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The present study quantitatively assessed sexual dimorphism of cortical convolution and
sulcal morphology in young adult ferrets by MRI-based sulcal surface morphometry. Ex
vivo T1-weighted (short TR/TE) MRI of the ferret cerebrum was acquired with high spatial
resolution at 7-tesla. The degree of cortical convolution, evaluated quantitatively based
on 3D MRI data by sulcation index (SI), was significantly greater in males (0.553± 0.036)
than in females (0.502 ± 0.043) (p < 0.001). The rostrocaudal distribution of the cortical
convolution revealed a greater convolution in the frontal region of the cortex in males than
in females and by a posterior extension of the convolution in the temporo-parieto-occipital
region of males. Although the cerebral width in the frontal region was not different
between sexes, the rhinal fissure and rostral region of splenial sulcus were more
infolded in males than in females. On the contrary, the cerebral width was greater in
males in the temporo-parieto-occipital region, and male-prominent posterior extension
of infolding was noted in the lateral sulcus, caudal suprasylvian sulcus, pesudosylvian
sulcus, hippocampal sulcus, and the caudal region of splenial sulcus. Notably, the
caudal descending region of lateral sulcus was clearly infolded in males, but obscured
in females. The present results suggest a region-related sexual dimorphism of the sulcal
infolding, which is reflected by local cortical expansion in the ferret cerebrum. In particular,
male-favored sulcal infolding with expansion of the temporo-parieto-occipital neocortex
may be relevant to the human cerebral cortex regarding visuo-spatial and emotion
processing, which are known to differ between sexes. The present results will provide
fundamental information assessing sex-related changes in the regional sulcal infolding,
when ferrets with experimentally-induced gyrification abnormality will be used as models
for male-prevalent or male-earlier-onset neurodevelopmental disorders.
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Introduction

In some mammalian species, the cerebral cortex forms a gyrencephalic morphology with
phylogenetically-conserved patterns of sulci and gyri (Chi et al., 1977; Sawada et al., 2012a, 2014).
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While sexual dimorphism of the sulcal morphology has not
been fully addressed, an asymmetric pattern of the primary
sulcal length is known to differ between sexes in humans (Liu
et al., 2010) and cynomolgus monkeys (Imai et al., 2011). The
male adult pattern of sulcal length asymmetry in those primates
was acquired during adolescence to young adulthood (Clark
et al., 2010; Sakamoto et al., 2014). Also, age-related changes
in sulcal morphology are more prominent in males than in
females (Kochunov et al., 2005). Abnormal development of the
primary sulci is reportedly involved in pathological changes in
human psychological and neurodevelopmental disorders such as
schizophrenia, obsessive-compulsive disorder and autism (Levitt
et al., 2003; Boddaert et al., 2004;Wobrock et al., 2010;White and
Hilgetag, 2011). The onset and the incidences of some of those
neurodevelopmental disorders are different between sexes (Rossi
et al., 1994; Kulynych et al., 1997; Vogeley et al., 2000; Levitt
et al., 2003; Harden et al., 2004). However, sexual differences
in the sulcal morphology and gyrification in the male-prevalent
neurodevelopmental disorders have not been documented.

Use of model animals will facilitate understanding of the
gyrificationmechanism and pathogenesis of neurodevelopmental
disorders with gyrification abnormalities. Ferrets (Mustela
putorius) are small laboratory animals, bearing cerebral sulci
(Lawes and Andrews, 1998) patterns comparable to those in
other carnivores, cats (Ferrer et al., 1988; Smith et al., 2001),
and dogs (Wosinski et al., 1996). This animal has advantageous
characteristics as a model animal for investigating the sulcal
emergence and pathogenesis of neurodevelopmental disorders
related with gyrification abnormalities as follows. (1) The ferret
is a prolific animal (Fox, 1998). It is easier to collect ferret
offspring than offspring of non-human primates when carrying
out experimental studies. (2) The developmental stages of
gyrification in primates on the basis of cerebral growth and
gyrification (Sawada et al., 2012b) can be applied to ferrets
(Sawada, 2014), although their sulcal and gyral patterns were
distinct from those in primates. (3) Ferrets experience sulcation
during the first 2 weeks of postnatal age (Smart and McSherry,
1986; Sawada and Watanabe, 2012), in contrast to the sulcal
emergence in primates during fetal period. This allows one to
apply experimental magnifications (i.e., drug administration)
directly to ferret pups during the sulcal emergence. (4) The small
size of the ferret cerebrum (3.0–3.3 cm length and 0.7–0.9 cm
width in the adult) (Sawada andWatanabe, 2012) allows an easier
histological approach compared to primates. Recently, greater
region-specific volumes of the cortex and subcortical white
matter have been found in males rather than females in the ferret
cerebrum (Sawada et al., 2013). In this report, we revealed a signal
enhancement from ex vivo T1-weighted MRI of the male cortex
(Sawada et al., 2013), which is considered to reflect increasing
axonal caliber rather than myelin sheath thickness (Perrin
et al., 2008). In our previous neuroanatomical study, a greater
cortical convolution in males than in females was observed in
the visual cortical area of ferrets following the completion of
the primary sulcal emergence (Sawada and Watanabe, 2012).
However, the cortical folding and sulcal infolding in the ferret
cortex have not been quantitatively accessed. The present study
aimed to characterize sexual dimorphism of gyrification and

sulcal morphology in the cerebrum of ferrets. The current results
will provide fundamental information evaluating quantitatively
sex-related changes in the regional sulcal infolding, when
ferrets with experimentally-induced gyrification abnormality
will be used as models for male-prevalent or male-earlier-
onset neurodevelopmental disorders. In order to achieve a
sufficient resolution for determining individual structures,
we used ex vivo T1-weighted MRI with a high spatial
resolution 7-tesla MR system to evaluate sulcal morphology
quantitatively.

