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ABSTRACT
Nanoparticles (NPs) made up of cellular components such as extracellular vesicles (EVs) with a biomimetic outlook have emerged 
as a revolutionary approach in nanomedicine, providing significant benefits for targeted drug administration, immunotherapy, 
monitoring therapeutic response, and diagnostic applications. Utilizing the distinctive characteristics of natural cell membranes, 
membrane proteins, and cellular contents, these biomimetic NPs acquire essential biological functions from their source and 
biogenesis, including immune evasion, extended circulation, and target recognition, rendering them optimal candidates for 
therapeutic applications. This review offers a comprehensive examination of the methodologies of EVs infused with synthetic 
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NP systems with the goal of overcoming their respective shortcomings. For instance, EVs are biogenic with cellular targeting 
features, but their isolation yield is limited, and their structural and colloidal stability are weak. Whereas, we have decades of 
experience in the mass production of highly stable synthetic NPs, they lack cellular targeting features. Therefore, the integration 
of these two systems as a single entity in the field of nanomedicine has gained significant attention. In this review, we empha-
sized the variety of EVs sources, such as erythrocytes, leukocytes, cancer cells, and stem cells, each providing unique biological 
benefits. Critical procedures encompassing EV's separation, coating processes, and material integration were examined while 
addressing the issues, including scalability, membrane stability, and preservation of functionality. Additionally, their promise in 
customized medicine is analyzed, highlighting their immediate medical applications. This review seeks to elucidate the existing 
methodologies, their constraints, and prospective advancements in the creation of EV-derived biomimetic NPs for clinical use.
This article is categorized under:
Nanotechnology Approaches to Biology > Nanoscale Systems in Biology
Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease

1   |   Introduction

Nanobiotechnology enables molecular-level material manipula-
tion for biomedical applications with the goal of creating non-
toxic bioactive nanodevices that are selective to the intended 
biological location. The advantage of utilizing nanomaterials as 
drug delivery systems (DDS) resides in their nano size, allowing 
them to pass through biological barriers and constricted capil-
laries, ultimately reaching specific organs, tumors, or individual 
cells (Sun et al. 2014). The use of nanotechnological materials 
for the prevention, monitoring, and intervention of diseases is 
termed nanomedicine. Nanomedicine is designed to incorporate 
imaging, therapy, diagnosis, repair, and regeneration modalities 
for medical applications. Over the past decades, nanomedicine 
has been developing into a vital branch in the medical field 
(Anjum et al. 2021; Morrow et al. 2007). The commonly avail-
able conventional classes of NPs in the nanomedicine field are 
liposomes, biodegradable polymers, hydrogel nanocomposites, 
semiconductor nanomaterials, magnetic nanomaterials, solid 
lipid NPs, metal NPs, polymer nanocomposites, dendrimers, 
inorganic NPs, and micelles (Ferrel et  al.  2021; Hajfathalian 
et al. 2024; Huang, Zhou, et al. 2022; Jackson et al. 2017; Jiang 
et  al.  2021; Kass and Nguyen  2022; Lee and Thompson  2017; 
Luzuriaga et al. 2021; Movassaghian et al. 2015; Del Rahmani 
Bakhshayesh et  al.  2023). Conventional NPs become the re-
searcher's first choice because of their in vitro and in vivo drug 
stability, therapeutic efficacy, and ease of surface modification 
to install unique properties (Greish 2018). The NPs are emerging 
as the most advantageous tool in nanomedicine based on the fol-
lowing factors. The tiny size of the NPs allows efficient absorp-
tion and solubility of the conventional drugs, which often need 
a combination of various organic solvents and higher doses. NPs 
can be designed to minimize adverse side effects on the human 
body (Sharma and Alam 2023). After entering the blood circu-
lation, the NPs can interact with key molecules, leading to the 
formation of bio-corona and further interaction with organelles, 
which can lead to off-target effects and even cell death (Ajith 
et al. 2022). Therefore, biomimetic modification of NPs would 
result in enhanced targeting, lower toxicity, and may main-
tain the desired pharmacokinetics (Jeevanandam et  al.  2018; 
Pitchaimani et al. 2018, 2019; Tikhonov et al. 2024).

Biomimetic NPs engineered by the fusion of EVs and synthetic 
NPs are an emerging and innovative platform that mimics the 

biological characteristics and functions of native cells. These NPs 
provide enhanced biocompatibility, exceptional target specificity, 
prolonged retention time, and minimum unwanted immune re-
actions (Alimohammadvand et  al.  2024; Hu et  al.  2023; Sarkar 
Lotfabadi et al. 2024; Sherawata et al. 2023; Tikhonov et al. 2024). 
These NPs receive significant attention because of their superior 
biocompatibility and reduced unwanted immune responses in 
comparison to other NPs (Chakraborty et  al.  2023). These NPs 
have the capability of inducing several desired biological effects 
due to their inherent richness in cell-specific functionality (Khojini 
et al. 2023). They can be employed as drug delivery system carriers 
with high specificity and efficiency (Manika and Pandey  2023). 
Additionally, biomimetic NPs have been explored for their applica-
tions in various fields such as cancer immunotherapy, bioanalysis, 
and biomedical engineering. Overall, biomimetic NPs hold great 
promise for the development of advanced biomaterials with spe-
cialized biological functions. These NPs are designed to emulate 
the structural and functional characteristics of natural biomole-
cules and organisms, allowing for unique properties and appli-
cations. The field is leveraging the principles of biology to create 
innovative and versatile materials. They have been used in a wide 
range of applications, including drug delivery, gene therapy, tissue 
engineering, and sensing. One notable application of biomimetic 
NPs is in tumor-specific drug delivery.

Extracellular vesicles (EVs) are one of the well-known and 
emerging candidates in nanomedicine to derive biomimetic 
NPs (Du, Guan, et al. 2023; Mondal et al. 2024). EVs are nano-
sized, lipid bilayer-bounded bodies that facilitate intracellular 
communication, impacting cell response. Almost all types of 
eukaryotic and prokaryotic cells release these EVs into the ex-
tracellular space through major molecular mechanisms such 
as the endosomal pathway (exosome formation), direct plasma 
membrane budding (microvesicle formation), and apop-
totic pathway (release of apoptotic bodies) (Maas et al. 2017; 
Mathieu et  al.  2019; van Niel et  al.  2018; Xiang et  al.  2024). 
The mechanistic action for intracellular communication of 
EVs facilitates transport systems for cell-derived bioactive 
molecules, including proteins, lipids, RNA, DNA, and met-
abolic intermediate molecules, to the recipient cell from the 
donor cell. These EVs are commonly heterogeneous particles 
that are classified into different types based on their size and 
functions as exosomes (30–150 nm), microvesicles (0.1–2 μm), 
and apoptotic bodies (1–5 μm). Based on their cellular origin, 
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these are classified; for example, those originating from can-
cer cells are called oncosomes (Liu 2024; Xiang et al. 2024). 
These EVs are extensively found in nearly all biological fluids 
such as blood, urine, synovial fluid, saliva, breast milk, and 
cerebrospinal fluid. The protein markers of EVs play a crucial 
role in intracellular communication and also help to assess 
and characterize the EVs. The commonly available protein 
markers in the EVs include tetraspanins (CD9, CD63, CD81), 
heat shock proteins (HSP70), Alix, and tumor susceptibility 
gene (TSG101) (Aloi et al. 2024; Das 2024; Papoutsoglou and 
Morillon 2024; Yu et al. 2024; Zhang, Wu, et al. 2022).

