
RESEARCH ARTICLE

Evolutionary Quantitative Genomics of
Populus trichocarpa
Ilga Porth1,2☯, Jaroslav Klápště1,3☯, Athena D. McKown1, Jonathan La Mantia1,4, Robert
D. Guy1, Pär K. Ingvarsson5, Richard Hamelin1, Shawn D. Mansfield6, Jürgen Ehlting7, Carl
J. Douglas8, Yousry A. El-Kassaby1*

1 Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4,
Canada, 2 Département des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et de
Géomatique, Université Laval, Québec, QC, G1V 0A6 Canada, 3 Department of Genetics and Physiology of
Forest Trees, Czech University of Life Sciences, Prague, 165 21, Czech Republic, 4 Corn, Soybean and
Wheat Quality Research Unit, United States Department of Agriculture, Wooster, Ohio, 44691 United States
of America, 5 Department of Ecology and Environmental Science, Umeå University, Umeå, SE-901 87,
Sweden, 6 Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada,
7 Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC V8W 3N5,
Canada, 8 Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

☯ These authors contributed equally to this work.
* y.el-kassaby@ubc.ca

Abstract
Forest trees generally show high levels of local adaptation and efforts focusing on under-

standing adaptation to climate will be crucial for species survival and management. Here,

we address fundamental questions regarding the molecular basis of adaptation in undo-

mesticated forest tree populations to past climatic environments by employing an integra-

tive quantitative genetics and landscape genomics approach. Using this comprehensive

approach, we studied the molecular basis of climate adaptation in 433 Populus trichocarpa
(black cottonwood) genotypes originating across western North America. Variation in 74

field-assessed traits (growth, ecophysiology, phenology, leaf stomata, wood, and disease

resistance) was investigated for signatures of selection (comparing QST -FST) using cluster-

ing of individuals by climate of origin (temperature and precipitation). 29,354 SNPs were

investigated employing three different outlier detection methods and marker-inferred relat-

edness was estimated to obtain the narrow-sense estimate of population differentiation in

wild populations. In addition, we compared our results with previously assessed selection of

candidate SNPs using the 25 topographical units (drainages) across the P. trichocarpa
sampling range as population groupings. Narrow-sense QST for 53% of distinct field traits

was significantly divergent from expectations of neutrality (indicating adaptive trait varia-

tion); 2,855 SNPs showed signals of diversifying selection and of these, 118 SNPs (within

81 genes) were associated with adaptive traits (based on significantQST). Many SNPs were

putatively pleiotropic for functionally uncorrelated adaptive traits, such as autumn phenol-

ogy, height, and disease resistance. Evolutionary quantitative genomics in P. trichocarpa
provides an enhanced understanding regarding the molecular basis of climate-driven selec-

tion in forest trees and we highlight that important loci underlying adaptive trait variation also

show relationship to climate of origin. We consider our approach the most comprehensive,
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as it uncovers the molecular mechanisms of adaptation using multiple methods and tests.

We also provide a detailed outline of the required analyses for studying adaptation to the

environment in a population genomics context to better understand the species’ potential

adaptive capacity to future climatic scenarios.

Introduction
Knowledge about the genetic basis of adaptive quantitative traits in forest trees and genetic dif-
ferentiation in response to selection facilitates the prediction of long-term responses to climate,
but the genetic basis of adaptation is not comprehensively understood [1]. High levels of local
adaptation due to consistent natural selection in a given environment resulted in local popula-
tions that have their highest fitness at their original provenance, and consequently, are differen-
tiated from non-local populations. Within population diversity is fundamental to species
survival in unpredictable environments, and therefore also relevant for conservation and forest
management ([2,3]). Recent studies within forest trees have investigated the association of
local climate and geography with either randomly identified loci (Pinus taeda: [4]; Cryptomeria
japonica: [5], or candidate functional genes (Picea abies: bud set candidate genes, [6]; Populus
balsamifera: flowering time candidate genes, [7]) to uncover genes underlying local adaptation.
The genetic architecture underlying adaptive phenotypes of forest trees is generally highly
complex (e.g. [8]). Therefore, untangling the relationships between adaptive loci and the role of
climate in selection vs. neutral evolutionary processes is inherently difficult.

Evidence for potential adaptive significance of a genetic marker is often interpreted from
‘FST outlier’ analyses where genetic loci significantly differ in their allelic frequencies among
populations. These ‘outliers’ can be efficiently detected using multilocus scans comparing pat-
terns of nucleotide diversity and genetic differentiation to the simulated genome-wide neutral
genetic background ([9,10]). For instance, this methodology has led to the detection of SNPs
implicated in local climate adaptation in Picea ([11,12,13]). In order to obtain a detailed under-
standing of how populations have diverged in response to climate variation, such FST outliers
can be tested for associations with an adaptive trait and an environmental variable to substanti-
ate the evidence for their involvement in local adaptation ([14,15]). Integrating quantitative
and population genomics is therefore essential to determine the degree to which genetic and
phenotypic variation are driven by selection as opposed to neutral processes (e.g. genetic drift).
Specifically, this allows for comprehensive information from genome-wide association studies
(GWAS), QST quantitative genetics analysis (i.e. ‘top-down’ approaches, [16]) and landscape
population FST outlier analysis (i.e. ‘bottom-up’ approaches, [17]) be merged.

The existence of interaction effects among different loci within co-adapted gene complexes
has long been recognized [18]. Yeaman (2013) suggested that ecological selection might even
promote the physical clustering of locally adaptive loci through genomic rearrangements [19].
Landscape population genomics can identify genome regions significantly associated with spa-
tial and temporal environmental gradients [3]. For instance, the study using natural Arabidop-
sis genotypes spanning the species’ range revealed that local adaptation might be maintained
by independent target loci enriched for molecular processes that exhibit their major genetic
effects within distinct local environments but are neutral in others [20]. The geographic varia-
tion in the degree to which a genetic region under selection responds is termed “conditional
neutrality” [21] and suggests a given species has not uniformly responded to an environmental
pressure or that the pressure is not equally active across a species range. Importantly, the
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assessment of local adaptation in this work on Arabidopsis involves the study of fitness traits
such as fecundity and survival (viability) ([20,22]). In addition, there also exist traits that
increase fitness in one environment, but reduce it in another. Ecological genetics can more eas-
ily explore the genetic changes over time in annuals (due to their short generation times)
involving multiple generations studied under a changing environment ([23,15]). This is less
feasible for long-lived forest trees. However, the estimation of quantitative genetic parameters
using SNP marker-inferred relatedness estimation to obtain narrow-sense estimates of herita-
bility and QST in wild populations [24] can allow monitoring adaptive genetic responses along
an ecological time-scale [15].

