
ORIGINAL RESEARCH
published: 13 May 2021

doi: 10.3389/fnbot.2021.659876

Frontiers in Neurorobotics | www.frontiersin.org 1 May 2021 | Volume 15 | Article 659876

Edited by:

Dingguo Zhang,

University of Bath, United Kingdom

Reviewed by:

Jiayuan He,

University of Waterloo, Canada

Siqi Cai,

South China University of

Technology, China

Zhan Li,

University of Electronic Science and

Technology of China, China

*Correspondence:

Hui Zhou

zhouhui@njust.edu.cn

Xinyan Zhang

zhzh_0003@163.com

Received: 28 January 2021

Accepted: 09 April 2021

Published: 13 May 2021

Citation:

Zhou H, Zhang Q, Zhang M,

Shahnewaz S, Wei S, Ruan J,

Zhang X and Zhang L (2021) Toward

Hand Pattern Recognition in Assistive

and Rehabilitation Robotics Using

EMG and Kinematics.

Front. Neurorobot. 15:659876.

doi: 10.3389/fnbot.2021.659876

Toward Hand Pattern Recognition in
Assistive and Rehabilitation Robotics
Using EMG and Kinematics

Hui Zhou 1*, Qianqian Zhang 1, Mengjun Zhang 1, Sameer Shahnewaz 1, Shaocong Wei 1,

Jingzhi Ruan 1, Xinyan Zhang 2* and Lingling Zhang 2

1 School of Automation, Nanjing University of Science and Technology, Nanjing, China, 2 Affiliated Nanjing Brain Hospital,

Nanjing Medical University, Nanjing, China

Wearable hand robots are becoming an attractive means in the facilitating of assistance

with daily living and hand rehabilitation exercises for patients after stroke. Pattern

recognition is a crucial step toward the development of wearable hand robots.

Electromyography (EMG) is a commonly used biological signal for hand pattern

recognition. However, the EMG based pattern recognition performance in assistive

and rehabilitation robotics post stroke remains unsatisfactory. Moreover, low cost

kinematic sensors such as Leap Motion is recently used for pattern recognition in

various applications. This study proposes feature fusion and decision fusion method

that combines EMG features and kinematic features for hand pattern recognition toward

application in upper limb assistive and rehabilitation robotics. Ten normal subjects and

five post stroke patients participating in the experiments were tested with eight hand

patterns of daily activities while EMG and kinematics were recorded simultaneously.

Results showed that average hand pattern recognition accuracy for post stroke patients

was 83% for EMG features only, 84.71% for kinematic features only, 96.43% for feature

fusion of EMG and kinematics, 91.18% for decision fusion of EMG and kinematics. The

feature fusion and decision fusion was robust as three different levels of noise was given

to the classifiers resulting in small decrease of classification accuracy. Different channel

combination comparisons showed the fusion classifiers would be robust despite failure

of specific EMG channels which means that the system has promising potential in the

field of assistive and rehabilitation robotics. Future work will be conducted with real-time

pattern classification on stroke survivors.

Keywords: EMG, kinematics, hand pattern recognition, sensor fusion, machine learning

INTRODUCTION

Stroke is currently the major cause of disability worldwide and more than 17 million people are
estimated to suffer from stroke globally each year (Feigin et al., 2014). 80% acute stroke patients
have upper limb motor impairment, and 50% of such post-stroke patients face reduced arm
function problems even after 4 years (Bernhardt and Mehrholz, 2019). They experienced loss of
sensation, capability, movement, and coordination leading to difficulties surrounding activities of
daily living (ADL). Rehabilitation and assistive robotics represent promising treatment methods
for post-stroke patients’ upper limb recovery and further assist of ADL (Mehrholz et al., 2018).
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Since hand function recovery is one of the most important and
challenging aspects post stroke, robot based neurorehabilitation
and assisting of ADL is a research area of great social and
clinical significance.