The EVs are entering different recipient cells by various endo-
cytic mechanisms such as caveolin-mediated uptake, clathrin-
dependent endocytosis, phagocytosis, macro-pinocytosis, 
and lipid raft-mediated internalization (Aloi et  al.  2024; Geng 
et al. 2024; Hirosawa et al. 2025; Xiang et al. 2024). The surface 
proteins and glycoproteins of EVs and cells are the primary fac-
tors that direct the uptake mechanisms based on their activities 
(Du et al. 2024; Ginini et al. 2022; Mulcahy et al. 2014; Williams 
et  al.  2019). The functional proteins present on the surface of 
the EVs facilitate therapeutic and diagnostic applications, which 
are guided by parental cell properties that they acquired. For ex-
ample, EVs generated from immune cells such as macrophages, 
T-cells, and natural killer cells were found to target inflamma-
tory cells. Similarly, EVs derived from tumors enhance commu-
nication between cancer cells and other cells within the tumor 
microenvironment, such as endothelial cells, fibroblasts, and im-
mune cells, thus influencing cancer growth and immunological 
responses (Bao et al. 2022; Tai et al. 2019; Yu et al. 2024). They 
can alter the tumor microenvironment by facilitating angiogen-
esis, immune evasion, and the development of premetastatic 
niches, promoting cancer progression (Biray Avci et al. 2024; Li, 
Zheng, et al. 2024; Mir et al. 2024; Vasconcelos et al. 2019). The 
tumor cells derived EVs transport diverse macromolecules, such 
as DNA, RNA, proteins, and lipids, capable of imparting ag-
gressive phenotypic traits and drug-resistant properties to other 
cancer cells (Hu et al. 2022; Mir et al. 2024; Willms et al. 2018; 
Wortzel et al. 2024; Xiong et al. 2024; Zuo et al. 2024). Owing to 
their distinctive molecular signatures, tumor-derived EVs serve 
as significant diagnostic and predictive indicators in liquid bi-
opsies, facilitating real-time surveillance of cancer development 
and treatment response (Dabral et  al.  2024; Liao et  al.  2024; 
Rahbarghazi et al. 2019; Tai et al. 2019). EVs have demonstrated 
the capability to identify early-stage neoplastic tissues and cir-
culating tumor cells, which may be employed for early identi-
fication and targeted administration of treatment medicines to 
inhibit tumor progression (Garofalo et al. 2021). Their capacity 
to transport and administer oncogenic chemicals renders them 
significant instruments in precision medicine, with current in-
vestigations focusing on their potential for early detection and 
targeted therapy (Pagotto et al. 2023; Rahbarghazi et al. 2019; 
Tai et al. 2019). These unique properties of tumor cell-derived 
EVs can be advantageous in precision drug delivery when ap-
propriately re-engineered with chemotherapeutics and other 
synthetic NPs.

Liposomes are synthetic active tools for efficient drug delivery, 
which have already advanced to the clinics (Eugster et al. 2024; 
Hamad et  al.  2024; Liu et  al.  2022; Nsairat et  al.  2022; Yi 
et  al.  2022). Liposomes are spherical-shaped vesicles made of 

cholesterol and phospholipids with the ability to encapsulate 
both hydrophilic and hydrophobic materials in the core and 
bilayer surface of the lipids (Andra et al. 2022; Lombardo and 
Kiselev 2022). Since their discovery in the 1960s, liposomes have 
been extensively studied and utilized in various medical appli-
cations, including cancer therapy, vaccine delivery, and treat-
ment of infectious diseases (Bozzuto and Molinari  2015; Hsu 
et  al.  2023; Karunakaran et  al.  2023; Mehta, Bui, et  al.  2023; 
Rommasi and Esfandiari 2021). Understanding the fundamental 
concepts of liposomes, which include their formation, structure, 
and release kinetics, is crucial for designing effective exper-
iments and products utilizing these lipid-based carriers. The 
design of liposomes involves careful consideration of their size, 
composition, surface charge, and bilayer fluidity to optimize 
drug delivery. Liposomes can control drug release, prevent drug 
degradation, and alter drug pharmacokinetics, which is benefi-
cial for treating diseases like cancer and infections. However, 
they lack disease-specific targeting capabilities. Addressing 
these disadvantages is crucial for expanding their applications 
in various fields.

The delivery systems of EVs and liposomes have numerous 
advantageous functions as an envelope for drugs; on the other 
hand, their shortcomings lack their efficient drug delivery ef-
fect. These include that EVs are expert in cellular targeting but 
are limited in their isolation yield, and their structural and col-
loidal stability is weak, whereas liposomes lack targeting fea-
tures but are well established as NP drug delivery systems. The 
uniqueness of these two systems is their similarities in vesicular 
structure with an aqueous core. Therefore, the hybridization of 
EVs and liposomes is an excellent approach to overcome their 
respective shortcomings. These hybrid systems aim to lever-
age the natural properties of EVs and the customizable fea-
tures of synthetic liposomes to enhance therapeutic delivery. 
EV-based hybridized biomimetic NPs offer a novel strategy by 
merging the intrinsic characteristics of artificial nanocarriers 
with the capabilities of biological cell membranes. The major 
classes of biomimetic NPs were synthesized based on cellular 
membranes and EVs because these NPs easily mimic the target 
cells and resemble the characteristics of cell membranes (Ferrel 
et al. 2021; Pitchaimani et al. 2018; Qiu et al. 2024; Sushnitha 
et al. 2020). The principle behind hybridization is that through 
this integration, the parent cell membrane proteins and lipids 
are infused into the NPs to feature biocompatibility, targeted 
drug delivery, and stealth properties. Among the synthetic NPs, 
liposomes are one of the notable NPs that are easily mimicked 
by cell membranes. EVs are naturally biocompatible and pos-
sess inherent targeting capabilities due to their protein-rich lipid 
bilayer. When combined with liposomes, these hybrid systems 
exhibit enhanced cellular uptake, immuno-evasive properties, 
and the ability to cross biological barriers, which are signifi-
cant improvements over purely synthetic systems (Rayamajhi 
et  al.  2019; Rodríguez and Vader  2022; Sulthana et  al.  2024). 
Hybrid NPs, such as EV-liposome hybrids, have shown improved 
delivery of therapeutic agents, diagnostic agents, and siRNA to 
target cells (Evers et al. 2022; Kim, Park, et al. 2024; Rayamajhi 
et  al.  2019; Sulthana et  al.  2024). These hybrids encapsulate 
siRNA effectively and demonstrate altered cellular uptake and 
gene-silencing efficacy compared to traditional liposomes, mak-
ing them a potent delivery system (Du, Guan, et al. 2023; Evers 
et al. 2022; Walker et al. 2019).
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This overall review focused on addressing the isolation and syn-
thetic approaches of membrane-based biomimetic NPs with a 
focus on EVs and liposome-integrated systems (Figure  1). We 
are highlighting their ability to interact with their biological 
targets.