In this study, we integrated an extensive body of results on the genetics of wild Populus tri-
chocarpa Torr. & A. Gray (black cottonwood) to understand adaptation to climate. All poplars,
aspens, and cottonwoods (genus Populus) play important roles in natural ecosystems as pio-
neer species ([25,26]) and are economically important for various industrial products with an

Fig 1. Geographical origins of 433 P. trichocarpa genotypes collected across 140 unique locations within the Pacific Northwest (British Columbia,
Canada; Oregon, USA) and grouped into four distinct climate clusters using local temperature and precipitation records for location of origin. The
climate regions were identified based on K-medoids clustering using the mean annual temperature (°C) between yrs 1971–2002 (MAT_1971–2002), the
number of frost-free days (NFFD_1971–2002), and the mean annual precipitation (mm), observed between yrs 1971–2002 (MAP_1971–2002). Color coding
is as follows: (a) population averages for MAT_1971–2002; NFFD_1971_2002: dark red (9.5°C; 287.1d); red (8.1°C; 267.2d); orange (6.4°C; 215.2d); yellow
(4.2°C; 175.4d); (b) population average for MAP_1971–2002: dark blue (2805.9mm); blue (1571.8mm); light blue (1517.0mm); green (744.2mm). We note
here that canonical correlations between geography and ecology were high (r = 0.9 for the first canonical variable component).

doi:10.1371/journal.pone.0142864.g001
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increasing role as bioenergy crops ([27,28,29,30]). Populus species are still largely undomesti-
cated with very low population differentiation indicative of extensive long-distance intraspe-
cific gene flow [31]. In western North America, P. trichocarpa has an extensive cordilleran
range (31–62°N), yet with no clear north-south differentiation in genetic diversity (and no
decreasing genetic diversity with latitude), consistent with the species’ colonization history
from multiple potential glacial refugia [32]. Several studies have indicated subtle sub-structure
in P. trichocarpa ([33,34,35]) relating to isolation-by-distance (IBD; i.e. the decrease of genetic
similarity among populations with increasing geographical distance between these populations
reflected in continuous patterns of genetic differentiation and allele frequency variation in the
species [34] as opposed to natural barriers causing discrete local genetic clusters), introgression
and adaptation [36]. We explored the extensive body of data on the genetics of P. trichocarpa,
including genome-wide coverage of SNPs [35], and comprehensive GWAS results from wood
characteristics [37], leaf rust fungus (Melampsora xcolumbiana) resistance [38], biomass, eco-
physiology, leaf stomata and phenology traits [39]. We studied the divergence patterns of phe-
notypic variation and SNPs among distinct climate clusters in 433 unrelated P. trichocarpa
genotypes originally collected throughout the northern two-thirds of the species’ latitudinal
range (excluding the highly diverged Californian population Tahoe: [34], [40]). We tested
whether phenotypic variation in traits was diverged among the climatic regions (based on non-
neutral QST), as would be expected of adaptive variation. We then predicted that SNPs that are
most diverged among different climatic regions would be associated with mapped genes that
underlie adaptive phenotypic variation [13].

In brief, we used an integrative analysis of quantitative traits and genetic markers to investi-
gate climate adaptation in wild P. trichocarpa populations, we developed an integrative
approach through merging genomic-based datasets and results. (1) The effects of individual loci
were first separated from confounding population effects using spatial PCA (sPCA) to investi-
gate the presence of local and global genetic structures. Following this assessment of population
structure using genetic markers showing evidence of only one single genetic structure, distinct
population clusters were generated based on climatic factors and this sub-population clustering
was used in subsequent analyses (Fig 1). (2) The genetic differentiation in quantitative traits
(narrow-senseQST) among populations defined by climate clusters was calculated involving the
estimation of relatedness based on genetic markers. (3) In parallel, the divergence of genetic
markers (FST outlier analysis) among populations defined by climate clusters was assessed. (4)
The significance of quantitative trait divergence among populations, as defined by climate clus-
ters, was assessed by comparing the observed QST values with the simulated distribution ofQST-
FST for a neutral trait. If the null hypothesis was rejected, the trait was considered adaptive. (5)
GWAS results identifying the SNP variants underlying adaptive traits were incorporated. If
these SNP variants also corresponded to loci under selection (employing four different outlier
detection methods), then, the SNP variants were considered adaptive. This comprehensive anal-
ysis of genomic and phenotypic information underscores the necessity of merging multiple
datasets to more fully understand evolutionary genomics of P. trichocarpa.

Results

Population structure assessment
Negative eigenvalues from sPCA were negligible (Fig 2), suggesting no local genetic clusters. By
comparison, the presence of IBD was verified by large positive eigenvalues (Fig 2). These results
were further confirmed by the local and global tests within the “adegenet” program (see Meth-
ods). While, again, we did not detect local genetic structure in P. trichocarpa (local test
P = 0.937), we did identify global genetic structure attributed to IBD (global test P = 0.001) that
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was observed across the entire population involving the 140 unique geographical locations rep-
resented by one randomly chosen genotype.

Divergence of quantitative characters (QST) among climate clusters
We calculated narrow-sense QST values for 74 distinct field-assessed traits for the study popula-
tion. Assessments included 16 wood, 12 biomass, 14 phenology, 18 ecophysiological, 13 leaf
stomata, and one rust resistance phenotype (S1 Table). Observed QST values for each trait were
compared to the simulated distribution of QST-FST values for a neutral trait (simulating a range
of possible demographic scenarios, see Methods). Among all traits, 53% (39/74 traits) had QST

values significantly different from zero and therefore were classified as adaptive (Table 1). The
highest number of significant QST values was observed among biomass traits (76%), phenology
traits (70%), ecophysiology traits (64%) and leaf rust resistance (100%). By comparison, only
25% of wood-based traits had significant QST values. QST values for traits that significantly
diverged among the four climate clusters ranged from 0.03 (δ15N, i.e. stable nitrogen isotope
ratio) to 0.26 (bole biomass). Among all tested traits, the climatic clusters best explained the
phenotypic variation in phenology based on the PST values, ranging from 17% (100% leaf yel-
lowing) to 24% (bud set). Among wood characteristics, two cell wall sugar traits (% galactose
and % arabinose in dry wood) and two wood ultrastructure attributes (fiber length and microfi-
bril angle) showed significant QST values. The climatic clusters explained 13 and 12% of the
arabinose and galactose content, respectively.

Identification of SNPs under selection
Using both unsupervised and climate-based SPA, a total of 1,468 SNPs were identified being
under selection at a 5% cutoff for each method (S2 Table). We also performed FST outlier

Fig 2. Identification of isolation-by-distance (IBD) among 433 P. trichocarpa genotypes based on
spatial PCA. Large positive eigenvalues were indicative of IBD.

doi:10.1371/journal.pone.0142864.g002
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Table 1. h2,QST, and h2 corrected PST of adaptive traits (P<0.05). Summary of 39 distinct adaptive traits of P. trichocarpa that diverged among different
climate clusters (displayed are 59 tests for adaptation including tests for traits replicated in time, comprehensive results shown in S1 Table).