Electromyogram (EMG) has been extensively used in driving
the rehabilitation and assistive robotics for stroke. The extracted
information from EMG can be used as a trigger (Dipietro et al.,
2005) or as a proportional control strategy in hand rehabilitation
robotics (Lenzi et al., 2011; Song et al., 2013). Furthermore,
current rehabilitation and ADL assistive devices only use simple
extension-flexion mode, but more tasks such as hand opening,
grip, lateral pinch, and fist etc. are of imperative need in stroke
survivors as well. However, the hand pattern recognition of ADL
tasks remain challenging (Lu et al., 2019). Some studies reported
the classification results of ADL tasks with very mixed results.
The test results from normal subjects in those experiments were
promising (Chen et al., 2017; Castiblanco et al., 2020) but for
some stroke subjects the accuracy was subpar at best (Lee et al.,
2011; Geng et al., 2013; Lu et al., 2019). Hence, more research is
needed to develop a practical and effective pattern recognition
paradigm that can be used in the rehabilitation and assistive
robotics of post stroke patients.

Motion capture technology has been used in many
rehabilitation robots to record kinematics data during the
task and assess the recovery process post stroke (Rose et al.,
2018; Vermillion et al., 2019). Currently, the commonly used
motion capture equipment are marker based multicamera
motion capture system, such as Vicon and Motion Analysis,
etc. However, these devices are expensive and the establishment
of markers on the subjects are time consuming. On the
contrary, some low cost and non-marker based motion capture
technologies have been developed recently, such as Leap motion
(Leap Motion Inc., San Francisco, CA, USA) and Kinect
(Microsoft, USA). Compared with Kinect, the Leap Motion
controller can provide more precise information of the hand
and finger movements (Nizamis et al., 2018). Furthermore,
Leap motion is widely used as an effective human computer
interaction method that can recognize patterns with high
accuracy (Lu et al., 2016; Mantecón et al., 2019; Nogales and
Benalcazar, 2019; Li et al., 2020). Besides, some Leap motion
based hand function assessment system have been developed to
evaluate the recovery progress of post stroke patients (Cohen,
2020). Leap motion is fascinating in the area of rehabilitation
since it can record hand kinematics data with ease of use, low
cost and acceptable precision (Bachmann et al., 2018).

EMG and kinematic recording devices have been jointly
used in the state of the art hand rehabilitation robotics for the
generation of subject specific task kinematics and assessment of
recovery progress post stroke (Rose et al., 2018; Vermillion et al.,
2019). For applications in hand rehabilitation and ADL assisting
robots, the joint use of EMG and Leap motion controller is an
affordable method to obtain muscle activation and kinematics
simultaneously from subjects. To our great knowledge, few
papers have been reported about the use of EMG and Leap
motion sensors together in the area of rehabilitation robotics.
In a recent publication, EMG signals and joint trajectories were
simultaneously recorded by MYO armband and Leap motion

controller (Arteaga et al., 2020). In their work, EMG was used
to classify five patterns and three different activation levels, while
Leap motion was used to calculate joint trajectories. Besides, it
was reported that EMG and Leap motion were used together
to recognize hand pattern of six ADL tasks (Ricardez et al.,
2018). Integrated myoelectric potential from eight channels
were extracted and fused with joint angles to achieve an
average classification of 87.3%. It is desirable to develop pattern
recognition system which is robust to EMG channel failure
and noises. The objective of this study is to develop a pattern
recognition paradigm with EMG and kinematics for future use in
rehabilitation and assistive robotics with high accuracy and ease
use. The contribution of the presented paper will be:

1. Design and implementation of feature fusion and decision
fusion of EMG and Kinematics based hand pattern
recognition system of daily activities based on EMG and
kinematics for post stroke patients.

2. Checking robustness of feature fusion and decision fusion
classifiers by adding different levels of noise and failure of
EMG channels.

In the following sessions, the methods and results of hand
pattern recognition using feature fusion and decision fusion of
EMG and kinematics are described and discussed. In session
II, the recruitment of subjects, the design of daily activities
and experimental protocol, experiment instrument and proposed
classification framework are briefly explained. In session III, the
hand pattern recognition results are compared between EMG,
kinematics, feature fusion and decision fusion of EMG and
kinematics. Furthermore, classification results of different EMG
channel combination and fusion with kinematics are considered.
A discussion is provided in session IV followed by conclusion.

METHODS

Subjects
Ten healthy normal subjects (six male and four females, 20–
24 years old) and five post stroke patients (three male and two
female, 50–81 years old) participated in the experiment and
normal subjects were students of Nanjing University of Science
and Technology. All normal subjects had no hand movement
disorders and were familiar with patterns and data collection

TABLE 1 | Details of five post stroke patients.