2   |   Extracellular Vesicles (EVs)

EVs are phospholipid bilayer-enclosed vesicles released by 
all cell types. They can be identified in tissue culture super-
natants, blood, saliva, breast milk, cerebrospinal fluids, and 
malignant ascites. EVs are divided into three types based on 
their biogenesis: exosomes, microvesicles, and apoptotic bod-
ies (Kalra et al. 2016; van Niel et al. 2018). EVs are stable in 
biofluids and organisms, and they can distribute over short 
and long distances, even penetrating the biological barrier. 
EVs are unique in protecting and delivering their internal 
cargo to target cells through ligand–receptor interactions. 
Previous research indicates that proteins on EVs' surfaces en-
hance cargo circulation and prolong circulatory half-lives by 
enhancing membrane fusion with the targeted cells and inhib-
iting CD47-mediated phagocytic clearance, hence improving 
the pharmacological features of EVs (Kamerkar et al.  2017). 
Cellular uptake of EVs depends on surface ligands like hep-
aran sulfate proteoglycans (HSPGs) or recipient cell surface 
receptors like scavenger receptor class B, type 1 (SR-B1) (Du 
et al. 2024). Recent research works appear to indicate that EVs 
are predisposed to certain organs, allowing for the targeted 

loading of cargo into the EVs to deliver into the recipient cells. 
Due to their nanoscale size, EVs can be efficiently transported 
through bodily fluids and biological barriers. Considering that 
this particular targeting ability can be meticulously regulated 
with higher efficiency, EVs will serve as an effective system 
for delivering therapeutic agents (Figure 2).

The clinical translation of extracellular vesicles (EVs) has expe-
rienced significant progress recently, with an increasing num-
ber of preclinical studies showcasing their promising ability as 
targeted therapeutic carriers, biomarkers, and immunological 
modulators. Significant advantages facilitating clinical trans-
lation include the ability of extracellular vesicles (EVs) to cross 
biological barriers, their reduced immunogenicity relative to 
synthetic nanoparticles, and the potential for the creation of 
surface ligands to improve tissue-specific delivery (Ghodasara 
et al. 2023). Despite such advantages, the therapeutic utilization 
of EVs encounters considerable obstacles, including scalable 
production, variability in isolation techniques, reproducibility 
between batches, and regulatory categorization. Confronting 
these problems has emerged as a principal objective for biotech 
startups and academic spin-offs globally, especially notable prog-
ress seen in the Far East countries. The major countries, includ-
ing Japan, South Korea, Singapore, and China, have emerged 
as centers for advanced research and development of extracel-
lular vesicles. Korean biotech businesses, including Eutilex and 
Curocell, are advancing extracellular vesicle-based immuno-
therapies, whereas Japanese firms like Evox Therapeutics are 
concentrating on modified extracellular vesicles for targeted 

FIGURE 1    |    An overview of strategic nanoparticles reviewed in this article and their interaction with cancer cells. This schematic explains the 
structure of various NPs discussed and their mechanism of cellular targeting.
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drug delivery (Claridge et al. 2021; Uddin et al. 2024; Wiklander 
et  al.  2019). Singaporean firms such as Paragraf Therapeutics 
are investigating diagnostics based on extracellular vesicles, 
while Chinese companies like Everest Medicines are investing 
in scalable production technology for extracellular vesicles. 
These initiatives highlight the worldwide competition for the 
commercialization of EVs, focusing on GMP-compliant manu-
facturing, precise cargo loading, and regulated biodistribution. 
The aggregate advancements of these biotech innovators feature 
the translational readiness of EVs and indicate their potential 
incorporation into next-generation therapeutics and diagnostics 
(Stawarska et al. 2024).

EVs have a role in various physiological and pathological pro-
cesses and have diverse biological activities. They play a role in 
complex biological processes like tumorigenesis, preparation of 
metastatic niches, elimination of cytotoxic drugs like cisplatin, 
inflammation, immune response modulation, angiogenesis, tis-
sue repair, apoptosis, and homeostasis by transferring a wide 
range of molecules between cells (Adamczyk et al. 2023; Aguiar 
Koga et  al.  2023; Ateeq et  al.  2024; Chakraborty et  al.  2023; 
Das  2024; Lin et  al.  2024; Lin et  al.  2024; Liu et  al.  2024; 
Oliva 2023). Since their composition reflects parental cell status 
at production, they are attractive diagnostics. EVs are persistent 

in many bodily fluids, making them potential biomarker reser-
voirs. Liquid biopsies with circulating EVs could evaluate pa-
tient prognosis, disease progression, and medication response. 
EVs also paracrinally regulate cell phenotypes, differentiation, 
and recruitment (Bernáth-Nagy et  al.  2024; Guo et  al.  2024; 
Malaguarnera and Cabrera-Pastor 2024; Zhao and Huang 2024). 
Unlike stem cell therapies, stem cell-derived EVs overcome 
some limitations, such as immune rejection and tumorigenic 
potential, which may make them a better therapeutic tool than 
stem cell therapy (Hur et al. 2020). Although EVs cannot self-
replicate, they may be safer than stem cell transplantation in 
regenerative medicine (de Jong et  al.  2014; Li, Ji, et  al.  2024; 
Romano et al. 2020; Tryfonidou 2024). EVs carry a wide range of 
biological compounds across biofluids with cellular selectivity, 
making them promising medication delivery vehicles. Recent 
proposals include putting imaging tracers (for diagnostics) and 
therapeutic chemicals into EVs to create an EV-based thera-
nostic delivery platform (Pitchaimani et  al.  2016; Rakshit and 
Pal 2024; Wu et al. 2021; Zhang et al. 2023). Many preclinical 
and clinical research studies are validating these prospective 
applications (Ciferri et  al.  2021; Kumar et  al.  2024; Mizenko 
et al. 2024). We thoroughly review and analyze preclinical data 
from the previous decade to examine their use as drug delivery 
systems (DDS).

FIGURE 2    |    Biogenesis of different types of EVs. EVs are biogenically synthesized by cells, and these are membrane-bound architectures that help 
to transfer the biofunctional molecules such as proteins, lipids, and nucleic acids. They actively participated in various pathophysiological processes. 
The major types of EVs are exosomes, ectosomes, and apoptotic bodies.
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2.1   |   Isolation Strategies of EVs

Since the isolation approach affects the EV population and 
study outcome, it must be carefully considered for clinical 
use. EVs can be isolated and purified from bodily fluids and 
cell culture supernatants utilizing many methods (Figure  3; 
Admyre et al. 2007; Carnino et al. 2019). EV isolation method 
selection depends on the fluid (blood, cell culture superna-
tant, urine, etc.), volume, and required EV purity. As a clinical 
treatment, isolated EVs must be uncontaminated, especially 
free of proteins and nucleic acids that could affect clinical ad-
ministration. Separating EVs from proteins and nucleic acids 
guarantees that therapeutic vesicles' biological effects are due 
to EV payloads, not co-purified impurities. EV purity may 
not matter for clinical biomarker investigations, depending 
on the study. Sequencing, ELISA, or nanoscale flow cytome-
try would focus on quantity rather than purity for biomarker 
analysis. However, biomarker discovery investigations require 
excellent purity and EV characterization before validation and 
clinical applications.

The standard EV isolation method is differential ultracentrif-
ugation. This procedure, known as the “gold standard” for EV 
separation, involves centrifugation to remove cells and debris 

from cell culture supernatant (300 g and 2500×g), pellet large 
EVs (10,000×g), and finally small EVs (100,000×g/ 200,000×g). 
Literature results suggest that the reproducibility of isolation 
experiments is highly varied with the parameters such as rotor 
type (swing bucket vs. fixed angle), sample viscosity, and tube k-
factor. From this process, about 66% of EV preparations utilize 
high centrifugal forces that may result in aggregated proteins 
and other impurities. Ultracentrifugation alone cannot extract 
lipoproteins from biological samples like blood without a gradi-
ent or other chromatographic methods. In the density gradient 
approach, EVs can be separated from contaminating proteins 
by layering sucrose or iodixanol solutions of increasing concen-
trations (Théry et al. 2006; Zhang et al. 2020). EVs contained in 
lipids float higher during ultracentrifugation (200,000×g over-
night) based on density, separating them from contaminating 
proteins (Kurian et al. 2021; Schulz-Siegmund and Aigner 2021; 
Taylor and Shah  2015). Ultracentrifugation is useful for labo-
ratory research but impractical for clinical usage because of its 
time-consuming preparation, equipment requirements, and low 
throughput scalability.