# Trait narrow-sense h2 S.E. narrow-sense QST S.E. Variance explained by partitions║ S.E. P-value

1 Bole density_2012a 0.4040 0.0402 0.0482 0.0522 0.0397 0.0429 0.0017

2 Bole mass_2012a 0.1758 0.0430 0.2584 0.1788 0.1109 0.0877 0.0000

3 *Branches_2009a 0.4898 0.0245 0.1567 0.1151 0.1541 0.1131 0.0000

4 H:D2+_2011a 0.3753 0.0254 0.0321 0.0352 0.0243 0.0268 0.0178

5 *Height _2008a 0.4540 0.0260 0.1133 0.0905 0.1040 0.0835 0.0000

6 *Height _2009a 0.6543 0.0200 0.1132 0.0893 0.1432 0.1088 0.0000

7 *Height _2010a 0.7378 0.0165 0.0900 0.0743 0.1274 0.1006 0.0000

8 *Height _2011a 0.7092 0.0178 0.0792 0.0673 0.1087 0.0892 0.0000

9 *Height gain _2009a 0.7504 0.0163 0.0952 0.0777 0.1364 0.1061 0.0000

10 *Height gain _2010a 0.6217 0.0212 0.0477 0.0455 0.0586 0.0551 0.0019

11 *Height gain _2011a 0.3372 0.0250 0.0490 0.0483 0.0337 0.0335 0.0016

12 Whole tree mass_2012a 0.2279 0.0434 0.2323 0.1634 0.1225 0.0953 0.0000

13 *Volume _2009a 0.3663 0.0256 0.1159 0.0925 0.0877 0.0718 0.0000

14 *Volume _2010a 0.4519 0.0253 0.0945 0.0783 0.0862 0.0718 0.0000

15 *Volume _2011a 0.5091 0.0243 0.0900 0.0751 0.0915 0.0760 0.0000

16 *Volume gain _2010a 0.4441 0.0254 0.0913 0.0763 0.0820 0.0689 0.0000

17 *Volume gain _2011a 0.4396 0.0253 0.0923 0.0771 0.0822 0.0691 0.0000

18 Amax/mass_2009b 0.1349 0.0264 0.1822 0.1396 0.0579 0.0493 0.0000

19 Amax_2009b 0.1916 0.0261 0.0596 0.0604 0.0240 0.0248 0.0007

20 Chlsummer _2009b 0.2692 0.0292 0.1160 0.0968 0.0663 0.0577 0.0000

21 Chlsummer _2011b 0.3078 0.0288 0.1438 0.1135 0.0939 0.0777 0.0000

22 C:N_2009b 0.1631 0.0270 0.1423 0.1156 0.0518 0.0454 0.0000

23 d15N_2009b 0.0882 0.0232 0.0257 0.0395 0.0047 0.0072 0.0446

24 Dleaf_2009b 0.4872 0.0272 0.0269 0.0299 0.0263 0.0291 0.0371

25 gs_2009b 0.4243 0.0279 0.0402 0.0401 0.0344 0.0343 0.0055

26 Leaves per bud _2011b 0.3307 0.0310 0.0767 0.0695 0.0523 0.0482 0.0001

27 Leaves per bud _2012b 0.4786 0.0297 0.0910 0.0765 0.0875 0.0735 0.0000

28 *LMAsummer _2010b 0.2360 0.0281 0.0628 0.0644 0.0307 0.0322 0.0000

29 Narea_2009b 0.1907 0.0278 0.0479 0.0525 0.0189 0.0211 0.0028

30 Nmass_2009b 0.1592 0.0271 0.1409 0.1150 0.0500 0.0441 0.0000

31 WUE_2009b 0.2457 0.0274 0.0731 0.0667 0.0373 0.0350 0.0000

32 AUDPC-2009c 0.5322 0.0245 0.0490 0.0470 0.0521 0.0495 0.0017

33 AUDPC-2010c 0.3937 0.0260 0.0723 0.0646 0.0579 0.0523 0.0002

34 AUDPC-2011c 0.3132 0.0251 0.0848 0.0740 0.0551 0.0492 0.0001

35 *Active growth rate _2009d 0.6094 0.0222 0.0390 0.0393 0.0471 0.0469 0.0083

36 *Bud set _2008d 0.5970 0.0224 0.1390 0.1051 0.1617 0.1186 0.0000

37 *Bud set _2009d 0.7390 0.0165 0.1790 0.1262 0.2438 0.1580 0.0000

38 *Bud set _2010d 0.6483 0.0200 0.1708 0.1224 0.2108 0.1434 0.0000

39 Bud set186_2009d 0.5247 0.0234 0.1988 0.1368 0.2067 0.1403 0.0000

40 Bud set186_2010d 0.4041 0.0268 0.2125 0.1444 0.1792 0.1261 0.0000

41 *Height growth cessation _2009d 0.7114 0.0178 0.1434 0.1072 0.1923 0.1354 0.0000

42 *Leaf drop _2008d 0.5175 0.0244 0.1533 0.1137 0.1579 0.1160 0.0000

43 *Leaf drop _2009d 0.5168 0.0237 0.2335 0.1525 0.2396 0.1547 0.0000

44 *Leaf drop _2010d 0.5965 0.0214 0.1453 0.1088 0.1687 0.1225 0.0000

45 *Leaf lifespan_2010d 0.6278 0.0208 0.0432 0.0419 0.0537 0.0514 0.0039

46 Canopy duration _2009d 0.2409 0.0253 0.0944 0.0809 0.0480 0.0428 0.0000

47 *Canopy duration _2010d 0.8119 0.0126 0.0462 0.0438 0.0729 0.0671 0.0024

48 Growth period _2009d 0.3176 0.0255 0.1046 0.0862 0.0693 0.0589 0.0000

49 *Growth period _2010d 0.7095 0.0176 0.1365 0.1032 0.1833 0.1308 0.0000

50 *Post-bud set period _2009d 0.4222 0.0260 0.0332 0.0352 0.0282 0.0299 0.0187

51 *Post-bud set period _2010d 0.5230 0.0237 0.1432 0.1075 0.1489 0.1106 0.0000

52 *100% Yellowing _2010d 0.5886 0.0220 0.1498 0.1113 0.1718 0.1240 0.0000

53 *75% Yellowing _2010d 0.5640 0.0227 0.0638 0.0571 0.0714 0.0632 0.0002

54 Arabinosee 0.8786 0.2227 0.0749 0.0707 0.1276 0.1079 0.0002

55 Fibere 0.3027 0.2423 0.0825 0.1135 0.0446 0.0515 0.0000

(Continued)
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Table 1. (Continued)

# Trait narrow-sense h2 S.E. narrow-sense QST S.E. Variance explained by partitions║ S.E. P-value

56 Galactosee 0.9327 0.2089 0.0663 0.0621 0.1167 0.1002 0.0000

57 MFA1e 0.4074 0.2383 0.0403 0.0539 0.0355 0.0419 0.0054

58 Ad_StomataNUM1f 0.3165 0.0266 0.1229 0.0984 n.d. n.d. 0.0129

59 Ad_STM_distributionf 0.1779 0.0351 0.1050 0.1041 n.d. n.d. 0.0357

Note: P-value obtained by comparison of the observed QST—FST to the quantile of the simulated QST—FST distribution for a neutral trait [96].
abiomass trait [45]
becophysiology trait [45]
cleaf rust resistance trait [38]
dphenology trait [45]
ewood trait [37]
fleaf stomata traits [44]

*spatially adjusted trait [45]
║the variance explained by climate clusters compared to the total variance was estimated as h2 corrected PST

S.E. refers to standard errors

Active growth rate (cm day -1)

Ad_StomataNUM1: Adaxial stomata numbers

Ad_STM_distribution: Adaxial stomata distribution

Amax/mass = photosynthetic rate per unit dry mass (μmol CO2 mg−1 s−1)

Arabinose in dry wood (%)

AUDPC = (calculated) area under the disease curve, based on M. xcolumbiana infection rating

Bole density (kg/m3)

Bole mass (kg)

Branch #

Bud set (day)

Bud setǂ (day): bud set dates considered only after summer solstice

C:N = carbon:nitrogen (mg mg−1)

Canopy duration (days)

Chlsummer = chlorophyll content index (CCI)

D15N = stable nitrogen isotope ratio (‰)

Dleaf = net discrimination (‰)

Fiber: fiber length Lw (mm)

Galactose in dry wood (%)

Growth period (days)

gs = stomatal conductance (mol H2O m−2 s−1)

H:D = height to diameter (cm:cm)

Height (cm)

Height gain (cm)

Height growth cessation (day)