Subject Age Gender Months since

onset

Affected side FMA FMA-C

S1 76 Female 1 Left 44 14

S2 50 Male 2 Right 43 12

S3 58 Male 1 Right 64 14

S4 54 Male 4 Right 64 13

S5 81 Female 1.5 Left 63 13

FMA, Fugl-Meyer Assessment Upper Extremity, a score between 0 (no function) and 66

(intact); FMA-C, Part C (Hand) of FMA, a score between 0 (no function) and 14 (intact).
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FIGURE 1 | The eight different hand patterns tested in the experiment.

procedures before the start of the experiment. Three post stroke
patients’ right side was affected and two patients’ left side was
affected after stroke. Hand corresponding to the affected side
of post stroke patients were chosen for pattern recognition
procedure. Impairment severity range of the post stroke patients
were covered with score of FMA (Fugl-Meyer Assessment
Upper Extremity) and FMA-C (Hand part of FMA) (Lu et al.,
2019). Detailed information of the post stroke patients are
given in Table 1. All subjects were informed about the purpose
and experimental procedure of the study. The recruitment of
subjects and the experimental protocols were approved by the
Ethics Committee for Human Research, Nanjing Brain Hospital
Affiliated to Nanjing Medical University.

Experiment Protocol
In the experiment, all the subjects were asked to sit on a chair and
placed their hands loosely on the table surface. The subject were
instructed to perform eight static hand patterns sequentially with
their left hand for normal subjects and affected side hand for post
stroke patients (finger bend, finger close, finger flexion, etc., see
Figure 1). Each pattern was held for 5 s, followed by 10 s of rest
to prevent muscle fatigue. The process was repeated 10 times for
normal subjects and five times for post stroke patients.

Instrumentation and Data Acquisition
In the experiment signals from sensors of EMG and Leap motion
were recorded at the same time. EMG signal were measured
using the Trigno wireless EMG system (Delsys Inc., Natick, MA,
USA) at sampling frequency of 2000Hz (He et al., 2015). In the
study, themuscles of abductor pollicis brevis, flexor carpi radialis,
extensor digitorum and extensor carpi ulnaris of the left hand
were chosen as the sites for myoelectrical recording, see Figure 2.
For each subject, the skin of the recording muscles were cleaned
with 75% alcohol prior to the start of the experiment, and then the
EMG sensors were attached to the muscles with medical grade

double sided adhesive tape. Additionally, a bandage (Kindmax
Inc., Irvine, CA, USA) was used to fix the sensor to the upper
limb to minimize EMG sensor movement and vibration during
the tasks. Besides, an infrared motion sensor (Leap Motion Inc.,
San Francisco, California, USA) was also used to record hand
kinematics at sampling rate of 20Hz. In the study, the subjects
were asked to place their left hand directly above the Leap
motion controller, ∼30–50 cm, see Figure 2. In addition, the
participants were required to place their palm of left side (for
normal subjects) or palm of affected side (for post stroke patients)
facing the device.

Feature Extraction
EMG Feature Extraction

The recorded EMG data were preprocessed via a second-order
Butterworth band pass filter of 20–500Hz. EMG signals of
middle 3s were used in the analysis. A 250-ms-lengths sliding
window with an overlap of 50ms was used to segment the
raw signal and features were extracted within the window. The
following time domain features were used: mean absolute value
(MAV), ZC (zero crossing), slope sign changes (SSC), difference
absolute mean value (DAMV), and variance (VAR), (Englehart
and Hudgins, 2003).

1) MAV

MAV detects the muscle contraction level. MAV is defined as
the sum of the absolute value of the EMG signal, a moving
time window of N samples is used to calculate it with the
following algorithm:

MAV =
1

N

∑N

i = 1
|xi|

2) Zero Crossings
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FIGURE 2 | Demonstration of the experimental setup of EMG and kinematic sensors. EMG signals are recorded from muscles of abductor pollicis brevis, flexor carpi

radialis, extensor digitorum, and extensor carpi ulnaris of the left hand and kinematics data are recorded from Leap motion sensor.

Zero crossings refers to calculating the number of times the signal
waveform passes through the zero point so that it can estimate the
frequency domain characteristics.

3) Slope Sign Changes

This parameter calculates the number of sign changes of the
signal slope. Similarly, it needs a threshold to reduce the
interference caused by noise to the slope sign change.

4) DAMV

DAMV reflects the vibration characteristics of the EMG signal. It
is calculated as follows:

DAMV =
1

N

∑N−1

i= 1
|xi+1 − xi|

5) VAR

VAR is a measure of the power of the EMG signal. It can be
calculated as:

VAR =
1

N − 1

N∑

i = 1

xi
2.

