main economic activities in the region are agriculture (especially maize,
beans and soybeans), livestock and fishing [6]. Due to deleterious practices in agriculture
and overgrazing, the degraded area surpassed 72,000 km2 in the Brazilian Drylands (ca.
8% of its original area—[59]).

As presented in Section 1, the Brazilian northeast region suffers with data scarcity
concerning sub-daily rainfall events. Therefore the selection is restricted to the existing (and
operating) stations. The stations in Gilbués, Aiuaba and Sumé (Figure 2) were maintained
by research groups [13,34,56] and only the station of Sobral is maintained by the Brazilian
Water Management Agency (ANA). Those four stations presented consistent measurements
over at least two years without gaps. Another constraint for the selection of stations was
the proximity to the sediment control equipment. Again, the stations in Gilbués, Aiuaba
and Sumé were installed to monitor experimental basins and are inside the catchment
areas. The Sobral station was chosen because it is in the Várzea da Volta catchment and is
the closest to Acarape under the same climate conditions. For a detailed map of stations in
the region please refer to the Supporting Materials.

Experimental data were used to estimate sediment yield [60]. We used bathymet-
ric assessments from different years of the reservoirs of five catchments (Canabrava,
Aiuaba, Várzea da Volta, Acarape and Gilbués) to estimate the total siltation (∆V—see
Equation (11)). Direct data for sediment yield (SSY) were available at the micro-basins in
Sumé, where monitoring is carried out eventwise [13]. Table 2 lists the type and timing
of available sediment yield data. For each catchment we obtained the time series of daily
rainfall from FUNCEME [61]. Sub-daily measurements are scarce and available for the
whole study period only in one station in Gilbués [56] and one in Aiuaba [34], the basins
with the shortest and most recent time series. Assuming similar climatic and environmen-
tal conditions, we used the data from the Aiuaba station for the analysis of Canabrava,
and from Várzea da Volta for Acarape.

3. Results
3.1. Probability Distribution Functions—MEDRID

Table 3 presents the entropy-based calibrated parameters for B3 (beta distribution),
G2 (gamma distribution) and G3 (generalized gamma distribution). Those values were
obtained by solving the systems of equations in Table 1. In Figure 3 we present the model
evaluators of distributions at the four stations. From the method evaluators we can observe
that B3 represents poorly the distribution when compared with the gamma distributions
(Figure 3). G3 performs slightly better than G2. From Table 3 we see that the parameter c of
the generalized gamma does not sufficiently approach the unit (when c = 1, the gamma
and generalized gamma are equal). The strict two-parameter gamma distribution (G2)
does not quite represent the process, but less skewed function G3 does.

Table 3. Equation parameters for the D/H distribution. a, b and c are the parameters as described in
Table 1. The data used to calibrate the parameters are available in the supplementary material.

B3 G2 G3
a b a b a b c

Sobral 1.124 4.316 0.250 1.525 0.066 2.114 0.678
Aiuaba 1.584 10.686 0.138 1.855 0.004 3.306 0.488
Gilbués 0.696 2.691 0.777 0.953 0.390 2.099 0.812

Sumé 0.955 5.398 0.740 0.911 0.269 1.410 0.818

Two probability distribution functions were tested for the ratio I30/H. The beta
distribution (B3) and uniform distribution allow an explicit definition of lower and upper
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boundaries. For the Sobral, Aiuaba and Gilbués stations the uniform distribution presented
much better results, with Nash–Sutcliffe efficiency (NSE) as high as 0.98, while the beta
distribution had an efficiency lower than 0.50 (Figure 4). In the Sumé station both B3 and
uniform distributions had similar performance with NSE of 0.98 and 0.99, respectively.
In this work we used the uniform distribution for the modeling in all regions.

Additionally, using statistical measures, we calculated the information loss resulting
from using the PDF calibrated for one region into another (Equations (2) and (3)). We com-
pared the four stations with sub-daily data among themselves. The measures (symmetric
divergence and Kolmogorov–Smirnov distance) for the variable D/H are given in Table 4.