Materials and Methods

Samples
The present study utilized cerebra from male and female ferrets
at postnatal day (PD) 90 (male, n = 5; female, n = 5). The
animals were purchased from SLC (Hamamatsu, Japan). After
bringing them to our laboratory, they were deeply anesthetized
with an intraperitoneal injection of chloral hydrate (400µg/g
body weight), and were perfused with 0.9% NaCl followed by
4% paraformaldehyde (PFA) in a 10mM phosphate buffer, pH
7.4. These were the same samples that had been previously
used in our gross anatomical examination of sulcation in ferrets
(Sawada and Watanabe, 2012).

MRI Measurements
MRI measurements were carried out as with our previous
study (Sawada et al., 2013). Three-dimensional T1-weightedMRI
(short TR/TE) was performed with a 7.0-T MRI system (Magnet;
Kobelco and Jastec, Kobe, Japan) (Console; Bruker BioSpin,
Ettlingen, Germany). A birdcage RF coil for transmission and
reception (70mm inner diameter, Rapid Biomedica; or 60mm
inner diameter, Bruker BioSpin) was used with a field of view
adequate for the sample dimensions. Slice orientation (transaxial)
was precisely adjusted for the cerebral base using pilot-MR
images obtained by gradient-echo sequence. Three-dimensional
T1-weighted images covering the entire brain were acquired
using the rapid acquisition with relaxation enhancement (RARE)
sequence, with the following parameters: repetition time (TR) =
300ms, echo time (TE)= 9.6ms (effective TE= 19.2ms), RARE
factor = 4, field of view (FOV) = 32× 32× 40mm3, acquisition
matrix = 256 × 256 × 256, voxel size = 125 × 125 × 156µm3,
number of acquisitions (NEX) = 2, and total scan time = 2 h
43min 50 s.

3D Volume-Rendered Images
All 3D T1-weighted MRI images were used. The cerebral cortex
and cerebrospinal fluid areas of the primary sulci were semi-
automatically segmented on MRI images using the SliceOmatic
software ver 4.3, based on image contrast as well as the
user’s knowledge of the anatomy. Segmented images were
then analyzed using the 3D-rendering module of the same
software. Images of the cerebral cortex were rendered in 3D
using the surface projection algorithm which best visualized
the surface. Three-dimensional rendered images were then
rotated and manipulated in a manner that best visualized
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brain morphology by a linear registration method using the
software.

Fronto-Occipital (FO) Length and Cerebral Width
The fronto-occipital (FO) length from the frontal pole to the
occipital pole of the cerebral cortex was measured with the 3D-
rendered images (Figure 1A) using SliceOmatic software. The
width of the cerebral cortex was measured from coronal MRI
images at the genu of corpus callosum, the anterior commissure,
the caudal end of rhinal fissure, the posterior commissure and the
splenium of corpus callosum (scc) (Figures 1B,C) using the same
software.

Cortical Surface Area and Sulcation Index
All 3D T1-weighted MRI images were used for measurements.
According to the criteria in our previous study (Sawada et al.,
2014), a clear indentation at the cerebral surface with curvature
of the adjacent subcortical white matter was considered the
indication of a sulcus. Digital surface analysis techniques that
attempt to identify narrow sulci based on measured surface
curvature will fail (Sawada et al., 2014), but small indentations
of the cerebral sulci could be defined using our criteria.
Furthermore, a gyrus was defined as any tissue delimited by two
or more fissures, sulci, or dimples. In some cases, a rostrocaudal
continuation on the cerebral surface was formed by two or
three sulci: the cruciate sulcus, splenial sulcus, and retrosplenial
sulcus; the coronal sulcus and lateral sulcus; and the rostral
suprasylvian sulcus and caudal suprasylvian sulcus. A confluence
of the ancinate sulcus made a boundary between the coronal
sulcus and lateral sulcus (Lawes and Andrews, 1998). Boundaries
of other sulci were defined by their discontinuous linkages
obtained by coronal or sagittal MRI images (Supplemental
Figure 1). The terminology and identification of cerebral sulci
and gyri were based on the textbook by Lawes and Andrews
(1998).

The cortical surface area excluding sulcal grooves (closed
surface area) and the surface areas composed of sulcal grooves
(sulcal area) were separately computed from 3D MRI using the
SliceOmatic software. The sum of those areas was defined as
the cortical surface area. The degree of cortical convolution was
evaluated quantitatively based on 3DMRI data by sulcation index
(SI) according to our previous procedure (Sawada et al., 2014),
which was a modified procedure originally designed by Dubois
et al. (2008). The SI was calculated by ratios between the closed
surface area and the sulcal areas (Supplemental Figure 2).

Rostrocaudal Distributions of Cortical Contours,
Gyrification Index, and Areas of Cortex
All 3D T1-weighted MRIs were used for measurements. The
outer contour represented the most superficial region of the
cortex surrounding the external gyral surfaces, excluding the
inner sulci (Supplemental Figure 3). The inner contour formed
the adjacent boundary of the outer contour in addition to
the sulcal groove (Supplemental Figure 3). Measurements were
obtained semi-automatically by tracing the outer contours
of the cortex and the surfaces of all sulcal grooves on
coronal MRI using the SliceOmatic software. The gyrification

index (GI) of cortical convolution and sulcal infolding on
each coronal MRI was estimated by ratios of the outer
contour, with the sum of sulcal surfaces or the surface of
each sulcus (Supplemental Figure 3). Areas of the cerebral
cortex on all coronal MRIs were also segmented semi-
automatically using the same software. For making rostrocaudal
distribution maps of each measurement, the coronal MRI
at the anterior commissure was registered as “slice number
0.” The means of each perimeter were calculated on all
coronal MRI slices, and the rostrocaudal course of each
perimeter’s distributions was represented throughout the cerebral
cortex.