Leaf drop (day)

Leaf lifespan (days)

Leaves per bud (#)

LMA = leaf mass per unit area (mg mm−2)

MFA1: microfibril angle at most recent growth ring (°)

Narea = nitrogen (mg mm−2)

Nmass = nitrogen (mg mg−1)

Post-bud set period (days)

Volume (cm3)

Volume gain (cm3)

Whole tree mass (kg)

WUE = instantaneous water-use efficiency (μmol CO2 mmol−1 H2O)

Yellowing, 100% (day)

Yellowing, 75% (day)

doi:10.1371/journal.pone.0142864.t001
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analysis on climate clusters. While the mean FST value for the complete dataset (29,354 SNPs)
was 0.0108, we obtained a mean neutral FST value (0.0078) after removing loci identified to be
potentially under selection [41]. In the final analysis, all loci were tested against this neutral
mean to identify a set of potential FST outliers relating to climate. Using 200k simulations in
Fdist2, we identified 121 SNPs outside the 99% limits of the neutral distribution (S1 Fig) as
potential candidates subjected to diversifying (positive) selection related to the four climate
clusters. Among these, 88% of these climate-related ‘outliers’ were confirmed by allelic fre-
quency correlation analysis with averages for climate variables within subpopulation (using
multiple univariate logit regression models in SAM (α = 0.05, S2 Table)), 77 of these loci per-
sisted across different selection scan scenarios employed (unsupervised SPA, climate-based
SPA, and FST analysis based on population subdivision [36]), and 48 SNPs were retrieved using
association genetics (see below) (S2 Table). A comparison between Fdist and SPA testing gene
dispersal and employing Moran’s test for spatial autocorrelation (Fig 3) indicates, in general,
the higher effectiveness of SPA to identify genetic selection signals under patterns of IBD.

A significant accumulation of FST outliers was identified on chromosome 15 (S1 Fig). The
extent of linkage disequilibrium (LD) between all 121 outlier loci is presented in S2 Fig. In gen-
eral, we found that LD was not substantial between SNPs from different genes. Incomplete LD
can be caused by the possibility that SNPs are close to but not in complete LD with the causal
variants (here probably due to ‘tag SNP’ design of the SNP chip array [35]) explaining why the
observed LD between diverged loci is generally low [42] One notable exception is two neighbor-
ing poplar genes (Potri.009G008600 and Potri.009G008500) initially annotated based on
sequence homology to Arabidopsis genes as nitrate transporter types ATNRT2:1 and ATNRT2:4,
respectively. The allele frequencies of three SNPs and one SNP, respectively, in poplar orthologs
of ATNRT2:1 and ATNRT2:4, respectively, are strongly correlated to temperature (R2>0.9;
P = 0.05), while the remaining SNPs in both genes did not follow such a strong pattern (S2 Fig).

Fig 3. Comparison of two outlier detectionmethods (FST, SPA) for their efficiency to identify genetic selection signals under isolation-by-distance
(IBD).Gene dispersal was tested employing Moran’s test for spatial autocorrelation using 200km lags.

doi:10.1371/journal.pone.0142864.g003
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SNPs under diversifying selection and associated with quantitative traits
To corroborate findings of candidate loci putatively under diversifying selection based on cli-
mate, we compared these results with SNPs uncovered by associations with adaptive traits
(showing non-neutral QST). Among four GWAS studies in P. trichocarpa, a total of 619 SNPs
had been identified with significant trait associations (at α = 0.05): 410 with biomass, ecophysi-
ology and phenology [39], 141 with wood property traits [43], 40 withMelampsora xcolumbi-
ana resistance [38], and 28 SNPs related to leaf stomata variation [44].

We compared four different outlier analyses to identify selection signals in 29,354 SNPs.
Most trait-associated SNPs for which we detected selection signals were associated with adap-
tive traits (89%, S2 Table). The highest percentage of trait-associated SNPs in outlier analyses
was found for climate-based FST outlier analysis (40% of the total number of outliers identified
by the method; 48 SNPs), followed by geography-based FST outlier analysis (8%; 75 SNPs that
were reported in [36], unsupervised SPA (5%; 75 SNPs), and SPA with climate as a covariate
(3%; 37 SNPs). In total, selection signals were detected for 151 trait-associated SNPs with 44%
overlap among evaluation methods. Interestingly, there was a lack of genome-wide correlation
between selection and association signal (Fig 4) and thus only dispersed association signals
were detected among SPA selection signals (Fig 5, S2 Table). This result is probably a conse-
quence of the structure correction methods employed in GWAS.

We retrieved a number of unique but also shared SNPs among the different analyses (Fig 6).
Shared SNPs were highest for climate FST (75%) and geography-based FST (72%). Unsupervised
SPA had the highest number of unique SNPs among the four methods (51%). We found 118
SNPs associated with adaptive traits (significant QST) including 59 SNPs under diversifying
selection shared among at least two outlier detection methods and 59 unique SNPs detected by
climate FST, climate SPA and unsupervised SPA, respectively (S3 Table). A large number of
SNPs (40%) that we identified as FST outliers using climate clustering were candidate SNPs

Fig 4. Genome-wide correlations between selection outliers and association signals based on 29k SNPs. Correlation of -log (P) versus spa was
plotted against the trait’sQST.

doi:10.1371/journal.pone.0142864.g004
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from association studies (S2 Table). The high number of trait-associated SNPs reflects both the
polygenic nature of phenotypic traits (e.g., c.200 for bud set, [39]) and linkage disequilibrium
(LD) to a lesser extent. The highest number of climate-based FST outliers associated with adap-
tive traits was found on chromosome 15 (12 SNPs), identifying a genomic region where SNPs
putatively under selection to local climate generally may be clustered (S1 Fig).

We found that SNPs under potential climate selection matching putative causal variants
from association studies consistently mapped to non-neutral QST, adaptive traits (S1 and S2
Tables). Only one SNP associated with wood traits (within Potri.009G006500 annotated as
FRA8 associated with fiber length, [43]) was among the FST outlier loci. Comparatively, phenol-
ogy traits were the most complex adaptive traits from the high match between the total number
of associated SNPs and the proportion of SNPs with allele frequencies significantly diverged
among climate clusters (S2 Table). In total, 118 SNPs were outliers under diversifying selection,
associated with adaptive traits (significant QST), and with many SNPs putatively pleiotropic for
functionally uncorrelated adaptive traits, such as autumn phenology, height, and disease resis-
tance (S3 Table). The 78 annotated poplar genes were largely derived from major gene func-
tional group such as (1) transcription factors of several categories and (2) carbohydrate-related

Fig 5. Individual SNPs under diversifying selection within genesmapping to quantitative trait
variation. 5% cutoff: dashed and yellow lines; 1% cutoff: solid and red lines; ecology (biomass,
ecophysiology, phenology, stomata)—green dots; wood properties (orange); rust resistance (blue).

doi:10.1371/journal.pone.0142864.g005
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genes, but also transporters. Among these transporters, two poplar genes (Potri.009G008600
and Potri.009G008500) annotated based on sequence homology to Arabidopsis genes as nitrate
transporter types ATNRT2:1 and ATNRT2:4, respectively, were highly pleiotropic for several
adaptive traits (S3 Table).

Discussion

Evolutionary quantitative genomics
The main focus of our work involved identifying adaptive traits and their genetic basis in forest
trees by employing both a quantitative genetics approach (QST analysis) and population geno-
mics [16] to uncover SNPs under strong selection (among c.29k tested genetic polymor-
phisms). Our analyses revealed that 53% of these traits produced significant narrow-sense QST

(S1 Table) underscoring that such quantitative traits are very likely related to adaption to local
climatic conditions [45].