Leap Motion Feature Extraction

Similar to EMG processing, Leap motion signal of middle 3s
were used in the analysis. A 250-ms-lengths sliding window with
an overlap of 50ms was used to segment leap motion data.
For each window, the average of the five frames is extracted
as the kinematics data. Each frame of leap motion controller

contains instant hand skeleton data of the recorded scene. In the
experiment, Leap motion controller was recording at 20 frames
per second. Extracted joint angle and finger-to-palm distance
were used as kinematic features for recognition of different
patterns. A 19-dimensional feature sequence is then established
in each frame of kinematic data, see Figure 3. Among them, T1
and T2 are the joint angles of the thumb, I1–I3 are the joint angles
of index finger, M1–M3 are the joint angles of middle finger, R1–
R3 are the joint angles of ring finger, P1–P3 are joint angles of the
little thumb, and distances from each of the five fingertip to palm
are given as D1–D5.

1) Joint Angle

The joint angle refers to the angle between the joints of the
palm, that is, the angle formed betweenMetacarpal and Proximal,
Proximal and Intermediate, and Intermediate and Distal of each
finger. The calculation formula is:

θ = arccos

→
u ·

→
v

|
→
u | · |

→
v|

Eu and Ev are the two adjacent parts linked to the joint of a finger.
The calculated joint angle range is [0◦,180◦]. When the palm is
fully opened, the angle value of each joint reaches the maximum.
Since the Thumb finger does not have Metacarpal, there are only
two joint angles, and the remaining fingers have three joint angles
each. Thus, a total of 14 joint angle feature values were used for
one hand, see Figure 3.

2) Finger-to-Palm Distance
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FIGURE 3 | Joint angle and finger-to-palm distance kinematic features were extracted from Leap motion controller.

The distance from the fingertip to the palm is calculated as the
Euclidean distance between the fingertip of each finger and the
palm. The calculation formula is:

Di = ||Pi − O||,i = 1,2,3,4,5

Point Pi is the position coordinate of the fingertip of each finger,
and point O is the position coordinate of the palm. When the
palm is fully opened the distance from the fingertip to the palm
reaches the maximum. A total of five fingertip distance were used
as distances features, see Figure 3.

Proposed Classification Framework
Feature fusion and decision fusion of EMG and kinematics were
used to achieve hand pattern recognition, respectively. Among
them, the feature sequences extracted from EMG data and Leap
Motion data were fused together as inputs to the classifier, which
is called feature fusion shown in Figure 4A. For decision fusion,
the Leap Motion feature and the EMG feature were first input to
the classifier separately, then the probabilities output of the two
classifiers were superimposed to finally obtain the classification
result, see Figure 4B.

Linear discrimination analysis (LDA) is an easy and effective
classifier that was used because it gives high performance despite
low computational cost and robustness for long term usage (Chen
et al., 2013). The experiment uses a 10-fold cross-validation
method to train the classifier multiple times to ensure that each
data can be used as training data and test data. The accuracy
of each test is the ratio of the number of correctly recognized
patterns to the total number of tested patterns. The classification
rate of each subject is taken as the average of 10 times of
cross-validation training results. In this experiment, the final

accuracies were calculated as the mean of 10 healthy subjects
and five post stroke patients. Python programming language
was used to implement the classification algorithm. One-Way
ANOVA was used to compare the classification results of EMG,
kinematics, feature fusion and decision fusion of EMG and
kinematics, respectively. The significance threshold was set to
0.05 in the experiment.

Noise Contamination
Performance of a classification model in the presence of noise is
an important area to address. Hence, we must assess the model’s
tolerance of input perturbations. For that reason, three different
levels of Gaussian noise are added to the raw EMG data to
contaminate it and then the contaminated data was fed to the
classifiers. Since raw inputs’ given order of magnitude is 10−5, we
set the noise levels accordingly to 1 × 10−5, 2 × 10−5, and 1 ×
10−4 (Jia, 2020).