In the present study, the cerebral cortex was roughly divided
into four regions at a rostrocaudal axis. The regions’ boundaries
were defined based on the structural landmarks on coronal
MRI images, which were used for measuring cerebral width
(Figure 1C). The region between the frontal pole and the genu of
corpus callosum (until the slice number was approximately−20)
was defined as the olfacto-prefrontal region; the region between
the genu of corpus callosum and the caudal end of rhinal fissure
(the slice number was approximately between−20 and 10) as the
frontal region; the region between the caudal end of rhinal fissure
and scc (the slice number was approximately between 10 and 55)
as the temporo-parietal region; and the region between the scc
and the occipital pole (the slice number was approximately 55
or greater) as the occipital region (Figure 1A). By our definition,
the primary motor cortex was present in the frontal region
(Foxworthy and Meredith, 2011). The pseudosylvian and lateral
sulci cross the temporo-parietal region, and run through the
primary auditory and auditory associated cortical areas (Keniston
et al., 2009) and the parietal cortex (Manger et al., 2002),
respectively. The caudal region contains the visual cortical area
(Manger et al., 2004; Homman-Ludiye et al., 2010).

Statistical Analysis
All measurements of the left and right hemispheres were
quantified separately. This was followed by a paired sampled t-
test that demonstrated no significant left/right differences, and
data on each side were considered to be “n = 1.”

Significant differences in the cortical surface areas, SI of the
cortex, and FO-length of the cerebral hemisphere between sexes
were evaluated statistically by One-Way ANOVA, followed by a
two-tailed Student’s t-test. Sex-related changes in areas and SI of
each primary sulcus, and the cerebral widths, were statistically
evaluated by Two-Way ANOVA using both sexes and primary
sulci as factors. Then, as post-hoc testing, Scheffe’s test was used
to compare males and females.

Ethics
The experimental procedures in the present study were
conducted in accordance with the guidelines of the National
Institutes of Health (NIH) for the Care and Use of Laboratory
Animals. The Institutional Animal Care and Use Committee of
Tsukuba International University approved the procedures, and
all efforts were made to minimize the number of animals used
and their suffering.
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FIGURE 1 | Size and shape of cerebral hemispheres of male and
female ferrets. (A) Reference for measurements of front-occipital length
(FO-length) and the width of cerebral hemispheres. Arrows indicate
points for measuring cerebral width at the genu of corpus callosum
(gcc), anterior commissure (ac), caudal end of rhinal fissure (rf), posterior
commissure (pc), and splenium of corpus callosum (scc). Four
subdivisions of the cerebral hemisphere, the boundaries of which are
defined on the basis of the structural landmarks on coronal MRI
images, are also indicated. (B) Three-dimensional rendered images of

the left cerebral hemisphere of male and female ferrets (dorsal view).
Arrows indicate points for measuring cerebral width at the gcc, ac,
caudal end of rf, pc, and scc. (C) Coronal T1-weighted (short TR/TE)
MRI for measuring the cerebral hemisphere at the gcc (a,a’), ac (b,b’),
caudal end of rf (c,c’), pc (d,d’), and scc (e,e’). Arrowheads in (c) and
(c’) indicate the beginning of pseudosylvian sulcus (pss). (D) Bar graphs
for FO-length of the cerebral hemisphere. #P < 0.001 (Student’s t-test).
(E) Bar graphs for the width of cerebral hemisphere. *P < 0.01,
**P < 0.001 (Scheffe’s test).

Results

Surface Areas of Cerebral Cortex and Sulcal
Grooves
As was true with the cortical volume reported in our previous
study (Sawada et al., 2013), the surface area of cerebral cortex

was significantly greater in males (1332.9 ± 59.2mm2) than
in females (1216.7 ± 53.5mm2) (p < 0.001) (Table 1). This
sex difference involved a region-related change in the sulcal
surface areas. Two-Way ANOVA revealed significant effects on
both sexes [F(1, 270) = 91.486, p < 0.001], the primary sulci
[F(14, 270) = 681.045, p < 0.001], and the interactions of the

Frontiers in Neuroanatomy | www.frontiersin.org 4 May 2015 | Volume 9 | Article 55

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Sawada et al. Sexual dimorphism of sulcal morphology

two [F(14, 270) = 3.338, p < 0.001]. Post-hoc testing indicated
significantly greater surface areas in males than in females in the
presylvian sulcus (p < 0.01), rhinal fissure (p < 0.001), lateral
sulcus (p < 0.001), caudal suprasylvian sulcus (p < 0.001),
pseudosylvian sulcus (p < 0.001), splenial sulcus (p < 0.001),
and hippocampal sulcus (p < 0.001).

SI
Surface areas of the sulcal grooves revealed the absolute size of
each sulcus. Next, we attempted to clarify the involvement of
each sulcal infolding with the degree of cortical convolution.
The SI was calculated based on 3D MRI. When the SI of the
ferret cerebral cortex was compared between sexes, a highly
convoluted cortical surface was noted in males (0.553 ± 0.036)
rather than in females (0.502 ± 0.043) (p < 0.05) (Table 1). The
SI of representative primary sulci was also estimated. Two-Way
ANOVA revealed significant effects on both sexes [F(1, 270) =
31.652, p < 0.001] and sulci [F(14, 270) = 753.518, p < 0.001],
but not on the interactions of the two. Post-hoc testing indicated
very significant infolding of the rhinal fissure (p < 0.01), lateral
sulcus (p < 0.05), caudal suprasylvian sulcus (p < 0.05),
pesudosylvian sulcus (p < 0.05), splenial sulcus (p < 0.001),
and hippocampal sulcus (P < 0.05).