This study uses SNP marker-inferred relatedness estimation (i.e. the ‘animal model’) to
obtain narrow-sense estimates of heritability and QST in wild populations [24]. The quality of
genetic estimates using the ‘animal model’ approach largely depends on the accuracy of rela-
tionship coefficient estimates and are affected by: 1) number and quality of markers [46], 2)
variance in actual relatedness [47], and 3) how well the relationship estimates reflect the segre-
gation of causal variants [48] Our present study is based on extensive, genome-wide SNPs [35]
which can provide high accuracy for both the relationship coefficients and the estimated
genetic parameters. However, samples from natural tree populations are subject to intensive
gene flow (outcrossing) and generally show low levels of relatedness which can negatively affect
heritability and QST analyses.

Fig 6. Venn diagram showing the numbers of unique and shared SNPs (totaling 151 trait-associated
SNPs) among four different outlier detection approaches. FST using climate clusters, FST using
geographical grouping, SPA analyses—with climate-based PCs incorporated as covariates and
unsupervised, respectively. A subset of this information (118 SNPs) related to genetic polymorphisms
associated solely with adaptive trait variation is provided in S3 Table.

doi:10.1371/journal.pone.0142864.g006
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Heritability is usually dependent on the population sampled (i.e. the observed allele fre-
quency differences) and thus, can differ for smaller sampling sizes and/or specific sampling
areas (e.g., central vs. marginal regions of species distribution). Heritability estimates taken
across a greater coverage of the species distribution are more likely to reflect evolutionary his-
tory of the traits (stabilizing vs. diversifying selection) rather than the effects of population sub-
sampling. Sufficient variance in the actual relatedness is also required to reveal heritability in
wild populations [47], although heritability, and indirectly, QST estimates, can suffer from the
inability to separate the pure additive genetics from environmental effects, specifically when
relatedness is lacking. Thus, the presence of LD between markers and causal variants (QTLs) is
crucial to recover the genetic parameters with sufficient precision. In the case of traits under
diversifying selection, the additive genetic variance estimates (such as narrow-sense heritabil-
ity) may also include a substantial QTL covariance component, in addition to the pure genic
variance. This is especially the case when many QTLs follow the same cline, and can further
extend the additive genetic variance when the QTLs interact (i.e., epistasis) [49] unless the epis-
tasis is accounted for in the model [50]. Thus, heritability estimates for traits under diversifying
selection (Table 1) may be upwardly biased (see below).

Heritability estimates are often interpreted as the capacity for adaptive evolution. In addition,
epistatic interactions, specifically, the directional epistasis, have major effects through altering the
genetic background (both, the additive genetic variances and the covariances, i.e. the allelic fre-
quencies but also their effects) [51]. Hemani et al. (2013) outlined that for traits under selection,
high levels of genetic variation are maintained and the traits evolve more slowly than expected,
yet this could be attributed to high epistasis in traits under strong diversifying selection [42].

Selectively non-neutral genetic variants underlying traits adaptive to
climate
Overall, the number of FST outlier SNPs underlying an adaptive trait correlated well with the
total number of candidate SNPs associated with that trait (r = 0.625, P = 0.0005). Yet, the
majority of trait associated SNPs were not FST outliers (S2 Table) and appeared to be unrespon-
sive to selection for different climatic conditions, especially for phenology traits such as bud
set, leaf drop or growth period. A previous simulation study suggested that differentiation in
candidate loci is limited for complex traits in forest trees (i.e., their FST values are similar to
neutral values), despite their strong adaptive divergence among local populations (high QST),
due to large population sizes and high levels of gene flow [52]. Thus, highly polygenic adapta-
tion (as observed in complex genetic traits) will not show sufficient allele frequency differentia-
tion such that climatic clines in SNPs of candidate genes can be exhaustively detected.

We modelled the spatial structure of genetic variation using SPA (addressing gene flow
under IBD), and SNPs identified via SPA were compared against GWAS-identified SNPs, cli-
mate-related FST outliers and geography-informed FST outliers. The majority of SNPs with
steep allele frequency clines (based on unsupervised SPA) uncovered allele frequency correla-
tions with the north-south cline (S2 Table). We noted that enrichment for particular genes,
such as circadian rhythm/clock genes, was found in PC1 (a north-south population structure)
[45] and that SNPs of these genes were among the highest ranked in SPA. Nonetheless, associa-
tions of circadian rhythm clock genes with strong correlations to environment were largely
missing among the identified genetic associations for phenology traits (discussed in McKown
et al. [39]). The interplay of IBD and natural selection was lost by the necessary structure cor-
rection in GWAS, however, evidence from gene expression or gene regulation that is also
highly correlated with the trait under question might be possible to retrieve such SNPs of puta-
tive importance (Anonymous, [53]).
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The presence of IBD in P. trichocarpa underscores the larger issue for investigating wild
populations with quantitative genetics and population genomics approaches as IBD can con-
found population structure, association mapping, and outlier analyses. The power to detect
local selection depends on several factors, including selection strength, the presence of distinct
types of microenvironment heterogeneity, and the distance of gene dispersal compared to the
overall spatial scale [54]. In our case, as the observed gene dispersal is ~500 km (Fig 3) and
sampling is also discontinuous (Fig 1), this does not allow us to perform FST analysis on arbi-
trarily defined local populations because it will be more difficult to separate the stochastic noise
(drift, migration) from the selection signal in smaller scale population subsampling leading to
an excess of false positives [54]. Yet, selection pressures can differ along environmental clines.
Thus, FST outliers should be investigated on the largest scale possible following the spatial dis-
tribution of the environment in order to identify spatial genetic structure. Nevertheless, IBD in
wild populations will create some compromised statistical power in detecting local adaptation
using specific pairs of populations that is unavoidable (Fig 3).

Polygenic and pleiotropic adaptation relating to climate
Our climate clustering partitioned the study population into four large, evenly-sized groups of
individuals lending robustness to SNP detection even for lower frequency (recent) variants. In
our study, the top two SNPs among climate related FST outliers showed strongest associations
to climate partitions according to SAM analysis [Potri.010G250600 (MSR2/ MANNAN SYN-
THESIS RELATED 2 implicated in carbohydrate metabolism) and Potri.010G254400 (trans-
porter ATGCN4) (S2 Table)]. In addition, six genes that harboured climate-related FST outlier
SNPs have been identified as candidates for bud set in previous studies ([55,56]), yet these loci
were not associated with bud set in our GWAS study ([39]; S2 Table), possibly through imple-
menting the conservative population structure correction term in GWAS. Nevertheless, these
genes may represent additional candidates for bud set, including Potri.003G218900 (ACD1-
LIKE), Potri.009G015100 (senescence-associated family protein), Potri.014G170400 (XER-
ICO), Potri.015G012500 (IQ-domain 21), Potri.018G015100 (chloroplast nucleoid DNA-bind-
ing protein), and Potri.019G078400 (leucine-rich repeat transmembrane protein kinase) (S2
Table).