Figure 3. Probability distributions and the performance evaluators for the variable D/H.

Figure 4. Probability distributions and the performance evaluators for the variable I30/H.
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Table 4. Values of symmetric divergence and Kolmogorov–Smirnov distance for the generalized
gamma distribution of D/H. The higher the value, the greater the difference between the probabil-
ity distributions.

(a) Symmetric Divergence

Sobral Aiuaba Gilbués Sumé

Sobral 0 0.198 1.210 0.097
Aiuaba 0.198 0 2.494 0.536
Gilbués 1.210 2.494 0 0594
Sumé 0.097 0.536 0.594 0

(b) Kolmogorov–Smirnov Distance

Sobral Aiuaba Gilbués Sumé

Sobral 0 0.242 0.550 0.152
Aiuaba 0.242 0 0.719 0.365
Gilbués 0.550 0.719 0 0.404
Sumé 0.152 0.365 0.404 0

These measures indicate that there is a considerable difference in the duration–
precipitation (D/H) distribution in Gilbués over the other three regions.

Sobral and Sumé also appear to be very similar, despite the distance between them.
Located in the Brazilian Semiarid Region, the stations in Sobral, Sumé and Aiuaba are under
the same major atmospheric process for rainfall formation (the Inter-Tropical Convergence
Zone—ITCZ) and have a similar rainfall regime (more than 70% of the annual precipitation
concentrated in three months) and amount (500–600 mm yr−1). Gilbués has a higher
precipitation rate (1200 mm yr−1) and better temporal distribution. Therefore, based on
statistical distances (Table 4) and regional characteristics, Sobral and Sumé are most similar
and have the lowest information loss when (quality) data from one station are used for
the other region. Aiuaba is also similar to Sumé and (especially) to Sobral. Gilbués has
particular PDF parameters, with both DKL and δ significantly higher when compared with
the other three stations.

3.2. Sediment Yield Modeling

Two models were tested to assess sediment yield: a classic model consisting of the
multiplication USLE gross erosion (ε̄) and empirically based SDR [41], hereby called model
M1, and the proposed MEDRID+SYPoME model (M2).

In Table 5 we present the output of the combination of the MEDRID method and
SYPoME model (M2) for the seven study areas. Average modeled sediment yield at the
outlet varied between 5 (Aiuaba) and 2346 (Sumé 4) Mg km−2 yr−1 and SDR between 5.9%
(Várzea da Volta) and 29.7% (Gilbués). The outputs for sediment yield and SDR of model
M2 passed the normality test [62] and we obtained the confidence interval (p = 0.01) using
a Gaussian distribution. M1 is a deterministic model, thus it has only one single output,
presented in Figure 5.
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Table 5. Modeled values (M2) of sediment yield and SDR for the study areas. The values are shown
in terms of average (µ), standard deviation (σ) and coefficient of variation (CV). Confidence intervals
(CIs) of the average calculated for p = 0.01.

Basin
Sediment yield SDR

(Mg km−2 yr−1 ) (%)

µ σ CV CI µ σ CV CI

Canabrava 664.5 24.9 4% 12.5 13.9 0.2 1.4% 1.04
Aiuaba 5.0 1.2 25% 0.6 14.8 4.2 28.4% 2.12

Várzea da Volta 418.2 20.2 5% 10.1 5.9 0.4 7.3% 0.22
Acarape 189.5 9.1 5% 3.1 8.3 0.7 8.1% 0.23
Sumé 2 13.1 1.8 14% 0.9 23.5 2.6 11.1% 1.32
Sumé 4 2345.6 264.1 11% 132.9 20.4 3.0 14.6% 1.50
Gilbués 2141.7 540.5 25% 272.0 29.7 8.9 29.9% 4.47