However, ultrafiltration methods like tangential flow filtration 
(or sequential) can quickly isolate EVs from vast cell culture su-
pernatants and biological fluids (Hou et al. 2024). Tangential flow 

FIGURE 3    |    Isolation methods of EVs. EVs are isolated by using various techniques. Physically, EVs are isolated using ultrafiltration, ultracen-
trifugation, density gradient centrifugation, size exclusion chromatography, and precipitation. Under biochemical strategy, immunoaffinity and mi-
crofluidic techniques are commonly used to isolate the vesicles precisely. The anion exchange chromatographic method is an emerging technique. In 
addition combination of these methods is also in practice.
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filtration allows proteins and liquid to pass through a membrane 
filter with a molecular weight cut-off (usually 500 kDa) while 
keeping EVs in the retentate. This method concentrates large 
or small liquid quantities while capturing EVs. The approach 
produces EVs with substantial protein contamination, and the 
filtering membrane may damage EV integrity. Tangential flow 
filtering must be utilized with size exclusion chromatography 
to achieve high purity. Alternatively, sequential filtering isolates 
protein-free EVs in three phases. Dead-end filtering removes 
cells and detritus first. The sample is then concentrated, and 
EVs are retained via tangential flow filtration. Final filtering via 
a track-edged membrane with increasing pore sizes (50–200 nm) 
isolates and fractionates EVs by size (Shu et al. 2021; Vergauwen 
et al. 2017; Yuan et al. 2023).

Size exclusion chromatography efficiently separates particles by 
size. This is used to decontaminate EVs from complex biological 
samples' proteins. When biological fluids like blood plasma or 
serum are processed into a Sepharose-based size exclusion col-
umn, the differential exclusion approach navigates EVs elution at 
first and proteins to elute in later fractions. Size exclusion chro-
matography cannot efficiently filter EVs from plasma or serum li-
poproteins of equal size. Density gradient ultracentrifugation and 
size exclusion chromatography are needed to completely remove 
lipoproteins. Affinity and ion exchange chromatography are other 
EV purifying methods (Sidhom et  al. 2020; Merij et  al.  2024). 
Membrane affinity purification technologies, such as exoEasy 
spin columns, are used to isolate EVs from the biological samples, 
but the purity of the isolated EVs may be lower than that of size ex-
clusion chromatography (Masaki et al. 2023; Stranska et al. 2018; 
Yang et  al.  2021). Tim4, a calcium-sensitive phosphatidylserine 
binding protein, has optimized affinity-based approaches. EVs 
bound to Tim4 can be freed by calcium chelators (Kawakami 
et  al.  2021; Wang, Liu, et  al.  2023; Yoshida et  al.  2017). Other 
commonly available immuno-affinity capture agents are hepa-
rin, epithelial cells, tetraspanins, and adhesion molecules (Balaj 
et al. 2015; Gurunathan et al. 2022; Tauro et al. 2012). However, 
immuno-affinity capture agents only purify certain EV popula-
tions and can be difficult to extract from the substrate without ex-
treme conditions like low pH. Anion exchange chromatography is 
the final chromatographic method for scalable and effective EV 
separation from cell culture supernatant (Koch et al. 2024; Pirolli 
et al. 2023). Positively charged columns bind negatively charged 
EVs, which are eluted with increasing salt concentrations. Anion 
exchange chromatography can separate EVs from 1 L of cell 
culture-conditioned media in 2 h with minimal user input. This 
method for EV isolation is scalable and fast, suggesting it could 
enable EV therapy (Pirolli et al. 2024; Silva et al. 2023).

EVs are often isolated from clinical biological samples by pre-
cipitation with commercial reagents. EVs can be pelleted by 
centrifugation at lower speeds without ultracentrifugation by 
precipitating them with polyethylene glycol (PEG) or commercial 
reagents like exoquick86 (Ding et al. 2018; Ludwig et al. 2018). 
EVs can be captured from tiny biological fluids or preconcen-
trated biological fluids/cell culture supernatants. Although user-
friendly and suitable for many biological samples, precipitation 
can pellet proteins and lipoproteins, lowering EV purity. A pure 
EV preparation may require a second purification step after pre-
cipitation. Precipitation reagents in EV preparations can also 
alter recipient cell survival and biological activity.

Finally, microfluidic devices can isolate and analyze EVs from 
small clinical samples and may be beneficial for liquid biopsy 
disease detection. Immunocapture microfluidic devices use 
tumor-specific antigens or other markers (Kwon et  al.  2025; 
Park et  al.  2025). HER2 and PSA-positive tumor-derived EVs 
have been collected on chips using nano-shearing fluid flow 
(Mun et al. 2024). EGFR wild type or EGFR v III EVs may be 
identified and measured from glioblastoma plasma. Eluted 
EVs from a chip were employed for more in-depth EGFR v III 
EV RNA sequencing. An alternate chip device used EpCAM 
aptamers to capture EVs and electro-oxidation of metal NPs 
to detect EpCAM and PSMA epitopes (Amrollahi et  al.  2019; 
Salmond and Williams 2021; Sun et al. 2023; Zhu et al. 2023). 
Electrochemical peaks from metal particle oxidation can be uti-
lized to quantify collected EVs (Zhou et al. 2016). Microfluidic 
devices with particular size thresholds catch tumor-derived 
microvesicles. EVs pass through the microfluidic chip and are 
eluted from size-dependent ports for downstream processing. 
Table 1 summarizes the advantages and disadvantages of typ-
ical EV isolation methods.

2.2   |   Extracellular Vesicles as Drug Delivery 
Systems

Several research works have evidenced that EVs are excellent 
candidates for various therapeutic and diagnostic applications. 
The dynamic protein sources in the outer layer channel these 
EVs to specific targets. So, the encapsulated materials are ac-
tively delivered to the specific target sites. Table 2 lists the nu-
merous sources and cell types that are widely utilized to isolate 
EVs, as well as their applications. The therapeutic and diagnos-
tic payloads contained within the EVs are detailed in Table 3.

Abello et al. have undertaken a comprehensive investigation 
into the use of labeled exosomes as potential diagnostic and 
therapeutic tools. The authors have utilized gadolinium for 
MRI and near-infrared (NIR) fluorescence imaging to track 
the biodistribution of exosomes derived from human umbil-
ical cord mesenchymal stromal cells (hUC-MSCs) in tumor-
bearing mice (Abello et al. 2019). This dual-labeling approach 
provides a robust strategy to monitor exosome trafficking with 
high sensitivity and resolution (Figure  4A). The exosomes 
were isolated from hUC-MSCs and characterized by dynamic 
light scattering (DLS), nanoparticle tracking analysis (NTA), 
and transmission electron microscopy (TEM) and confirmed 
the presence of protein markers using dot blot and western 
blot. After that, the gadolinium lipid (GdL) was loaded into 
the exosomes. The characterization studies showed the naive 
exosomes exhibited a hydrodynamic size of 171 ± 42 nm with 
a polydispersity index (PDI) of 0.43 ± 0.03 and zeta potential 
at −16.03 ± 0.72 mV, indicating good colloidal stability, sug-
gesting a surface composition favorable for cellular uptake. 
Meanwhile, the GdL-exosomes exhibited a hydrodynamic 
size of 148 ± 3 nm and a zeta potential of −19.70 ± 0.82 mV 
(Figure 4B). The longitudinal relaxivity (r1) of Exo-GdL was 
assessed with a 14.1 T MRI system, resulting in an r1 value of 
5.1 mM−1 s−1, in contrast to 2.9 mM−1 s−1 for Magnevist (clin-
ical agent). T1-weighted MRI images validated the superior 
contrast of Exo-GdL at equivalent Gd concentrations relative 
to Magnevist, indicating its potential as a highly sensitive 
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TABLE 2    |    Commonly used cell types to isolate EVs and their applications.