RESULT

Comparison of Classification Performance
for Different Fusion Strategy
Representative EMG and kinematic data of different patterns
from one normal subject are shown in Figure 5. In the figure,
EMG signals are recorded from muscles of abductor pollicis
brevis, flexor carpi radialis, extensor carpi ulnaris, and extensor
digitorum. It can be observed that muscle activity patterns are
different within four muscles during different tasks. In addition,
Leap motion sensor were used to track the participant’s hand
to monitor the kinematics. Then the provided features of joint
angles and finger-to-palm distances were estimated from the
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FIGURE 4 | Proposed classification framework of the system. (A) Feature fusion of EMG and kinematics (leap motion); (B) Decision fusion of EMG and kinematics

(leap motion).

kinematics data. It can be seen from the figure that the kinematics
are quite different between the eight hand patterns.

For 10 normal subjects, average hand pattern recognition
accuracy was 88.71 ± 2.79% for EMG features only, 84.49 ±
6.77% for kinematic features only, 96.90 ± 1.81% for feature
fusion of EMG and kinematics, 93.91 ± 2.57 % for decision
fusion of EMG and kinematics (Figure 6). It can be observed
after feature fusion that classification accuracy have increased
to 96.90% and standard deviation have decreased to 1.81%.
From the Figure 6, it can also be seen that the accuracy of
pattern recognition using feature fusion of EMG and kinematic
is significantly larger than that of using kinematic features
alone (p = 0.001). Besides, decision fusion method comparison
with kinematics only was statistically highly significant as

well (p = 0.01). Moreover, there was significant difference
between EMG and decision fusion of EMG and kinematic (p =
0.003,). In addition, there was no significant difference between
kinematic features only and EMG features only in classification
rate. Difference between feature fusion and decision fusion of
kinematics and EMG was significant (p= 0.05).

For the post stroke patients, hand pattern recognition
accuracy was 83 ± 8.21% for EMG features only, 84.71 ±
4.54% for kinematic features only, 96.43 ± 3.83% for feature
fusion of EMG and kinematics, 91.18 ± 5.50% for decision
fusion of EMG and kinematics (Figure 7). It is observable
that both fusion methods are able to achieve average accuracy
higher than 90%. From Figure 7, it is noticeable that pattern
recognition accuracy using fusion features of kinematics and
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FIGURE 5 | Representative EMG and kinematic data of eight hand patterns recorded from one subject. Patterns 1–8 are: finger bend, finger close, finger flexion, hand

open, lateral pinch, fingertip to fingertip, fist, and cylindrical grip, respectively. The top row kinematic data are recorded from Leap motion. The EMG data of CH1–CH4

are recorded from muscles of abductor pollicis brevis, flexor carpi radialis, extensor digitorum, and extensor carpi ulnaris, respectively.

EMG is significantly larger than solely using kinematics features
(p = 0.019). Additionally, there was no significant difference in
classification accuracy between decision fusion of kinematics and
EMGmethod and kinematics features only method (p= 0.151).

Classification Performance With Noise on
EMG Recordings
Comprehensive comparison between three levels of noisy
contaminated data was made for EMG only, decision fusion
and feature fusion of EMG and kinematics. Table 2 displays
robustness result for normal subjects and post stroke subjects. It
can be observed fromTable 2 that classifiers realize near exact test
accuracy when provided with 1× 10−5 level of additive noise. But
1 × 10−4 level of additive noise decreases test accuracy greatly
for EMG only classifier for both normal subjects and post stroke
subjects. For 1 × 10−4 level of noisy data EMG decreases test
accuracy from 85.91 to 58.88% for normal subjects and from
81.07 to 53.50% for post stroke patients. But test accuracy of
decision fusion and feature fusion did not suffer such sharp
decrease. For decision fusion decrease was from 93.54 to 88.13%
for normal subjects and from 91.11 to 86.04% for post stroke
patients. Similarly, feature fusion decrease was from 96.61 to
90.13% for normal subjects and from 95.61 to 91.07% for post
stroke patients. It is distinguished that feature fusion method
provides best performance which is robust to noises.

Classification Performance With Different
Channel Combinations
Comparison of hand pattern recognition accuracy between
different classification models are made with 15 different
channels combinations. Combinations are as following:
four single channels, six dual channels, four three channel
combinations, and one with all four channels combined.
Investigation is carried out for both normal subjects and post
stroke patients.