Evidence is emerging that for perennial trees to effectively sense short day signals, i.e. critical
day length in autumn phenology [57], a temperature optimum is required and genetically pre-
determined by the local climate of the individual’s origin [58]. Allele frequencies for most of
the SNPs that both associated with bud set and diverged among the climate clusters showed
strong regression on the mean temperature variation of the climatic clusters (R2 up to 0.94; S2
Table). A critical role for temperature, rather than precipitation, on bud set has also been
found in Picea [12]. For autumn phenology, elevated temperatures can either accelerate or
delay growth cessation depending on species or ecotype ([59,60]), but under climate warming,
the overall effects on phenological timing in forest trees is unknown.

SNP allelic frequencies within both nitrate transporter genes ATNRT2:4 and ATNRT2:1
were strongly aligned with temperature variation (R2~90%) in P. trichocarpa. Moreover, these
SNPs were pleiotropic for multiple autumn phenology traits, height, and leaf rust resistance
(S3 Table). Nitrate transporters are generally important in plants, as nitrate is the main nitro-
gen source required for synthesis of nucleic and amino acids. Therefore, a regulation of nitrate
distribution is crucial to modulate growth (biomass acquisition) in response to temperature or
light conditions ([61,62]). Interestingly, there are only two poplar representatives within a phy-
logenetic sub-clade of NRT2 that is populated by as many as five Arabidopsis sequences
(ATNRT2.1/2.2/2.3/2.4/2.6). This implies that a deletion event occurred in this clade whose
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functional significance remains elusive to date [62]. Phylogenetic reconstruction coupled with
gene expression analysis point at neo/subfunctionalisation of the two poplar nitrate transport-
ers for long distance nitrate transport from roots, wood to leaves [62]. This acquisition of novel
expression pattern and loss of the ancestral expression pattern demonstrates the signature of
adaptive evolution in functional diversification in paralogous gene pairs [63].

In addition, our results revealed that adaptive genetic variants within both poplar nitrate
transporters were also associated with leaf rust resistance ([38]; S3 Table). In Arabidopsis, loss
of function of ATNRT2.1 primes salicylic acid signaling and PR1 up-regulation [64]. In poplar
leaf rust inoculations, both PTNRT2.4 and PTNRT2.1 are strongly down-regulated in incom-
patible interactions, while no expression change is apparent in compatible interactions (J. La
Mantia, personal observation). The identified nitrogen transporters might be important in
nitrogen storage and nitrogen remobilization to recycle nutrients during the progression of leaf
senescence [65]. They may also function in down-regulation of nitrogen assimilation during
seasonal remodeling of tree phenology related to growth cessation induced by short photoperi-
ods ([66,67]) and/or temperature [58]. The effect of temperature on rust aggressiveness is
noted [68] and the climatic conditions which form a conducive environment for rust infection
and disease duration likely provide a strong adaptive selection toward resistance.

Pectin esterase gene Potri.012G014500 (SNP scaffold_12_1811250) represents another
example for which significant associations with climate (here: temperature) and several adap-
tive traits were found (S2 and S3 Tables). In fact, the allelic effects of this SNP related to hypos-
tomaty also related to less rust infection ([45]). This is an illustrative example regarding the
tradeoff between carbon gain and pest resistance under favourable climatic conditions relating
to pathogen pressure ([45]).

Conclusions
The high adaptive potential of tree populations is considered the result of positive effects of
long-distance gene flow based on its interactions with divergent selection across the contrasting
environments [69], while local adaptation in forest trees with regards to climate-related traits is
polygenic and recent [70]. For instance, interactions between temperature and photoperiodic
cues were shown to influence bud set for short-term acclimation in poplar [58]. By combining
quantitative genetics and population genomics analyses, our study contributes to an enhanced
understanding of the molecular basis of adaptation to different local climate in an undomesti-
cated perennial species (P. trichocarpa). The key findings provided SNPs whose allelic frequen-
cies were most diverged among populations from different climate clusters and these SNPs
tended to be associated with mapped genes underlying phenotypic variation. This phenotypic
variation itself diverged among the different climate clusters. Our study dissected the influence
of climate (specifically, temperature and precipitation), yet much of the variation in phenology
is also attributed to photoperiod ([71,72,45]). The tight photoperiodic control of traits such as
bud set, height growth cessation, and leaf senescence ([73,74,59]) is crucial both for resistance
to cold temperatures and maximization of the growing season, particularly in trees originating
from high-latitude and/or high elevation provenances ([75,56]). While we tested the influence
of climate on the variation of other traits in P. trichocarpa, such as wood and biomass, we con-
sider other local factors, such as soil condition (pH and minerals), soil/root microbial diversity,
groundwater, and other ecological interactions also of potential importance. Reciprocal trans-
plants will be necessary to elucidate the effects of gene × environment plasticity on the expres-
sion of traits with spatially heterogeneous selection [76], but can focus on specific genes
identified through a combined quantitative genomics analysis, such as the one proposed here.
Forthcoming research can also scale trait-to-performance mapping in known pedigrees for the
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assessment of SNP effects on fitness [77]. These findings will have important implications for
the future management of natural forests, acting to guide efforts in facilitated adaptation to cli-
mate change via measure such as assisted gene flow [78].

Materials and Methods

Collection, genotyping, and phenotyping of P. trichocarpa
The germplasm used in this study was propagated under permission from the British Columbia
Ministry of Forests, Lands & Natural Resource Operations. No endangered or protected species
were used in this study. Plant material was collected from a population of 433 P. trichocarpa
Torr. & A. Gray genotypes growing in a common garden. These genotypes came from 140
unique geographic locations spanning two thirds of the species’ range (44–60°N, 121–138°W)
([79], Fig 1). Originally collected by the BC Ministry of Forests, Lands and Natural Resource
Operations, individual genotypes were grown in two common gardens, Surrey, BC and Totem
Field, University of British Columbia, BC. Genotypes were replicated across the two field gar-
dens and the Totem Field individuals (established in 2008 [80]) were clonal propagations from
Surrey site individuals (established in 2000 [79]).

Trees were genotyped using an Illumina iSelect array with 34,131 SNPs from 3,543 candi-
date genes designed for P. trichocarpa [35]. The characteristics of the poplar genome and array
development are outlined in [35]). Briefly, the SNP array was designed to include genes of
known importance (i.e. candidate genes) or genes based on expression analyses. Because of the
rate of linkage disequilibrium (LD) decay in P. trichocarpa, between 67–134k SNPs would be
required to include all common variants throughout the genome at LD = 0.2 (assuming a 403
Mb assembled genome length and an average of 3–6 kb for r2 between common variants to
drop to 0.2). Therefore, some SNPs were selected as representative SNPs to “tag” genes and
genetic regions with high LD, and thus represent a group of SNPs (the haplotype). For this
study, we further filtered array SNPs for: i) minor allele frequency (MAF)<0.05, ii)>10%
missing data, and iii) Illumina’s GenTrain score<0.5, thereby reducing SNP numbers to
29,354. This filtering is not biased towards higher frequency SNPs (i.e. older variants estab-
lished at much higher frequencies within the population over time) as a wide distribution of
allele frequencies (MAF>0.05) was considered for the analysis.

Phenotyping of genotype accessions within the common gardens and climate of origin data
were obtained from previously published work (for full phenotyping details, see [38,37], [45]).
In brief, phenology, ecophysiology, biomass [45], leaf stomatal anatomy [44] and leaf rust
(Melampsora xcolumbiana) resistance traits [38] were repeatedly measured from accessions
planted at the University of British Columbia’s research field through replication in space
(clonal ramets) and in time (measurements across years). Wood chemistry and ultrastructure
traits were measured from wood cores of the nine-year-old ortets representing the same geno-
types and growing in Surrey [37].