Size and Shape of Cerebral Hemisphere
The FO-length andwidth of cerebral hemispheres were examined
to determine whether or not sex-related changes in the size
and shape of cerebral hemispheres were involved in sexual
dimorphism of the sulcal infolding. Three-dimensional rendered
images revealed that male ferrets have a relatively trigonal-
shaped cerebrum larger than the female cerebrum (Figure 1B).
Moreover, the FO-length was significantly greater in males than
in females (p < 0.05) (Figure 1D). In contrast, a region-
related sex difference in cerebral width was revealed by Two-Way
ANOVA. There were significant effects on both sexes [F(1, 90) =
45.371, p < 0.001] and cerebral regions [F(4, 90) = 655.927,
p < 0.001], and the interactions of the two [F(4, 90) = 2.652,
p < 0.05]. Post-hoc testing indicated three posterior points
where cerebral width was significantly greater in males: at the
end of rhinal fissure (p < 0.01), posterior commissure (p <

0.001) and scc (p < 0.001), but there was no sex difference
at two anterior points (at the genu of corpus callosum and
anterior commissure) (Figure 1E). Since the caudal end of the
rhinal fissure was defined as the boundary between the frontal
and temporo-parietal regions in the present study (Figure 1A),
male-prominent lateral expansion of the cerebrum was observed
in the temporo-parietal and occipital regions, but not in the
olfacto-prefrontal and frontal regions. Thus, sex-related regional
difference in the lateral expansion of the cerebrum was involved
in the characteristic trigonal-shapedmorphology of the cerebrum
of male ferrets.

Rostrocaudal Patterns of GI, Cortical Perimeters,
and Areas of Cerebral Cortex
Since male-over-female lateral expansion of the cerebrum was
revealed in the temporo-parietal and occipital regions, but not in
the olfacto-prefrontal and frontal regions of the ferret cerebrum,

TABLE 1 | Surface areas and sulcation index (SI) of cerebral cortex and
primary sulci in male and female ferrets.

n = Surface area (mm3) SI

CEREBRAL CORTEX

Male 10 1332.9 ± 59.2## 0.553 ± 0.036#

Female 10 1216.7 ± 53.5 0.502 ± 0.043

PRESYLVIAN SULCUS (prs)

Male 10 60.9 ± 7.3** 0.061 ± 0.006

Female 10 55.2 ± 4.4 0.059 ± 0.004

RHINAL FISSURE (rf)

Male 10 91.9 ± 5.5*** 0.109 ± 0.007**

Female 10 83.2 ± 5.9 0.103 ± 0.006

CRUCINATE SULCUS (crs)

Male 10 14.7 ± 2.9 0.015 ± 0.003

Female 10 11.5 ± 1.8 0.012 ± 0.002

CORONAL SULCUS (cns)

Male 10 35.8 ± 4.3 0.039 ± 0.006

Female 10 32.5 ± 3.2 0.037 ± 0.005

LATERAL SULCUS (ls)

Male 10 32.8 ± 4.8*** 0.028 ± 0.004*

Female 10 25.4 ± 6.1 0.023 ± 0.005

ROSTRAL SUPRASYLVIAN SULCUS (rsss)

Male 10 37.5 ± 3.0 0.037 ± 0.003

Female 10 35.9 ± 3.8 0.037 ± 0.005

CAUDAL SUPRASYLVIAN SULCUS (csss)

Male 10 35.7 ± 3.1*** 0.029 ± 0.002*

Female 10 26.1 ± 2.9 0.024 ± 0.003

PSEUDOSYLVIAN SULCUS (pss)

Male 10 25.4 ± 3.2*** 0.023 ± 0.003*

Female 10 17.7 ± 3.9 0.018 ± 0.004

RHINAL SULCUS (rs)

Male 10 13.2 ± 3.3 0.011 ± 0.003

Female 10 12.6 ± 4.7 0.012 ± 0.004

SPLENIAL SULCUS (ss)

Male 10 111.8 ± 6.9*** 0.111 ± 0.005***

Female 10 96.5 ± 10.8 0.102 ± 0.013

RETROSPLENIAL SULCUS (rss)

Male 10 19.7 ± 2.9 0.020 ± 0.003

Female 10 18.5 ± 4.2 0.020 ± 0.003

OLFACTORY SULCUS (olfs)

Male 10 17.0 ± 1.2 0.019 ± 0.001

Female 10 12.8 ± 1.0 0.016 ± 0.001

HIPPOCAMPAL SULCUS (his)

Male 10 26.5 ± 5.7*** 0.021 ± 0.004*

Female 10 19.0 ± 6.3 0.016 ± 0.004

OCCIPITOTEMPORAL SULCUS (ots)

Male 10 4.8 ± 2.2 0.007 ± 0.003

Female 10 3.0 ± 1.5 0.004 ± 0.002

OTHER SULCI

Male 10 16.6 ± 5.6 0.021 ± 0.008

Female 10 13.3 ± 2.6 0.019 ± 0.003

SI of the cerebral cortex indicates the mean SI throughout the cerebral cortex. # P< 0.05,
## P < 0.001 vs. females (Student’s t-test). * P < 0.05, ** P < 0.01, *** P < 0.001 vs.
females (Scheffe’s test).
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the region-related sexual difference in the cortical convolution
and expansion along the FO axis was examined using 2D coronal
MRI. Rostrocaudal GI patterns revealed a greater frequency of
cortical convolution in males than in females throughout the
frontal to occipital regions of the cerebrum, while the frequency
was relatively low in the temporo-parietal and occipital regions
(Figure 2A). However, rostrocaudal maps of the inner contour,
outer contour, and entire area of the cerebral cortex showed
different patterns to those found in the cortical convolution.

In the olfacto-prefrontal region, no measurements showed
obvious sex differences (Figures 2A–C). In the frontal region,
a greater cortical convolution was involved in male-prominent
areas of the cortex on each coronal MRI (arrows in Figure 2B).
However, the increased convolution of the male cortex was not
accompanied by cortical expansion, because the inner contour
was male-prominent (Figure 2C), and the outer contour was
female-prominent (arrows in Figure 2C).

The anterior 1/4 of the temporo-parietal region had the same
patterns as the frontal region regarding cortical convolution,
areas of the cortex, and the inner and outer contours of
the cortex. A gradual increase in areas of the cortex, but
a decrease in the frequency of the cortical convolution, was
shown in the posterior 3/4 of the temporo-parietal region
(Figures 2A,B). Male-over-female cortical convolution in this
subregion was attributed to the male-favored increment of the
inner contour (closed arrows in Figure 2C), but there was no
sexual difference in the outer contour (Figure 2C). On the other
hand, a gradual decrease in the frequency of cortical convolution
in the posterior 3/4 of the temporo-parietal region revealed that
cortical expansion rather than sulcal infolding was responsible
for increased areas of the cortex found with coronal MRIs in both
sexes.