Figure 8 displays recognition accuracy with different channels
combination for normal subjects. The line showing 0.8449
represents pattern recognition accuracy using kinematics only.
By increasing EMG channels from one to four, the overall
classification accuracies are increased for EMG only classifier.
When a single EMG channel is used for recognition, the highest
recognition accuracy is produced by C1 for EMG only classifier.
For dual channel combinations, C23 produced lowest accuracy,
and C14 produced highest accuracy for EMG only classifier.
Furthermore, between three channel combinations, C124 and
C234 produced highest and lowest recognition accuracy for EMG
only classifiers. And from the Figure 8 we can see combining
all four channels into one yields the best overall accuracy for all
classifiers. Even with cases of single EMG channel, it is evident the
test accuracy is still high after fusion with kinematics. This fusion
based method makes the classifier robust despite potential failure
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FIGURE 6 | Accuracy comparisons of pattern recognition using EMG only,

kinematics only, feature fusion of kinematics+EMG, and decision fusion of

kinematics+EMG for normal subjects. * Denotes p < 0.05, ** Denotes p <

0.01.

FIGURE 7 | Accuracy comparisons of pattern recognition using EMG only,

kinematics only, feature fusion of kinematics+EMG, and decision fusion of

kinematics+EMG for post stroke patients. * Denotes p < 0.05.

of specific EMG channels. Furthermore, feature fusion method
produces slightly better classification performance than decision
fusion method in this study.

On the other hand, Figure 9 shows the recognition results
with different channels for post stroke patients. From Figure 9 it
is visible that EMG only classifier produces lower test accuracy
for post stroke patients than normal subjects. Classification
accuracies are increased by rising the number of EMG
channels, just as observed for normal subjects. Besides, it was
apparent for both normal subjects and post stroke patients
that channel combinations that included the channel C1 gave

better performance than the combinations that didn’t include
this specific channel. This suggests C1 would be the optimal
recording site for hand pattern recognition with EMG based
classifier. Moreover, the lower classification accuracy were
improved by fusion with kinematics. After fusion of EMG
data with kinematics the classification performances among
post stroke patient group are very close to results obtained for
normal subjects.

DISCUSSION

In this study, a pattern recognition method was proposed
that combined EMG with kinematics data for classification
toward application in upper limb assistive and rehabilitation
robotics. The feasibility of the proposed method was
demonstrated by conducting experiments on 10 normal
subjects and five post stroke patients. Classification accuracy
was improved with the fusion method as only EMG and
kinematics classification separately were unsatisfactory.
Robustness of the model was validated with noise and channel
combination comparison.

Fusion of EMG With Kinematics for Hand
Pattern Recognition
EMG has been widely used for pattern recognition for many
years, especially for applications in prosthesis (Lee and Saridis,
1984; Ajiboye and Weir, 2005; Kuiken et al., 2009). The use of
EMG in driving assistive and rehabilitation robotics post stroke
is increasing recently (Hu et al., 2013; Leonardis et al., 2015;
Park et al., 2020). However, the EMG based pattern recognition
performance in assistive and rehabilitation robotics post stroke
remains unsatisfactory (Lu et al., 2019). In recent years, kinematic
sensors have been increasingly used for hand pattern recognition.
Various types of kinematics sensors were used for pattern
recognition, such as motion capture devices (Pun et al., 2011),
inertial measurement unit (IMU) (Kim et al., 2019), and strain
sensors (Ferrone et al., 2016) etc. However, most commercially
available kinematics devices are expensive and complex to set up
such as wearable data gloves, Vicon motion sensor system. While
on the other hand, leap motion device is a cheap, convenient and
markerless hand kinematic recording device. Hence, combining
kinematics obtained from leap motion device with EMG was
interesting to make the proposed model cost-effective.

In this study, we propose a method of combining EMG
and kinematics together for hand pattern recognition toward
assistive and rehabilitation robots. The proposed fusion methods
of EMG and kinematics can improve classification accuracy of
hand patterns in daily activities. Experiments using proposed
model of feature fusion and decision fusion was conducted on 10
normal subjects and five post stroke patients showed increased
classification accuracy. This classification accuracy is comparable
to other sensors fusionmethod such as EMG and force myograph
(FMG) (Jiang et al., 2020), EMG and IMU (Georgi et al., 2015),
and EMG and strain sensors (Landgraf et al., 2018). However,
Leap motion is easy to use and off-the-shelf compared with
these sensors.
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TABLE 2 | Test accuracy of classifiers when given different levels of noise.