Assessment of population structure
Since forest tree species usually have extensive geographic ranges, exhibit extensive gene flow
and have low levels of population stratification [81], we investigated whether the genetic vari-
ability due to non-randommating in our population was caused solely by isolation-by-distance
(IBD), reflecting the large geographical distribution of our sample (cf. [36]), or also by natural
barriers causing local genetic clusters. We performed spatial principal component analysis
(sPCA) by using the “spca” function implemented in the R package “adegenet” [82] which is a
spatially explicit multivariate analysis accounting for spatial autocorrelation processes and pat-
terns of genetic variation. A K-nearest neighbours method with K = 10 was used as connection
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network. Positional information for each genotype were transformed into Universal Transverse
Mercator (UTM) coordinates using “convUL” in the R package “PBSmapping” [83]. Due to
the occurrence of multiple genotypes with identical geographical coordinates (i.e. trees col-
lected at the same latitude/longitude), we randomly selected a single genotype representing a
geographical region (out of the total 140 locations). Eigenvalues for principal components
from sPCA provided a cumulative picture about contributing factors, including the genetic var-
iance and the spatial autocorrelation (through Moran’s I, see below). Large positive eigenvalues
reflect the importance of the proportion of the genetic variance along with a strong positive
autocorrelation in the global pattern (i.e. IBD), while large negative eigenvalues indicate the
importance of the proportion of the genetic variance along with negative autocorrelation indi-
cating the existence of discrete local genetic clusters.

We used the "global.test" and "local.test" functions in the "adegenet" package to infer the sta-
tistical significance of each type of genetic structure. These functions are based on a spectral
decomposition of the connection matrix into Moran's eigenvector map and test for association
of those eigenvectors fromMoran's eigenvector map with Moran's I [82]. To investigate gene
dispersal, we employed a Moran I test for spatial autocorrelation ([84,54]). Moran’s I coeffi-
cients were investigated in 200 km spatial lags and the analysis was performed using “moran.
test” in the “spdep” R package [85]. Moran’s I coefficients were estimated as follows:

I ¼ n
Pn

i¼1

Pn
j¼1 wij

�
Pn

i¼1

Pn
j¼1 wijðxi � �xÞðxj � �xÞ
Pn

i¼1 ðxi � �xÞ2 ð1Þ

where n is the number of populations (i.e. unique geographical locations), wij is weight set at 0
or 1 depending on whether populations are considered neighbours in each 200 km lag test, xi is
the allele frequency in the ith population, and �x is the allele frequency across all populations.

Climatic zone clustering of P. trichocarpa
Since our initial investigation of population structure with sPCA indicated the presence of only
one global structure consisting of IBD and lack of local discrete clusters, any marker-based
inference about genetic clusters might be highly unreliable [86]. Therefore, we established pop-
ulation differentiation on the basis of climate envelopes ([12]). Clusters of individual genotypes
were defined using climate of origin measures (i.e. independently of the genetic data). Climate
variables were obtained using ClimateWNA [87] and included mean annual temperature
(MAT; °C), number of frost-free days (NFFD), and mean annual precipitation (MAP; mm).
Climate data were based on positional information (latitude, longitude, elevation) and 1971–
2002 Canadian Climate Normals [45]. Using K-medoids clustering and the Calinski-Harabasz
criterion [88], we split the study population into four groups with relatively balanced sample
sizes of 87, 103, 142, and 101 representing climate classes #1–4, respectively. Clusters generally
followed the western North American coastline inwards (Fig 1a & 1b).

Genetic differentiation in quantitative characters among populations
defined by climate clustering
We tested phenotypic characteristics in P. trichocarpa for their adaptive potential (S1 Table).
For QST−FST comparisons, QST values among the identified climate-related population groups
were first estimated for each trait following [89] and [24], respectively.

The narrow-sense QST was estimated by computing the variance components using the ‘ani-
mal model approach’ [90] following:

y ¼ Xbþ Zpþ Zaþ e ð2Þ
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where β is a vector of fixed effects (intercept), p and a are vectors of random climate cluster and
individual tree additive genetic effects, X and Z are incidence matrices assigning fixed and ran-
dom effects to measurements in vector y, the cluster effects are following p~N(0,s2

p) where s
2
p is

the cluster variance, individual tree additive effects are following a~N(0,s2
aG) where s2

a is the
additive genetic variance and G is the realized relationship matrix [91], using 29,354 SNPs esti-
mated in R package “synbreed” [92] as follows:

G ¼ ZZ0

2
P

pð1� pÞ ð3Þ

where Z isM-P, with M the marker matrix with genotypes recoded into 0, 1 and 2 for the refer-
ence homozygote allele, the heterozygote and the alternative homozygote allele, respectively,
and with P the vector of doubled allele frequency; e is the vector of random residual effects fol-
lowing e~N(0,s2

eI) where s
2
e is the residual variance and I is the identity matrix. The narrow

sense QST was estimated as follows:

QST¼
ŝ2

p

ðŝ2
p þ 2ŝ2

aÞ
ð4Þ

where ŝ2
p and ŝ

2
a are the estimates of cluster and additive genetic variance representing among-

and within-group trait variances attributable to additive effects.
The measurements of all ecology and disease traits using clonal ramets (i.e. replication)

enable estimating broad-sense QST directly without the use of any relationship matrix, while
narrow-sense QST estimation was based on variance components estimated in the mixed linear
model considering the realized relationship matrix [91] as in Eq 2. The model is identical to
Eq 2 where the variance components for broad-sense QST were estimated in the model consid-
ering a as the vector of clonal genotypic values following a~N(0,s2

aI) where s
2
a is the total

genetic variance (including both additive and non-additive component) and e as the vector of
ramet within clone effects following e~N(0,s2

eI). Then, the computed QST values for each trait
were compared to the average population differentiation estimate (FST) strictly based on neu-
tral markers (see below) allowing inferences about trait evolution based on selection or genetic
drift (neutral trait), [93].

Narrow-sense heritability (h2) was based on variance components estimated in the mixed
model as follows:

y ¼ Xbþ Zaþ e ð5Þ

where β is the vector of fixed effects (intercept and cluster) and a is the random vector of addi-
tive genetic effects following the description of Eq 2. The narrow-sense heritability was esti-
mated as follows:

ĥ2 ¼ ŝ2
a

ŝ2
a þ ŝ2

e

ð6Þ

where ŝ2
a and ŝ

2
e are estimates of additive genetic and residual variance, respectively. The phe-

notypic QST (i.e. PST) ([89,24]) was estimated as follows:

PST ¼
ŝ2

p

ðŝ2
p þ 2ĥ2ŝ2

eÞ
ð7Þ

where ŝ2
p and ŝ

2
e are estimates of cluster and residual variance representing among- and
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within-population variances, respectively, and ĥ2 is the heritability estimated according to [37].
The variance components were estimated in ASReml software [94] using the mixed linear
model following:

y ¼ Xbþ Zpþ e ð8Þ
where β is the vector of fixed effects (intercept) and p is the vector of random cluster effects, the
effect of individuals within cluster is found within the error variance.

Identification of non-neutral SNPs and quantitative traits divergent
among climate clusters
To identify SNPs putatively under selection and also associated with adaptive traits
([38,43,39]), we performed: 1) FST outlier analysis (using Fdist2) employing the same climate
clusters as for QST analysis, 2) unsupervised spatial ancestral analysis (SPA), and 3) SPA with
climate as a covariate. Additionally, we compared our results with FST outlier analysis (using
Fdist2 and BayeScan) that were reported in [36] using 25 topographic units separated by water-
shed barriers within the geographic area from Central Oregon, USA (44.3°N) to northern BC,
Canada (59.6°N)).