Cell type
Primary cells/cell 

lines/source EVs application area Significance References

Mesenchymal 
stem cells 
(MSCs)

Bone marrow-derived 
MSCs (BM-MSCs)

Cardiac therapy, 
immune modulation, 

tissue repair

Widely used because 
of its regenerative 

and immune-
modulatory 
properties.

(Aguiar Koga et al. 2023; 
Bertolino et al. 2022; 

Chen, Qu, et al. 2021; Ding 
et al. 2024; Lelek and Zuba-

Surma 2020; Matsuzaka 
and Yashiro 2022; Mutlu 

et al. 2015; Ulpiano 
et al. 2023; Um et al. 2020; 

Wang, Xu, et al. 2023; 
Yang, Sun, and Yan 2024; 

Zhao et al. 2024)

Adipose tissue-derived 
MSCs (AD-MSCs)

Arthritis, wound 
healing, and skin repair

Umbilical cord-derived 
MSCs (UC-MSCs)

Immunotherapy, anti-
fibrosis, neuroprotection

Placenta-derived 
MSCs (P-MSCs)

Inflammation, 
autoimmune disorders

Amniotic fluid-derived 
MSCs (AF-MSCs)

Prenatal therapy, 
neurodevelopmental 

disorders

Dental pulp-derived 
MSCs (DP-MSCs)

Bone regeneration, 
Neuroprotection

Induced pluripotent 
stem cell-derived 

MSCs (iPSC-MSCs)

Cardiovascular repair, 
personalized therapy

Synovial membrane 
MSCs (SM-MSCs)

Osteoarthritis, 
joint repair

Endometrium-derived 
MSCs (eMSCs)

Wound healing, 
uterine regeneration

Menstrual blood-derived 
MSCs (MenSCs)

Neuroprotection, 
endometrial repair

Immune cells Dendritic cells (DCs) Cancer immunotherapy, 
vaccines

EVs carry immune 
signals and MHC 

molecules.

(Gargiulo et al. 2020; 
He et al. 2024; Kowal 
and Tkach 2019; Lin 

et al. 2022; Lou et al. 2022; 
Putthanbut et al. 2024; 

Shefler et al. 2021; Wang 
et al. 2021; Wen et al. 2017; 

Zhang, Liu, et al. 2022)

T cells (CD4+, CD8+) Immunomodulation, 
anti-viral application, 
EV-based cytotoxicity

B cells Antigen presentation, 
autoimmune 

disease models

Macrophages Inflammation, Infection 
models, Wound healing

Natural killer (NK) cells Cancer immunotherapy, 
cytotoxic EV studies

Neutrophils Inflammatory 
modulation, anti-
microbial activity

Monocytes Atherosclerosis, 
chronic inflammation

Regulatory T cells (TRegs) Immune tolerance, 
suppressing 

autoimmunity

Mast cells Neurodegenerative 
disease models, brain 

injury response

(Continues)



11 of 44

Cell type
Primary cells/cell 

lines/source EVs application area Significance References

Cancer cells Breast cancer (MCF-7, 
MDA-MB-231, BT-474)

Diagnostic biomarkers, 
drug resistance studies, 

immune modulation

Carries parent cell 
tumor antigens 

and reflects tumor 
microenvironment

(Acevedo-Sánchez 
et al. 2021; Chang 
et al. 2021; Chen, 

Jin, and Wu 2021; Qi 
et al. 2021; Saviana 

et al. 2021; St-Denis-
Bissonnette et al. 2022; 

Strum et al. 2024)

Glioblastoma (U87, 
U251, LN229)

Brain-targeted drug 
delivery, tumor 

progression

Lung cancer (A549, 
H1299, H460)

Anti-metastatic 
applications, 

immune evasion

Colorectal cancer 
(HCT116, SW480, HT-29)

Diagnostic applications, 
anti-metastasis, and 

cell signaling

Prostate cancer (PC3, 
DU145, LNCaP)

Biomarker development, 
EV-based liquid biopsy

Pancreatic cancer (PANC-
1, AsPC-1, BxPC-3)

Early diagnosis, drug 
resistance models

Ovarian cancer 
(SKOV3, OVCAR3)

Anti-metastasis, 
EV-based biomarker 

discovery

Melanoma (B16-F10, A375) Vaccine development, 
Immunotherapy

Leukemia (K562, 
HL-60, Jurkat)

Drug resistance, 
hematologic malignancy 

monitoring

Hepatocellular carcinoma 
(HCC; HepG2, Huh7)

Anti-angiogenesis, liver 
cancer biomarkers for 
diagnostic applications

Cervical cancer 
(HeLa, SiHa)

Diagnosis, oncoviral 
studies

Epithelial cells Renal epithelial cells 
(HK-2, primary renal 

epithelial cells)

Diagnostic biomarkers 
for kidney injury, 

urinary diagnostics

Handling the cell 
is simple, easy 
to culture, and 

enhanced EV yield

(Chen et al. 2022; Cui 
et al. 2024; Pirisinu 2023; 

Xue and Mi 2024)

Mammary epithelial cells 
(MCF10A, HMEC)

Breast cancer research, 
intercellular signaling

Bronchial epithelial 
cells (BEAS-2B, primary 

bronchial cells)

Lung inflammation, 
asthma, COPD, 

COVID-19

Intestinal epithelial 
cells (Caco-2, HT-
29, enterocytes)

Gut immunity, host–
microbe communication

Corneal epithelial 
cells (HCE-T, primary 
corneal epithelial cells)

Immune modulation, 
ocular surface healing

Prostate epithelial cells 
(RWPE-1, PrEC)

Cancer diagnostics, 
prostate health

(Continues)
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Cell type
Primary cells/cell 

lines/source EVs application area Significance References

Cervical epithelial 
cells (HeLa, primary 

cervical cells)

Cancer biomarker 
discovery, HPV 
infection studies

Salivary gland 
epithelial cells (HSG, 

primary SGECs)

Saliva-based 
diagnostics, 

autoimmune research

Skin keratinocytes 
(HaCaT, NHEK)

Wound healing, skin 
inflammation

Liver epithelial cells 
(HepG2, primary 

hepatocytes)

Liver disease modeling, 
drug toxicity

Neural cells Neurons (primary cortical 
neurons, SH-SY5Y)

Neurodegenerative 
disease modeling

Carry synaptic and 
neuronal proteins

(Li, Zhu, et al. 2023; Li 
and Fang 2023; Marangon 

et al. 2023; Zappulli 
et al. 2016; Zhu et al. 2024)

Astrocytes (Primary 
astrocytes, U373)

Neuronal protection, 
neuroinflammation

Microglia (BV2, 
primary microglia)

Neuroinflammation, 
brain injury

Oligodendrocytes (OLN-93, 
primary oligodendrocytes)

Myelin support

Neural stem cells 
(hNSCs, ReNcell VM)

Brain development, 
regenerative medicine

Schwann cells (primary 
Schwann cells)

Peripheral nerve 
regeneration

Retinal ganglion cells 
(primary Schwann cells)