In the occipital region, cortical convolutions were extended
posteriorly more frequently inmales than in females (Figure 2A),
and were involved in male-favored posterior extensions of areas
of the cortex, and in the inner and outer contour of the cortex
(Figures 2B,C).

Rostrocaudal Patterns of Sulcal Infolding
In order to clarify the involvement of each sulcal infolding
in the overall pattern of cortical convolution, we examined
rostrocaudal infolding patterns of representative primary sulci
in the cerebral cortex of male and female ferrets. The results
of sulci on the medial and lateral cerebral surfaces were shown
in Figures 3, 4. In the olfacto-prefrontal region, the olfactory
sulcus was infolded. The presylvian and cruciate sulci extended
through the olfacto-prefrontal region to the frontal region of
the external surface, and the rostrocaudal GI patterns of those
three sulci were not sexually different (Figures 3D, 4B–D). The
rhinal fissure extends through the olfacto-prefrontal to frontal
regions, and borders on the neocortex (orbital gyrus) with the
olfactory bulb or allocortex (piriform cortex) on the ventral
side of the external surface. There were two peaks of rhinal
fissure infolding in the olfacto-prefrontal and frontal regions,
respectively. The rostral peak in the olfacto-prefrontal region
demarcated the orbital gyrus and olfactory bulb, and the caudal
peak in the frontal region delineated the orbital gyrus with the

FIGURE 2 | Rostrocaudal distribution patterns of cortical convolution,
area of cerebral cortex, and cortical contours. (A) Rostrocaudal pattern
of the gyrification index (GI). (B) Rostrocaudal pattern of the areas of cerebral
cortex on coronal T1-weighted (short TR/TE) MRI. Arrows indicate
male-over-female areas of the cortex in the frontal region. Arrowheads indicate
male-favored posterior extension of areas of cortex in temporo-parietal and
occipital regions. (C) Rostrocaudal pattern of inner and outer contours of
cerebral cortex. The outer contour represented the most superficial region of
the cortex surrounding the external gyral surfaces while excluding the inner
sulci (Supplemental Figure 3). Arrows indicate female-over-male outer
contours through the frontal to anterior 1/4 of temporo-parietal regions.
Arrowheads indicate male-prominent posterior extension of inner contours. In
rostrocaudal distribution maps of each measurement, the coronal MRI slice at
the anterior commissure (ac) is registered as “slice number 0.” The means of
each perimeter are calculated on all coronal MRI slices, and the rostrocaudal
course of the distributions of each perimeter is represented throughout the
cerebral cortex. Four subdivisions of the cerebral hemisphere, the boundaries
of which are defined on the basis of the structural landmarks on coronal MRI
images, are indicated by shadows.
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FIGURE 3 | Rostrocaudal distribution patterns of primary sulcal
infolding on the medial surface of cerebral hemisphere. (A) Sulcal map
of the medial cerebral surface. Four subdivisions of the cerebral hemisphere,
the boundaries of which are defined on the basis of structural landmarks on
coronal T1-weighted (short TR/TE) MRI, are indicated by shadows. (B)
Rostrocaudal pattern of the gyrification index (GI) of splenic sulcus (ss).
Closed arrowhead indicates the ss region, which was more infolded in males
than in females in the frontal region (a rostral peak of ss infolding). Open
arrowhead indicates the ss region, which is extended more posteriorly in
males than in females in the occipital region (a caudal peak of ss infolding).
(C) Rostrocaudal pattern of the GI of retrosplenic sulcus infolding (rss).(D)

Rostrocaudal pattern of the GI of olfactory sulcus infolding (olfs). (E)
Rostrocaudal pattern of the GI of infolding of hippocampal sulcus (his). Open
arrowhead indicates his region, which is extended more posteriorly in males
than in females. (F) Rostrocaudal pattern of the GI of occipitotemporal sulcus
infolding (ots). On the rostrocaudal distribution maps of each measurement,
the coronal MRI slice at the anterior commissure (ac) is registered as “slice
number 0.” The means of each perimeter are calculated for all coronal MRI
slices, and the rostrocaudal course of the distributions of each perimeter is
represented throughout the cerebral cortex. Four subdivisions of the cerebral
hemisphere, the boundaries of which are defined on the basis of the
structural landmarks on coronal MRI, are indicated by shadows.

piriform cortex. Sex difference of the rhinal fissure infolding was
detected by the greater infolding between those two peaks in the
frontal region of males rather than in females (open arrowhead
in Figure 4C).

The splenial sulcus, which demarcates the neocortex and
allocortex on the medial cerebral surface, extends through the
frontal to occipital regions. Two peaks were revealed by the
rostrocaudal pattern of the splenial sulcus infolding: the rostral
one in the frontal region (closed arrowhead in Figure 3B), and
the caudal one, corresponding to the descending part of splenial
sulcus in the occipital region (open arrowhead in Figure 3B).
Sex difference in the splenial sulcus infolding was noted by a
greater rostral peak in males than in females, and by a male-
favored posterior extension of the caudal peak (Figure 3B).
Through the frontal to temporo-parietal regions, the coronal
and rostral suprasylvian sulci were transversally infolded on the
external surface. Rostrocaudal GI patterns of those two sulci were
not sexually different (Figures 4E, H). Thus, male-prominent
cortical convolution in the frontal region as shown in Figure 2B
was attributed to male-over-female infolding of the rhinal fissure
and splenial sulcus.