Noise level Normal subjects Patient after stroke

EMG Feature fusion Decision fusion EMG Feature fusion Decision fusion

1e−5 85.91% 93.54% 96.61% 81.07% 91.11% 95.61%

2e−5 81.87% 92.37% 95.57% 77.21% 89.89% 95.39%

1e−4 58.88% 88.13% 90.13% 53.50% 86.04% 91.07%

FIGURE 8 | Classification accuracy of different channel combinations for hand pattern recognition for normal subjects. C1–C4 are recorded from muscles of abductor

pollicis brevis, flexor carpi radialis, extensor digitorum and extensor carpi ulnaris, respectively.

To our great knowledge, very few works has been reported
about the fusion of EMG and Leap motion based kinematics for
hand pattern recognition of daily activities. High accuracy was
successfully achieved for post stroke patients by implementing
the proposed method of feature fusion and decision fusion from
EMG channels and Leapmotion. Themodel obtained satisfactory
test accuracy of 96.43% for feature fusion and 91.18% for decision
fusion of EMG and kinematics. Ricardez et al. (2018) conducted
similar experiment on only three normal subjects using 8-
channel EMG and leap motion but overall classification accuracy
was <90%. No publication yet have provided experimental
results on stroke patients with fusion of EMG and Leap motion
for hand pattern recognition. Highly accurate, cost-effective, and
limited EMG electrode nature of the fusion method would be
meaningful in a practical sense.

Robustness Analysis of the Proposed
Methods
Checking robustness of the proposed method is imperative to
investigate its stability against different levels of noise. Table 2

displayed comparison of classificationmodels after fed with three
different level of noise. The chosen levels of noise were 1 ×
10−5, 2 × 10−5, and 1 × 10−4. Table 2 showed great decrease
in test accuracy for EMG only classifier whereas, the proposed
feature fusion and decision fusion of EMG and kinematics
classifiers saw small decrease meaning they are robust to
EMG noise.

To check robustness of the classifier on the condition that
one or multiple EMG channels fail, we compare the classification
performance of 15 different EMG channel combinations. If
channels fails, the overall classification accuracies would decrease
with the number of channels. However, after fusion with
kinematics the classifier would be robust from channels failure.
It was observed that after fusion of single channel EMG with
kinematics, the classification accuracy could reach close to 90%
for both normal subjects and post stroke patients. Hence, the
proposed fusion method would use minimal number of EMG
electrodes without the deterioration of the classification accuracy.
To our great knowledge, very few publications have verified
robustness of fusion of EMG and Leap motion.
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FIGURE 9 | Classification accuracy of different channel combinations for hand pattern recognition for post stroke patients. C1–C4 are recorded from muscles of

abductor pollicis brevis, flexor carpi radialis, extensor digitorum, and extensor carpi ulnaris, respectively.

Limitation of the Study
In this study, FCA and FCA-C score shows that the five recruited
patients had mild to no restrictions on activities of daily life.
However, most post stroke patients have low FCA score and
require assistance of robotics for daily activities. Lu et al. (2019)
reported the feasibility of hand pattern recognition under the
assistance of robotic hand on post stroke patients with FCA-
C score ranging from 0 to 7. In this study, rehabilitation
and assistive robotics haven’t yet been implemented for stroke
patients. In future, we would test our classification accuracy on
stroke patients with lower FCA score with the help of assistive
and rehabilitation robotics.

The proposed method uses simple feature fusion and decision
fusion because the main purpose of this study was to validate the
feasibility of fusion with EMG and kinematics for hand pattern
recognition in normal subjects and stroke patients. The results
produced an average accuracy of above 90% for both feature
fusion and decision fusion method. In the future, we would
use more complex algorithms to optimize fusion methods and
further improve the classification accuracy. Another limitation
of the proposed method is that the dataset were trained offline
and no online experiment was done. Future work will focus on
real-time pattern recognition using the method presented here.

CONCLUSION

This paper proposes a method that applies feature fusion and
decision fusion using EMG features and kinematic features
for hand pattern recognition toward application in upper limb

assistive and rehabilitation robotics. The results showed that
the infused kinematic features could improve the classification
accuracy compared with EMG features only for hand pattern
recognition of ADLs. Robustness of the proposed method was
demonstrated by adding noise to EMG data and comparison
between different channel combinations. Classification accuracy
of feature fusion and decision fusion was above 90% for both
normal subjects and post stroke patients which means that the
system has significant potential in the field of assistive and
rehabilitation robotics. Future work will be conducted with real-
time pattern classification on stroke survivors.
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