In Figure 5, we present two plots. Figure 5a shows modeled (M1 and M2) and
measured values of siltation rate (siltation rate per unit of area) and Figure 5b the modeled
(M1 and M2) values of SDR. The siltation rates generated by our approach (M2) clearly
outperform those based on deterministic methods (M1). When assessing average sediment
yield for each area, our model also outperforms the deterministic model for all experimental
basins, with an error reduction by a factor of at least 2 and as high as 20 (Table 6). In
addition, the new methodology (M2: MEDRID+SYPoME) presented better performance
evaluators (NSE = 0.96 and RMSE = 608.6 ton km−2 yr−1) than the conventional (M1)
approach (NSE = −4.49 and RMSE = 3286 Mg km−2 yr−1).

(a) (b)
Figure 5. M1 and M2 outputs of (a) sediment yield and (b) SDR. Red dots in (a) indicate the measured
values of sediment yield.

By comparing the values of siltation rate in Figure 5a with land use and land cover
(Table 2) we can draw a strong correlation between them. Catchments with preserved
vegetation, such as Aiuaba and Sumé 2, have the lowest siltation rate, over two orders of
magnitude lower than degraded regions, such as Sumé 4 and Gilbués. Basins with the
presence of agriculture (Canabrava, Várzea da Volta and Acarape) presented intermediary
rates, although ten times larger than preserved regions.

Figure 5b shows the modeled average SDR (for the whole time series) of the basins
obtained by M2 and M1 (Equation (12)). Considering the area of the basins (Table 2), we
can observe a dependency of the SDR to the catchment area. Although M2 also showed
a similar tendency, its values of SDR are systematically lower than M1’s. It is interesting
to note that for the catchments Canabrava, Acarape and Várzea da Volta there is almost
no dispersion of SDR values. This is due to the long time series for those experimental
areas. With a long temporal series, the averaging of the SDR of all events tends to a narrow
range of values that can be understood as the basin SDR. Additionally, the Maner equation
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(Equation (12)) allows values of SDR numerically larger than 100 %, which is inconsistent
with the physical interpretation of SDR. Whenever the calculated SDR was larger than the
physical limit, the value was limited to 100 %, as is the case of Gilbués.

Table 6. Measured and modeled values of siltation rate (Mg km−2 yr−1). M1 represents
the classic model using empirically based SDR (Maner, Equation (12)) and M2 the proposed
MEDRID+SYPoME model. Summaru line numbers are in boldface.

Sediment Yield (Mg km−2 yr−1) Relative Error (%)

Measured Modeled Modeled Modeled ModeledName Brune
Coefficient M1 M2 M1 M2

Canabrava 0.98 704 1042 664 48.0% −5.6%
Aiuaba 1.00 4 2 5 −50.0% 27.5%

Várzea da
Volta 0.95 164 824 418 402.3% 155.1%

Acarape 0.98 233 473 191 102.9% −18.1%
Sumé 2 1.00 17 114 13 570.6% −21.8%
Sumé 4 1.00 3857 7644 2314 98.2% −40.0%
Gilbués 1.00 2518 10305 2142 309.3% −14.9%

NSE −4.49 0.96

4. Discussion

The complexity of hydrological processes can be better modeled with the help of
stochastic approaches [15,22]. Ref. [15] proposed a path for sedimentological models
relying on the combination of deterministic and probabilistic models in a so-called third-
generation erosion model, to which our method belongs. By introducing stochastic routines
and calibrating parameters with the principle of maximum entropy, we extracted from the
scarce data more valuable information than by employing deterministic models, and even
preserved the local characteristics of each region. The method performed well across a
large range of time series and catchment-area scales.