Glaucoma, optic 
nerve injury

Endothelial 
cells

Human umbilical vein 
endothelial cells (HUVECs)

Angiogenesis, 
inflammation, 
atherosclerosis

Release EVs in 
response to stress 
or inflammatory 

signals

(Deng et al. 2024; 
Liu et al. 2023; 

Piryani et al. 2024; 
Terriaca et al. 2021; 
Villata et al. 2020; 

Weksler et al. 2013; 
Yang et al. 2023)

Brain microvascular 
endothelial cells (hCMEC/

D3, primary BMECs)

Blood–brain barrier 
integrity, neurovascular 

research

Coronary artery 
endothelial cells (HCAEC)

Cardiovascular disease, 
ischemia–reperfusion

Aortic endothelial 
cells (HAEC)

Atherosclerosis, 
inflammation research

Pulmonary artery 
endothelial cells (HPAEC)

Pulmonary 
hypertension, 

lung injury

Lymphatic endothelial 
cells (HDLEC)

Lymphangiogenesis, 
tumor metastasis

Microvascular endothelial 
cells (HMEC-1, 
dermal MVECs)

Microcirculation, 
skin repair

(Continues)
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MRI contrast agent (Figure  4C). These findings highlight 
the efficacy of exosome-based contrast agents in enhancing 
imaging sensitivity and resolution. In  vivo MRI studies in 
osteosarcoma-bearing mice revealed that Exo-GdL accumu-
lated at the tumor site in a time-dependent manner, with peak 
enhancement at 30 and 90 min after injection (Figure  4D). 
ICP-MS analysis revealed 18% of injected Exo-GdL accumu-
lated in the tumor after 24 h, outperforming conventional 
liposomes and NPs due to the natural homing ability of hUC-
MSC-derived exosomes and the EPR effect. Tumor target-
ing was twice as effective as Magnevist, and near-infrared 
imaging confirmed longer circulation and better targeting 
than PEGylated NPs, indicating potential for targeted cancer 
diagnostics and therapy (Figure  4E,F). The study highlights 
the ability of exosomes to preferentially accumulate in tumor 
tissues, emphasizing their potential as targeted drug delivery 
vehicles. Additionally, the findings provide valuable insights 
into the pharmacokinetics and tumor microenvironment 

interactions of exosomes. This work represents a significant 
advancement in the application of nanomedicine for cancer 
diagnostics and therapy, offering a promising platform for fur-
ther exploration in preclinical and clinical settings. However, 
future studies focusing on the mechanisms of tumor target-
ing and potential immunological responses will be crucial for 
clinical translation (Abello et al. 2019).

Several researchers show high interest in tumor-derived EVs 
(TEVs), which have remarkable functional properties and pave 
the way to target the cancer cells to deliver their cargo. Recently, 
Bi and his research group derived the TEVs from mouse breast 
cancer cells and developed a multifunctional drug delivery 
platform for effective cancer treatment (Bi et  al.  2024). This 
study focused on developing the nano platform loaded with 
melanin and paclitaxel albumin. The work employs EVs as a 
drug delivery system, leveraging their inherent tumor-targeting 
ability, biocompatibility, and low immunogenicity to ensure 

Cell type
Primary cells/cell 

lines/source EVs application area Significance References

Platelets Resting platelets 
(healthy donor blood)

Hemostasis regulation Release 
platelet-derived 
microvesicles 

(PMVs)

(Anitua et al. 2023; 
Chaudhary et al. 2023; Das 
et al. 2024; Fan et al. 2024)Activated platelets 

(thrombin/ADP/collagen-
stimulated platelets)

Coagulation, 
inflammation, 

and cancer

Stored platelets (blood 
bank platelets)

Transfusion 
quality control

Platelet-rich plasma 
(PRP from blood)

Regenerative therapy

Megakaryocytes (MEG-
01, primary cells)

Platelet biogenesis

Platelets under shear 
stress (shear flow-
exposed platelets)

Thrombosis, 
atherosclerosis

Fibroblasts NHDFs (primary 
dermal fibroblasts)

Wound healing, 
anti-aging

Often used for 
baseline EV studies

(Hua et al. 2021; Laurent 
et al. 2021; Mehta, 

Kadoya, et al. 2023; 
Prieto-Vila et al. 2024; Sui 
et al. 2023; Xie et al. 2025; 

Zhang et al. 2024)

HFFs (HFF-1, BJ 
fibroblasts)

Skin repair, cosmetics

MEFs (primary MEFs) Developmental biology

CAFs (tumor-associated 
fibroblasts)

Cancer progression

Gingival fibroblasts 
(primary gingival 

fibroblasts)

Oral regeneration

Lung fibroblasts 
(MRC-5, WI-38)

Pulmonary fibrosis

Cardiac fibroblasts Heart failure therapy

Endometrial fibroblasts 
(primary endometrial 

stromal cells)

Fertility research

TABLE 2    |    (Continued)
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accurate administration of therapeutic drugs while reducing 
off-target effects. The study combines chemotherapy, photo-
thermal therapy, and immunotherapy into a cohesive system, 
exhibiting a strong synergistic impact that significantly inhib-
its tumor growth and metastasis. The combinatorial chemo-
photothermal therapy facilitates effective tumor ablation, while 
the use of immunomodulatory drugs stimulates systemic anti-
tumor immunity, thereby diminishing the risk of recurrence. 
EVs were produced and isolated from 4T1 mouse breast can-
cer cells. The EVs loaded with paclitaxel albumin and melanin 
(EPM) were formulated by co-extruding EVs with Paclitaxel 
Albumin (PA) and melanin to obtain a spherical-shaped vesi-
cle with an average size of 113.9 nm. The other characterization 
studies showed the efficient loading of drugs. Melanin load-
ing and stability in the biological medium were confirmed by 
a zeta potential drop from −24.8 to −28.5 mV. HPLC showed 
91.51% paclitaxel encapsulation and 31.73% melanin encapsu-
lation, demonstrating the system's drug-loading effectiveness 
(Figure 5A). The in vitro cellular uptake by fluorescent label-
ing showed that EPM is rapidly internalized by breast cancer 
cells (4T1) with an uptake rate of 99.1% within 3 h. The apop-
tosis experiments demonstrated that EPM triggered 71.6% 
apoptosis, markedly exceeding that of free PA. Notably, near-
infrared laser irradiation elevated the apoptotic rate to 87.7%, 
illustrating the significant synergistic effect of chemotherapy 

and photothermal therapy (Figure 5B). The in vivo studies were 
undertaken using an orthotopic breast cancer mouse model to 
evaluate the therapeutic efficacy of EPM in combination with 
laser-induced photothermal therapy. The results revealed 
increased accumulation of EVs at the tumor site, extended 
circulation time, and greater treatment efficacy relative to tra-
ditional monotherapies (Figure 5C,D). The interesting aspect of 
this study is the demonstration of immune system activation by 
EPM through flow cytometry. These results showed that EPM 
promoted dendritic cells (DCs) by 50.7%, increasing CD80+ and 
CD86+ markers, which are essential for antigen presentation. 
EPM + laser increased CD8+ cytotoxic T-cell infiltration in the 
tumor microenvironment by 11.2%, supporting this immuno-
logical response (Figure 5E). The study notably addresses prob-
lems such as medication resistance and significant systemic 
toxicity, emphasizing the safety and efficacy of the combination 
method. This research highlights the promise of tumor-derived 
EVs as advanced nanocarriers and creates a flexible frame-
work for individualized cancer treatment. This work signifies 
substantial progress in cancer nanomedicine, facilitating the 
development of more targeted and varied therapy approaches. 
This approach not only optimizes drug delivery and therapeutic 
response but also represents a significant advancement in per-
sonalized cancer treatment, paving the path for more effective 
and less toxic combination therapies (Bi et al. 2024).