Through the temporo-parietal to occipital region, the
pseudosylvian sulcus was infolded in the temporo-parietal
region, and the lateral and caudal suprasylvian sulci extended
transversally on the external surface of the neocortex. As
sulci demarcating the allocortex, hippocampal and rhinal sulci
were infolded. In the temporo-parietal region, male-prominent
infolding with posterior extension was noted in lateral and
pseudosylvian sulci (open arrowheads in Figures 4F, G). Notably,
the lateral sulcus clearly had a second peak of infolding in
the occipital region of males, but it was obscured in females
(closed arrowheads in Figure 4F). In contrast, the hippocampal
and caudal suprasylvian sulci were extended posteriorly in males
more than in females in the occipital region (Figures 3E, 4I),
as was the descending part of the splenial sulcus on the medial
surface (Figure 3B). The rhinal sulcus extended on the ventral
side of the external surface as a caudal continuation of the
rhinal fissure. The rostrocaudal pattern of rhinal sulcus infolding
was, however, not sexually different in the temporo-parietal
region, or even in the occipital region (Figure 4J). Within the
occipital region, retrosplenial and occipitotemporal sulci were
infolded on the medial surface. Although the SI of those two
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FIGURE 4 | Rostrocaudal distribution patterns of primary sulcal
infolding on external surface of cerebral hemisphere. (A) Sulcal map of
the external cerebral surface. (B) Rostrocaudal pattern of the GI of presylvian
sulcus infolding (prs). (C) Rostrocaudal pattern of the GI of rhinal fissure
infolding (rf). Open arrowhead indicates the rf region, which is more infolded
in males than in females. (D) Rostrocaudal pattern of the GI of cruciate
sulcus infolding (crs). (E) Rostrocaudal pattern of the GI of coronal sulcus
infolding (cns). (F) Rostrocaudal pattern of the GI of lateral sulcus of infolding
(ls). Open arrowhead indicates the ls region, which is extended more
posteriorly in males than in females in temporo-parietal region, and closed
arrowhead indicates the second peak of the ls infolding, which is obvious in
males but obscure in females in the occipital region. (G) Rostrocaudal
pattern of the GI of pseudosylvian sulcus infolding (pss). Open arrowhead

indicates the pss region, which is extended more posteriorly in males than in
females in the temporo-parietal region. (H) Rostrocaudal pattern of the GI of
rostral suprasylvian sulcus infolding (rsss). (I) Rostrocaudal pattern of the GI
of caudal suprasylvian sulcus infolding (csss). Open arrowhead indicates the
csss region, which is extended more posteriorly in males than in females in
the occipital region. (J) Rostrocaudal pattern of the GI of rhinal sulcus
infolding (rs). On the rostrocaudal distribution maps of each measurement,
the coronal MRI slice at the anterior commissure (ac) is registered as “slice
number 0.” The means of each perimeter are calculated on all coronal MRI
slices, and the rostrocaudal course of the distributions of each perimeter is
represented throughout the cerebral cortex. Four subdivisions of the cerebral
hemisphere, the boundaries of which are defined on the basis of the
structural landmarks on coronal MRI images, are indicated by shadows.

sulci was not sexually different (Table 1), a posterior extension
of the infolding of retrosplenial and occipitotemporal sulci was
observed slightly in males (Figures 3C,F). Thus, male-prominent
cortical convolution in the temporo-parietal region as shown
in Figure 2B was involved in greater infolding of the lateral
and pseudosylvian sulci. Male-favored posterior expansion of
the cortex in the occipital region as shown in Figures 2B,C

was accompanied by male-over-female infolding with posterior
expansion of the primary sulci.

Sulcal Morphology
Three-dimensional rendered images of primary sulci showing
sexual dimorphic rostrocaudal infolding patterns are shown
in Figures 5–8. As well as the quantitative results seen in
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FIGURE 5 | Three-dimensional rendered images of crucinate and
splenic sulci. (A) Dorsal views of 3D-rendered images of the crucinate sulcus
(crs) and splenic sulcus (ss) with or without the cerebral surface. Each image is
registered at the anterior commissure (ac). (B) Medial views of 3D-rendered
images of the crs and ss with or without the cerebral surface. Each image is
registered at the ac. (C) Coronal T1-weighted (short TR/TE) MRI of the ferret
cerebrum corresponding to the rostral peak of ss infolding in the frontal region
(Figure 3B). Bar in 3D-rendered images of the cerebrum indicates the
positions of coronal MRI images acquired. The ss demarcates the cingulate
gyrus (CG) and posterior sigmoid gyrus (PSG), male-prominent ss infolding
result in a greater convolution of the PSG in males than in females.

Figures 3, 4, a male-prominent posterior extension was
obtained in the splenial sulcus (Figures 5A,B), hippocampal
sulcus (Figure 8C), caudal suprasylvian sulcus (Figure 8A),
pseudosylvian sulcus (Figure 8B), and lateral sulcus
(Figures 7A,B), when the anterior commissure of male and
female cerebra was adjusted to the same point at the rostrocaudal
axis. While splenial and caudal suprasylvian sulci descended in
an arc on medial and external cerebral surfaces, respectively,
these sulci extended posteriorly by increasing their curvatures
(Figures 5A,B, 8A). Arrowheads in Figure 6A indicate the rhinal
fissure infolding that was male-prominent in its rostrocaudal
pattern (open arrowhead in Figure 4C). This region delineated
the piriform cortex with the caudal part of orbital gyrus
(Figure 6B), and made male convolution of the orbital gyrus
greater than that of females on coronal MRI (Figure 6B). The
lateral sulcus formed a characteristic morphology that angled
and then descended laterally as a shallow groove (Figure 7A).
The turning point indicated by arrowheads in Figure 7A
corresponded to the caudal second peak of the lateral sulcus
infolding indicated by the closed arrowhead in Figure 4F. The
sex difference in the lateral sulcus morphology was obvious,
particularly given by the shallower and shorter infolding found
in females than in males posterior to the turning point of this
sulcus (Figure 7B).