4.1. Probability Distribution Functions—MEDRID

In the literature [48,63–65] many probability distribution functions are related to
precipitation processes (e.g., gamma, power-law, exponential); especially concerning its
duration (e.g., gamma, Weibul, lognormal). From Figure 3, we conclude that, although the
gamma distribution (G2) does reproduce the D/H ratio, the generalized gamma distribu-
tion yields the best results in all study areas. Its better fit to the measured data appears to
be related to the high complexity (uncertainty/entropy) involved in rainfall events, when
many factors interact simultaneously. In such conditions, a less constrained distribution
such as the G3 allows for more flexibility and calibration. With one additional parameter,
the function becomes more adaptable to the peculiarities of each region in comparison with
G2. This is confirmed by the values obtained for the parameter c, which never approximate
to one (Table 3). Table 1 shows that a parameter c equal to one reduces a generalized
gamma distribution to a conventional one (G2).

Information entropy is a measure of uncertainty [18]. Therefore, the PoME delivers the
probability distribution function that maximizes the uncertainty under a set of constraints
and avoids unproven assumptions [66]. It can be proven that the uniform distribution,
such as the one obtained for I30

H , has the highest uncertainty (see [18]).
In the selection of the best distribution using the PoME, additionally to the constraints

listed in Table 1, there is an implicit assumption taken: that the data follow a specified
distribution (i.e., beta, gamma, uniform, etc.). Silva Filho et al. [67] pointed out that
the selected constraints of the PoME have to be relevant to the studied variable and
that additional constraints do not necessarily lead to better results. Therefore, as we see
in Figures 3 and 4, the narrowest distribution does not necessarily best suit the model.
The constraints-quality trade-off problem becomes clear in the modeling of rain intensity
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(Section 3.1), where the most suitable distribution is the uniform one. Such a result occurs
because the unproven implicit constraint (the distribution itself) is shown not to be valid.

The use of a uniform distribution for intensity implies that a stochastic approach is
more valid than regression curves, as previously proposed by [68–70]. Therefore, in stochas-
tic models, a more realistic approach to be adopted is the uniform distribution, as expressed
in Equation (13). The value of 30-min intensity (I30) can vary between 0—in the case of
H → 0—and 2H (for a precipitation with duration lower than 30 min). Equation (13) is
a general equation and does not depend on calibration. Nevertheless, the implementa-
tion of Equation (13) also requires a Monte Carlo approach, as presented in Section 2.3,
with drawing of multiple random seeds (#rand).

I30 =
H
D

+ H
(

2− 1
D

)
#rand such that

I30

H
∈ (0, 2] (13)

In terms of regionalization of the MEDRID method, equations calibrated using data
from a gauged catchment can be used in ungauged regions, provided that they have
similar relief and climatic conditions, thus reducing the loss of information. It is important
to note that geographic proximity between the station and the application site is not
enough to guarantee better parameter homogeneity and, thus, good model performance.
The equations from Sumé and Sobral are remarkably similar, although they are more distant
from each other than to Aiuaba. Nevertheless, the conditions of the Aiuaba catchment,
which is higher and prone to orographic precipitation, may explain its distinction from the
others. Finding the causes of similarities between areas, however, surpasses the scope of
this work. Still, from analysis of relief and climate of the studied areas and based on the
statistical distances (Table 4), we can build a map of possible factors that influence such
similarity (Figure 6). The relative position of each area in Figure 6 is based on geographical
location. The connecting lines indicate how similar the areas are to each other.

Figure 6. Clustering (connections) of regionalized PDFs and possible influencing factors for the
similarities, based on relief and climate conditions. Note that nodes are positions to roughly match
the geographical location of each study area (no scale—Figure 2).

De Araújo’s (2017) method of precipitation down-scaling, although simpler, has
two problems. Firstly, each precipitation event is processed by the model only once,
using an averaged duration as input. This reduces the freedom of the model to simulate
extreme cases. The model by de Araújo [52] also tends to represent the process by a linear
function, after the averaging (Figure 7). Secondly, the author’s approach assumes a normal
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distribution of duration and daily precipitation. It is also assumed that both distributions
are related by an unknown scaling factor χ (Equation (7)). None of these assumptions
could be confirmed by experimental data.