FIGURE 4    |    Gadolinium and near-infrared-labeled human umbilical cord mesenchymal stromal cell exosomes development and the assess-
ment of their tumor targeting efficacy in tumor-bearing mice. (A) Schematic representation of the overall study. (B) DLS, Zeta, NTA, and TEM 
Characterization of Exosomes and Exo-GdL showed the accessible structural characteristics for active drug delivery. (C) Magnetic properties of 
Exo-GdL. The Exo-GdL showed enhanced contrast when compared to Magnevist. (D) The magnetic resonance imaging of tumor-bearing mice to 
assess the Exo-GdL distribution. (E) Biodistribution of NIR dye-labeled exosomes in ectopic osteosarcoma mice model. (F). Exo-DiR accumulation 
in mouse K7M2 osteosarcoma tumors. The in vivo studies demonstrated that the exosomes derived from hMSC showed enhanced targeting ability. 
(Reprinted with permission from Abello et al. (2019). Copyright 2019 Ivyspring International Publisher).
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Araujo-Abad and his research group derived EVs from glioblas-
toma and studied their efficacy as NPs for glioma treatment 
(Araujo-Abad et  al.  2023). This study provides an innovative 
perspective on leveraging glioblastoma-derived small EVs 
(GdMEVs) as therapeutic agents for glioma treatment. By ex-
ploring the dual role of small EVs (sEVs) as both mediators of 
glioblastoma progression and potential therapeutic carriers, the 
study accentuates their unique biological characteristics, includ-
ing intrinsic tumor tropism, the ability to cross the blood–brain 
barrier, and their biocompatibility (Araujo-Abad et  al.  2023). 
The authors feature the role of GdMEVs in transporting func-
tional biomolecules, such as proteins, lipids, and nucleic acids, 
to modify the tumor microenvironment. Furthermore, the 
paper explores engineering approaches to load therapeutic 
cargo, such as small interfering RNAs (siRNAs), microRNAs, 
or chemotherapeutics, into these sEVs to target glioblastoma 
cells effectively. This strategy represents a promising avenue for 
precision medicine, addressing the challenges of drug delivery 
in glioblastoma. However, the authors also acknowledged the 

hurdles in standardizing sEV isolation, large-scale production, 
and minimizing potential off-target effects (Figure 6). Overall, 
this study offers compelling evidence for the therapeutic poten-
tial of GdMEVs and provides a foundation for future research 
into nanoparticle-based strategies for glioma therapy (Araujo-
Abad et al. 2023).

3   |   Liposome Nanoparticles

Surface-coated liposomes are synthetically tailored drug deliv-
ery systems that have garnered considerable interest in both re-
search and clinical applications due to their ability to improve 
the pharmacokinetics and pharmacodynamics of various ther-
apeutic agents. These liposomes are typically modified on the 
surface with various molecules to enhance their stability, tar-
geting capability, and circulation time (Chen et al. 2023; Eugster 
et al. 2024; Gunasekaran et al. 2023; Lee and Thompson 2017; 
Nsairat et al. 2022). Considering the advantages of the liposome 

FIGURE 5    |    The drug delivery system developed from tumor-derived EVs with the combination of chemo, photothermal, and immune therapy. 
(A) An overview of EVs development strategy and the characterization of EVs loaded with paclitaxel and melanin (EPM). The characterization stud-
ies showed the efficient loading of drugs, and also these vesicle employs features that are capable of targeting and delivering the cargo. (B) In vitro 
cellular uptake assessment by flowcytometry and laser scanning confocal microscopy. The enhanced fluorescent intensity in EPM-treated 4T1 cells 
revealed that the system actively internalized into the cells. (C) Time-dependent photoacoustic images of orthotopic breast cancer mice model treated 
with EPM showed a higher accumulation of EVs in the target site over the periods of 2, 8, and 12 h. (D) Assessment of tumor size in time-dependent 
manner. (E) Assessment of the immune effect of EPM in CD8 + T cells (Reprinted with permission from Bi et al. (2024). Copyright 2024 Elsevier Ltd).
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in theragnostic applications, some modifications in the liposome 
system are needed to enhance the targeting ability, stability, and 
efficient drug delivery.

Conventional liposome NPs are composed of a phospholipid bi-
layer and cholesterol, which is uptaken by the Reticuloendothelial 
system (RES). But these particles have a short half-life in the 
blood circulation (Akbarzadeh et  al.  2013; Berlin Grace and 
Viswanathan  2017; Bozzuto and Molinari  2015). Liposomes ex-
hibit their actions in two different modes, such as passive targeting 
and active targeting. Passive targeting utilizes the enhanced per-
meability and retention (EPR) effect, a distinctive feature of tumor 
and inflamed tissues (Haley and Frenkel 2008). The vasculature 
of diseased tissues is permeable; therefore, the liposomes are more 
easily accumulated in these tissues compared with normal tis-
sues. This permits the enhanced local concentration of drugs in 

the tumor site while reducing the drug's exposure to the rest of the 
body and limiting any associated adverse side effects (Chehelgerdi 
et al. 2023). Liposomes could aggregate specifically in tumor loca-
tions, which is highly beneficial in cancer therapy and diagnostic 
applications, and the cargo efficiently delivered by this aggrega-
tion results in efficient therapeutic activity by targeting the molec-
ular pathways (Berlin Grace et al. 2017; Gunasekaran et al. 2023; 
Berlin Grace et al. 2025; Viswanathan et al. 2019; Viswanathan 
and Grace 2018). However, in this passive targeting mode, lipo-
somes frequently encounter obstacles in clinical environments 
due to the off-target effect and RES, which swiftly eliminate the 
liposomal system from blood circulation (Daraee et al. 2016).

The second and most efficient mode of targeting liposomes is 
the active targeting mode. Considering the different constraints 
of the passive targeting mode of liposomes, the development of 

FIGURE 6    |    Glioblastoma-derived small extracellular vesicles (GdMEVs) for glioma treatment. (A) Isolation of small EVs by the ultracentrif-
ugation method. (B) Characterization of GdMEVs through FE-SEM and DLS. (C) Cell proliferation assessment was undertaken with free drugs 
Tmozolamide and EPZ015666 inhibitor, along with those compounded loaded EVs. The EVs loaded with EPM showed an efficient proliferation in-
hibitory effect (Reprinted with permission from Araujo-Abad et al. (2023). Copyright 2023 MDPI).
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unique approaches resulted in the discovery of active targeted 
liposomes (Byrne et al. 2008). Active targeting denotes the pro-
cess of altering the outer surface of liposomes by conjugating 
the targeting moieties on the phospholipid bilayer, including ap-
tamers, small molecules, antibody fragments, or whole antibod-
ies, peptides, and other compounds that can specifically target 
and bind to the receptors found on the desired cells (Alghamdi 
et al. 2022; Khan et al. 2020). This approach improves the pre-
cision and effectiveness of cargo material distribution. These 
liposomes are specially designed to lessen the off-target effects. 
Surface modification of the liposome is one of the best meth-
ods to enhance its stability and target site reachability. Surface 
coating of liposomes plays a vital role in improving their perfor-
mance and ability to interact with biological systems. Various 
coating strategies have been explored to improve the efficient 
pharmacokinetic and pharmacodynamic characteristics of lipo-
somes (de Leo et al. 2021). Hereby, we are discussing the surface 
modification strategies to develop biomimetic liposomal NPs 
with specific coating materials such as antibodies, polypeptides, 
aptamers, folic acid, and transferrin (Figure 7A).