FIGURE 6 | Three-dimensional rendered images of rhinal fissure. (A)
Lateral views of 3D-rendered images of the rhinal fissure (rf) with or without
the cerebral surface. Arrowheads indicate the rf region, corresponding to a
second peak of the lf infolding (see open arrowheads in Figure 4C). Each
image is registered at the anterior commissure (ac). (B) Coronal T1-weighted
(short TR/TE) MRI of the ferret cerebrum corresponding to the rf region,
which is more infolded in males than in females in the frontal region. Bar in
3D-rendered images of the cerebrum indicates the positions of coronal MRI
acquired. The ss demarcates the cingulate gyrus (CG) and piriform cortex
(Pir), male-prominent rf infolding result in a greater convolution of the Pir in
males than in females.

Discussion

Sexual dimorphism and the laterality of brain structures
are considered to associate with sex-related functions and
functional specifications of each brain region. Some mammalian
species such as primates and carnivores have a gyrencephalic
morphology of the cerebral cortex (Chi et al., 1977; Smart and
McSherry, 1986; Ferrer et al., 1988; Wosinski et al., 1996; Sawada
et al., 2012a, 2014), which involves species-related morphological
and functional specifications of the cerebrum. Recently, we have
proposed the developmental stages of gyrification in primates on
the basis of cerebral growth and gyrification: Stage 1. Appearance
of the primary sulci demarcating cerebral lobes and limbic cortex;
Stage 2. Appearance of the primary sulci demarcating neocortical
gyri; Stage 3. Appearances of secondary and tertiary sulci; and
Stage 4. Growth of sulcal length and depth (Sawada et al.,
2012b). Such gyrification stages can be applied to a non-primate
mammal, the ferret (Sawada, 2014). In the present study, sexual
dimorphism of the cortical convolution in young adult ferrets
was characterized by a male-preferred sulcal infolding in the
frontal region and by a male-preferred posterior extension of
sulcal infolding with cortical expansion in the temporo-parieto-
occipital region. In our previous neuroanatomical study, a greater
cortical convolution in males than in females was observed in
the visual cortical area of ferrets following the completion of
the primary sulcal emergence (Sawada and Watanabe, 2012).
A regional pattern of sulcal length asymmetry was acquired in
human males from adolescence to young adulthood (Blanton
et al., 2001; Clark et al., 2010), as well as in cynomolgus
monkeys (Sakamoto et al., 2014), and enhancement of sulcal
length asymmetry in prefrontal and perisylvian regions during
adolescence was more prominent in males than in females
in humans (Blanton et al., 2001; Clark et al., 2010). Thus,
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FIGURE 7 | Three-dimensional rendered images of lateral sulcus. (A)
Dorsal views of 3D-rendered images of the lateral sulcus (ls) with or without the
cerebral surface. Closed arrowheads indicate the ls region corresponding to
the second peak of the ls infolding, which is obvious in males, but obscure in
females in the occipital region (Figure 4F). Each image is registered at the
anterior commissure (ac). (B) Lateral views of 3D-rendered images of the
lateral sulcus (ls) with or without the cerebral surface. Closed arrowheads
indicate the ls region corresponding to the second peak of the ls infolding; This
is obvious in males but obscure in females in the occipital region (Figure 4F).
Each image is registered at the anterior commissure (ac). (C) Coronal
T1-weighted (short TR/TE) MRI of the ferret cerebrum corresponding to the ls
regions of the rostral peak of infolding (a,a’), the second peak of males (b) and
identical region in females (b’), and near the caudal end in males (c) and
identical region in females (c’). Bars in 3D-rendered images of the cerebrum
indicate the positions of coronal MRI images acquired.

sex-related change in the cortical convolution may occur at Stage
4 of the gyrification process (during adolescent to young adult
periods), although its characteristics will vary depending on the
species.

Methodological Issues
The present MRI-based morphometric analysis of sulcal surface
characterized sexual dimorphism of the sulcal morphology in the
ferret cerebrum. Removal of the skull before MRI measurements

may be involved in slight artifacts in brain samples (Ma et al.,
2008), but it is known that volumes of the brain do not
differ between in vivo and ex vivo MRI measurements (Oguz
et al., 2013). An improvement of image quality in ex vivo MRI
measurements was considered to delineate detailed morphology
of the sulci in the present study.

Two approaches exist for assessing the degree of gyrification:
quantitatively, with the GI based on coronal 2D MRI data
(Zilles et al., 1988); and with the SI based on 3D data (Dubois
et al., 2008). The present study used the SI for evaluating
overall differences in cortical convolution and infolding of
the representative primary sulci. Furthermore, it examined
rostrocaudal patterns of the GI of the representative primary
sulci. For making rostrocaudal distribution maps, the coronal
MRI at the anterior commissure was registered as “slice
number 0.” Such spatial alignment allowed for a comparison
of the spatial distribution of the sulcal infolding between
sexes. Studying four regions of the cerebral cortex, roughly
divided based on the structural landmarks on coronal MRI
images (see Figure 1A), brought about further speculation
regarding local changes of the sulcal infolding in particular
cortical regions. Thus, sex-related changes in regional
development of the ferret cerebral cortex were revealed
by the present MRI-based morphometrical approaches. In
combination with the T1-weighted MRI-based maximum
intensity projection (MIP) map of the cerebrum that visualizes
functional cortical areas associated with myeloarchitecture
(Sawada et al., 2013), the present approach may well be useful
for investigating normal and abnormal development of the
functional organization of the cerebrum using conventional MRI
techniques.

Sulcal Infolding in Temporo-Parieto-Occipital
Region
The present study revealed that male-favored posterior extension
of primary sulci in the temporo-parieto-occipital region (i.e., the
hippocampal sulcus, lateral sulcus, caudal suprasylvian sulcus,
pseudosylvian sulcus, and the caudal descending part of the
splenial sulcus) was involved in an expansion of the cortical
region in the ferret cerebrum. Regarding the hippocampal sulcus,
sex difference in sulcal infolding may be associated with a
11.7% larger volume of the hippocampus in male ferrets than
in female ferrets (Sawada et al., 2013). Consistently, the male’s
hippocampus has been reported to have a larger volume in
humans (Giedd et al., 1997; Suzuki et al., 2005; Carne et al.,
2006) and mice (Schlaepfer et al., 1995; Spring et al., 2007).
This may be related to sexual dimorphism of hippocampal
functions such as male-preferred spatial tasks (Williams et al.,
1990; Gron et al., 2000; Butler et al., 2006; van Gerven et al.,
2012).