Figure 7. Scatter plot of daily precipitation and duration for Aiuaba. Note that both methods depend
on random seeds, therefore the points’ position in the plot is not fixed, but rather an example. Other
examples are available in the supplementary material.

4.2. Sediment Yield Modeling

In all cases the MEDRID+SYPoME model (M2) performed better than the deterministic
model (M1) with empirically based SDR. As shown in Figure 5 and in Table 6, the relative
error was reduced nine-fold, on average. Except for Várzea da Volta, the average error was
21%, five times smaller than the average error for M1. When also excluding Várzea da
Volta, the performance of M1 was similar to values obtained from the literature, see [71].
The Nash–Sutcliffe efficiency of event-wise sediment yield calculated for the catchments of
Sumé 2 and 4 (0.52 and 0.47, respectively) can be classified as satisfactory since its efficiency
is marginally equal to 0.50 [72]. These are, nonetheless, important results, especially
considering the little information required to achieve them. The efficiency of the model for
total siltation rate is 0.96 (Table 6); its classification ranges from very good [72] to good [73].
This supports the argument that stationary parameters such as relief (in our temporal
analysis scale) play a relevant role for sediment delivery mechanisms [56]; they therefore
increase the performance of the model over time.

Both models perform poorly in the assessment of siltation of the Várzea da Volta reser-
voir (see also [35]). This is mainly caused by the peculiarity of its catchment topography
and lithology. As illustrated in Figure 8, the upper (southern) part of the watershed is
formed by a plateau ending in a cliff of over 500 meters in depth formed by soil that is prone
to erosion (USLE parameter K = 0.032 Mg h MJ−1 mm−1—[35]). The lower portion of the
watershed is mostly flat, and its soil has a higher permeability, promoting an interruption of
connectivity and therefore reducing the SDR, similar to the process identified by Medeiros
and de Araújo [31] in a flat area upstream of the Benguê Reservoir in north-eastern Brazil.
Our model (M2) was not able to describe such behavior, although it significantly reduces
the error when compared to the conventional methodology (M1).

One limitation of this study is the use of the universal soil loss equation to assess
gross erosion. The USLE does not directly address gully erosion [46]. Nevertheless, gullies
may be major sediment sources [74], especially in degraded areas such as Sumé 4 and
Gilbués [13,56].
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Figure 8. Topography and river system of the Várzea da Volta Catchment area.

5. Conclusions

We have proposed a novel method to downscale duration and intensity of precipitation
for erosion modeling based on daily data. The best probability distribution function for the
duration–precipitation ratio (D/H) is the generalized gamma distribution (NSE = 0.98).
For the ratio I30/H, the uniform distribution (NSE = 0.47) performs best. The MEDRID
method presents resilience to regionalization, therefore demanding fewer climatological
stations to cover a large area and allowing the implementation of the model in regions with
data scarcity.

Using the downscaled duration and I30 intensity generated by MEDRID, we are able
to assess sediment yield with a higher accuracy than conventional USLE and relief-based
SDR. The coupling MEDRID+SYPoME model allowed assessment of event-wise sediment
yield and presented errors that were six times smaller than the ones from conventional
models. The new model (MEDRID+SYPoME), based on the combination of deterministic
and entropy-based components, improved substantially the performance of assessment of
sediment yield (NSE = 0.96) when compared with deterministic modeling.

Additional studies should be carried out to test and assess the most suited probability
distribution families to precipitation data, especially 30-min intensity. Efforts are still neces-
sary to validate the method’s potential concerning regionalization. It is not at all a trivial
matter to determine which factors (relief, climate, position, etc.) influence homogeneity
between regions, and therefore produce similar PDFs.

The MEDRID method can be used to assess rainfall sub-daily features (duration and
30-min intensity). When coupled as MEDRID+SYPoME, the novel model provides accurate
results for sediment yield across a wide range of catchment areas in catchments with areas
of different orders of magnitude (from 10−3 to 10+2 km2) and land use.
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