FST values for SNPs were calculated among the four climate clusters (for definition and cal-
culation, see above). We implemented the Fdist2 program within the LOSITAN project [41]
for SNP FST outlier detection. Fdist2 compares the distribution of FST values of sampled loci to
the modeled neutral expectation of FST distribution using coalescent simulations [9]. We
employed the infinite alleles mutation model (as we investigated SNPs), a subsample size of 50,
and ran 200k simulations. FST values conditioned on heterozygosity and outside the 99% confi-
dence interval were considered candidate outliers.

Since P. trichocarpa populations have known structure related to IBD ([36] and this study),
we applied spatial ancestral analysis (SPA), a logistic regression-based approach [86], to detect
SNPs with sharp allelic frequency changes across geographical space (implying candidates
under selection). The unsupervised learning approach (using only genomic data) was
employed to obtain SPA statistics. In addition, we tested SPA including the first two principal
components (PCs) based on climate variables (explaining 91% of the variance) as covariates to
determine individuals’ location based on allele frequencies related to MAT, NFFD, and MAP
climate components.

We investigated correlations between the outlier SNPs (based on climate clusters) and the
environmental variables that defined the established climatic clusters (Fig 1). Subpopulation
averages for MAT, NFFD, and MAP were tested for correlations with SNP allele frequencies
employing multiple univariate logistic regression models with the spatial analysis method
(SAM; [95]). The significance of correlations was assessed using three independent statistical
tests (likelihood ratio and twoWald tests) implemented in SAM and applying an initial 95%
confidence interval for the statistical tests. We used the Bonferroni correction method (α =
0.05) for multiple testing resulting in p<6.887052�10−5 for 726 tested models (242 alleles, three
variables). Only those correlations that remained significant after Bonferroni correction for
each of the three test statistics (i.e. the likelihood ratio and the twoWald tests) were retained.

Finally, we compared observed QST values with the simulated distribution of QST-FST values
for a neutral trait using previously provided R scripts [96]. In brief, a range of possible demo-
graphic scenarios was tested simulating the distribution of QST values based on mean FST for
neutral markers and mean QST for neutral traits ([97,98]). For a neutral trait, the expected QST

was estimated based on ŝ2
p (i.e., measured within-population variance; see above) and ŝ2

a (i.e.,

expected between-population variance) given in Eq 4. The distribution of s2
p values was based
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on s2
a and the observed FST values of 29,233 SNPs present (total number reduced by removing

outliers) within the simulated neutral envelope of FST values (FST outlier analysis) with QST

replaced by the FST in Eq 4. P-values were obtained by testing whether the null hypothesis that
the estimated narrow-sense QST for each tested trait is statistically equal to the expected QST for
a neutral trait [96].

Marker-trait association mapping
In previous analyses of marker-trait associations in P. trichocarpa, confounding effects of pop-
ulation stratification were adjusted using principal component analysis ([38,43,39] and aQ
matrix population structure correction [39]. Phenological mismatch within the common gar-
den can confound trait values [45], thus, association analyses included “area under the disease
curve” resistance measures with adjustment for bud set [38] and all ecophysiological traits that
were measured prior to bud set [39]. The Unified Mixed Model (a modification of the general-
ized linear model) was employed for marker-trait association mapping and is fully described
([38,43,39]). While necessary, the adjustment for confounding, cryptic genetic structure in the
association analyses may have reduced the statistical power to detect associations. This is par-
ticularly problematic in species whose distribution is mainly along a one-dimensional cline or
for which differentiation in ecological traits covaries with the species demographic history
([13,45]). Furthermore, the GWAS results may be biased towards common variants or variants
with the greatest effects. This is related to the size of the SNP discovery panel (34k) [99] and
the power to detect significant associations given the tested population sizes (334–448 individ-
uals). As whole genome sequencing and phenotyping of thousands of genotypes would be
required to comprehensively uncover the genetic architecture of complex traits, we consider
the GWAS results informative but not exhaustive.

Supporting Information
S1 Fig. FST outlier loci detection in P. trichocarpa and distribution of outliers along the
poplar chromosomes. (a) FST outlier loci detection and distribution of empirical FST estimates
conditioned on expected heterozygosity (HE). The envelope of values corresponding to neutral
expectations at 99% CI level (with mean FST = 0.0078), solid line, was constructed with the infi-
nite allele model according to [9]. (b) Distribution of the empirical FST estimates along the 19
poplar chromosomes and additional scaffolds (abbrev: scaff); the 121 identified outlier loci are
indicated by red circles above their FST value bars. A goodness-of-fit test assuming a uniform
distribution was performed to test whether the observed frequencies of ‘outlier loci’ along the
19 poplar chromosomes differed significantly from the expected value. Following the rejection
of the null hypothesis (chi-square = 81.98 df = 18, P-value = 3.85e-10), we declared ‘outlier loci
hotspots’ if the number of outliers at a given chromosome was equal or above the maximum
value (i.e., 20) for assessed outlier clusters from a randomly generated data set using the 118
outliers found across the 19 chromosomes, and running 1,000 replicates, which identified sig-
nificant clustering of outliers on chromosome 15.
(PDF)

S2 Fig. Linkage disequilibrium between 121 identified FST outlier loci and relationship
between FST outlier allele frequencies and climate variables in P. trichocarpa. Simple linear
regression (R2) of allelic frequencies (following arcsine transformation) on temperature and
precipitation, respectively (mean annual temperature in °C: MAT_1971–2002; number of
frost-free days: NFFD_1971–2002 and mean annual precipitation in mm: MAP_1971–2002,
observed between yrs 1971–2002) calculated among the four distinct climate clusters (Fig 1);
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Note: POPTR_0143s00200 was recently re-annotated to Potri.009G008500 and both genes are
now assembled on chromosome 9 within 50kb of each other (new poplar genome assembly
Phytozyme v3). Both sequences are now described as tandem gene pair PTNRT2.4A (alias
Potri.009G008600) and PTNRT2.4B (alias Potri.009G008500) with 97% DNA sequence simi-
larity [62].
(PDF)

S1 Table. Comprehensive population differentiation estimates and h2 corrected PST for P.
trichocarpa: broad-sense and narrow-sense QST for 58 distinct field traits; QST1 and narrow-
sense QST (QST2) estimates for 16 wood traits.
(XLS)

S2 Table. Comprehensive summary table of all SNP detection results from GWAS [ecology
[39]; rust [38]; stomata [44]; wood [43]] and outlier analysis (geographic FST [36], this
study: climate FST, unsupervised SPA, climate SPA) for the black cottonwood population
(presented in Fig 1) and using the 34k SNP chip [35]; adaptive traits (significant QST) are
in bold. In red and dark blue are 1% cutoffs (spa = 2.78025 and spa = 1.50795), in orange and
light blue are 5% cutoffs (spa = 2.12467 and spa = 1.08868) in unsupervised SPA and climate
SPA analyses, respectively.
(XLSX)

S3 Table. List of 118 SNPs associated with adaptive traits (significant QST for at least one
associated trait) including 59 SNPs under diversifying selection shared among at least two
outlier detection methods and 59 unique SNPs detected by climate FST, climate SPA and
unsupervised SPA, respectively. Comprehensive results are provided in S2 Table.
(XLS)
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