The lateral, caudal suprasylvian and pseudosylvian sulci
extend through the neocortex of the temporo-parieto-occipital
region, and delineate borders of the lateral gyrus, suprasylvian
gyrus, and/or posterior ectosylvian gyrus. Those gyri include
higher-order visual cortical areas such as the posterior parietal
caudal cortex, posterior parietal rostral cortex, and anterior
ectosylvian visual area (Manger et al., 2002, 2004, 2005). In
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FIGURE 8 | Three-dimensional rendered images of rostral
suprasylvian, caudal suprasylvian, pseudosylvian, and
hippocampal sulci. (A) Lateral views of rostral suprasylvian sulcus
(rsss) and caudal suprasylvian sulcus (csss), with or without the cerebral

surface. (B) Lateral views of pseudosylvian sulcus (pss) with or without
the cerebral surface. (C) Medial views of hippocampal sulcus (his) with
or without the cerebral surface. Each image is registered at the anterior
commissure (ac).

humans, visuospatial association areas of the parietal lobes
are more expanded in men than in women (Brun et al.,
2009), and a sex difference in visuo-spatial processing is
noted when male or female approaches a 3D-mental rotation
task: there is a male-prominent activation of the superior
parietal lobule; but a female-prominent activation of the inferior
fontal gyrus (Thomsen et al., 2000; Hugdahl et al., 2006).
Visuo-spatial processing has also been proven to occur in
carnivores (Schweid et al., 2008) and macaques (Burmann
et al., 2005; Köhler et al., 2005). Moreover, a cytoarchitectural
study revealed that the suprasylvian gyrus in ferrets is identical
to the inferior parietal lobule in macaques (Manger et al.,
2002), which is homologous with the inferior parietal lobule
in humans (Watson et al., 1994). Therefore, male-favored
sulcal infolding with expansion of the temporo-parieto-occipital
neocortex predicts the presence of a sex difference in functions
of higher-order visual cortical areas such as visuo-spatial
processing.

An intriguing result of the present study is that the lateral
sulcus showed a strikingly different infolding pattern between
male and female ferrets. The lateral sulcus angled toward the
occipital region and then descended laterally through the visual
cortical area (across the cortical area 19) (Manger et al., 2005).
This descending region was distinguishable as a second peak
of lateral sulcus infolding on its rostrocaudal infolding map in
males, but not in females. The visual cortical area was consistently
more convoluted in male ferrets than in female ferrets in
our previous neuroanatomical study (Sawada and Watanabe,
2012). In the occipital region, the splenial sulcus was curved
descendingly on the medial surface while demarcating the visual
cortical area and the allocortex (Lawes and Andrews, 1998), and
extended more posteriorly in males by increasing its curvature.
Thus, sex-related specifications of functions and morphology of
the ferret cerebrum may be characterized by a more detailed
development of the visual cortical area in males than in
females.

Sulcal Infolding in Frontal Region
Sex difference in sulcal infolding was also observed in the
frontal region of the ferret cerebrum in the present study.
Male-preferred infolding of the rhinal fissure and rostral region
of the splenial sulcus was involved in greater convolutions
of adjacent neocortical gyri such as the cingulate and orbital
gyri. In contrast, larger volumes of cingulate and fronto-orbital
cortices in women rather than men were reportedly related
to emotion processing (Gur et al., 2002; Mann et al., 2011;
Rando et al., 2013). Such different patterns of sex-related volume
changes in anatomically-identical cerebral regions between
ferrets and humans suggest that there is species-specification of
the sex-related functions of those cerebral regions, e.g., emotion
processing.

Conclusions

In the present study, sexual dimorphism of the cortical
convolution of young adult ferrets was characterized by male-
favored sulcal infolding in the frontal region, and by male-
prominent posterior extension of primary sulci with cortical
expansion of the temporo-parieto-occipital region. In humans,
sexual dimorphism of the sulcal infolding is characterized by an
enhancement of sulcal length asymmetry in males rather than
in females in the prefrontal and perisylvian regions, which is
acquired during adolescence (Blanton et al., 2001; Clark et al.,
2010). Although the cortical surface area and the degree of
primary sulcal infolding were developed symmetrically in the
ferret cerebrum along with volumes of the cortex and other
cerebral structures (Sawada et al., 2013), sexual dimorphism of
the sulcal infolding was striking in cerebral regions, which were
anatomically-identical to the human cerebral cortex in terms of
visuo-spatial processing (Thomsen et al., 2000; Hugdahl et al.,
2006; Brun et al., 2009) and emotion processing (Gur et al.,
2002; Mann et al., 2011; Rando et al., 2013). Male-earlier-onset
or male-prevalent human neurodevelopmental disorders such
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as schizophrenia and autism involve gyrification abnormality
(Rossi et al., 1994; Kulynych et al., 1997; Vogeley et al.,
2000; Levitt et al., 2003; Harden et al., 2004), and are known
to show sexually-dimorphic atypical processing in response
to visuo-spatial (Jiménez et al., 2010; Beacher et al., 2012)
and/or emotional (Mendrek, 2007; Phillips et al., 2011) stimuli.
Therefore, we concluded that sexual dimorphic characteristics of
the sulcal infolding of the ferret cerebrum, which are acquired
at Stage 4 of the gyrification processes (during adolescent
to young adult periods), provide keys to understanding the
pathogenesis of human neurodevelopmental disorders with
gyrification abnormality, especially those in whom pathogenesis
differs by sex.
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