3.1   |   Antibody Coated Liposomes

The liposomes conjugated with antibodies on the surface are 
also called immunoliposomes, which are engineered biomi-
metic NPs to actively target specific sites and deliver the drugs 

efficiently (Hama et al. 2021; Li et al. 2021). Antibodies play a 
vital function in targeted drug delivery systems by enhancing 
their selectivity and specificity for cancer treatment and diag-
nostic applications. Engineering drug delivery systems with 
antibodies as bioactive agents facilitates the precise delivery 
of drugs to target sites (Kaneko 2023). The conjugation of an-
tibodies on the surface of the liposome is one of the promising 
approaches for targeted drug delivery. Several studies have ex-
plored various methods to effectively accommodate antibod-
ies onto the surface of the liposomes (Figure 7B; Di et al. 2020; 
Hama et  al.  2021; Safari et  al.  2024). The level of antibody 
coating on the liposomal surface is essential for their func-
tionality. Researchers have demonstrated that a larger density 
of antibodies covering a surface can result in enhanced acti-
vation of the complement system, increased concentration of 
blood plasma, higher numbers of white blood cells, and im-
proved removal of substances by the liver (Tan 2022). In addi-
tion, the valency of antibodies on liposomal surfaces disturbs 
their binding abilities, and the density of surface ligands is a 
crucial factor in determining their binding capabilities (Zhou 
et al. 2023). Furthermore, the process of altering antibodies on 
the liposomal surface can be accomplished quickly by utiliz-
ing liposomes that display high-affinity protein. This permits 
the targeted drug administration based on the modified anti-
bodies. Optimizing the concentration and valency of antibody 
coating on the liposomal surface is crucial for maximizing 
the effectiveness of targeting ability, reducing the side effects, 

FIGURE 7    |    (A) Surface-coated biomimetic liposome nanoparticle. The surface of the liposome is commonly functionalized with antibodies, poly-
peptide, aptamer, folic acid, and transferrin to enhance its targeting property; (B) Antibody-coated immune liposomes. Various ab and ab-fragments 
conjugated with surface phospholipid of liposomes by employing different techniques: (a) direct adsorption; (b) binding of whole ab by utilizing PEG 
spacers; (c) covalent conjugation of whole ab; (d) covalent conjugation of ab fragment (Fab’); (e, f) whole ab conjugation through avidin–biotin with 
either the biotin or avidin bound to the liposome surface; (g) conjugation through hapten; (C) Peptide tagging on the surface. (i) electrostatic conju-
gation. (ii) direct conjugation. (iii) secondary interaction. (iv) covalent attachment to surface ligand. (v) encapsulation or fusion.
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and improving cargo delivery (Hardy and Dimmock 2003; Ho 
et al. 2024; Mohammad Faizal et al. 2023).

Antibodies are functional molecules composed of two sets of 
light and heavy chains linked by intrachain disulfide bonds. 
Due to their immunologic properties, these are revolutionized in 
the diagnostics and therapeutics fields (Daly 2022). Antibodies 
are categorized into different classes based on their structure 
and function. The major classes of immunoglobulins are IgA, 
IgD, IgE, IgG, and IgM (Parija 2023). IgG is the prime choice for 
conjugation with liposomes due to its structural property, and 
IgM is used in some formulations. The fundamental architec-
ture of an IgG antibody molecule is composed of four polypep-
tide chains with two light and two heavy chains linked together 
by disulfide bonds.

Epidermal growth factor receptor (EGFR) is a cell surface recep-
tor, highly expressed in several cell types, especially in cancer 
cells (Byeon et al. 2019; Ciardiello and Tortora 2003; Normanno 
et  al.  2006). Several research studies demonstrate that EGFR 
overexpression correlates with cancer cell differentiation and 
migration. Cetuximab, a chimeric monoclonal antibody, selec-
tively binds to EGFR, inhibiting its activation and subsequent 
signaling pathways, hence affecting cancer development and 
progression. Cetuximab is the predominant anti-EGFR an-
tibody employed for the alteration of nanocarrier surfaces. 
McDaid et  al. targeted EGFR overexpression and Cetuximab 
(CTX) resistant cancer cells with cetuximab when utilized with 
camptothecin-loaded polymer NPs. This study found that the 
CTX-coupled nano drug delivery system improved NPs' cell sur-
face targeting via interacting with EGFR. Further research indi-
cates that the CTX-modified nano-drug carrier system enhances 
tumor suppression and targeting (McDaid et al. 2019).

3.2   |   Polypeptide-Coated Biomimetic Liposome 
Nanoparticles

Peptides are tumor-specific ligands made up of less than 50 
amino acids. They possess a small size, excellent affinity, good 
stability, ease of modification, and minimal immunogenicity. 
They have become more common in the field of tumor diagnosis 
and treatment. Peptides have garnered considerable attention in 
biological applications, including drug delivery, cancer therapy, 
and vaccine creation, owing to their specificity, low toxicity, and 
biocompatibility. Peptides have numerous obstacles, such as in-
adequate stability, vulnerability to proteolytic degradation, and 
restricted bioavailability, which impede their therapeutic appli-
cation (Nhàn et al. 2023; Samec et al. 2022; Sonju et al. 2021).

Electrostatic tagging: The interaction between cationic peptides 
and negatively charged liposomes is a simple and traditional 
method for forming stable peptide-liposome complexes. This 
technique utilizes electrostatic interactions, which are straight-
forward and efficient for coating applications. The stability of 
these compounds can be affected by environmental conditions, 
including ionic strength and pH. Among various peptides, RGD 
(arginine–glycine–aspartate) is pivotal in targeting integrin re-
ceptors, especially integrin αvβ3, which are overexpressed on 
tumor endothelial cells and are integral to tumor angiogenesis 
(Chen et al. 2009). Cationic liposomes, owing to their positive 

charge, can electrostatically bind with negatively charged RGD 
peptides, resulting in the formation of a stable peptide–liposome 
complex (Figure 7C; Sapra and Allen 2003).

Covalent attachment: Covalent conjugation of peptides to the 
liposome surface enhances stability and prevents premature 
release. Common methods include attaching peptides through 
functional groups like amines, carboxyl, or thiol groups to re-
active moieties on the liposome surface. This method provides 
a stronger and more stable interaction, ensuring better control 
over peptide release and reducing the risk of dissociation in 
the bloodstream (Figure  7C; Gyongyossy-Issa et  al.  1998; Liu 
et al. 2021; Taneichi et al. 2006).

Lipid anchoring: Lipid-modified peptides can be anchored into 
the liposome bilayer through hydrophobic interactions. Peptides 
can be conjugated with lipid moieties, such as fatty acids or cho-
lesterol, allowing them to insert into the liposomal membrane. 
This method enhances the stability of peptide–liposome for-
mulations, facilitates membrane fusion, and improves cellular 
uptake (Figure 7C; Dissanayake et al. 2022; Nsairat et al. 2022).

PEGylation: Polyethylene glycol (PEG) can be conjugated to pep-
tides and used to coat liposomes, offering steric stabilization and 
reducing immune recognition. PEGylation prolongs circulation 
time by reducing opsonization and clearance by the reticuloen-
dothelial system (RES; Askarizadeh et al. 2024; Xia et al. 2023). 
It also provides a platform for attaching targeting ligands or pep-
tides, which can improve the specificity of liposomal delivery 
to certain tissues or cells, such as tumors (Figure 7C; Mehrizi 
et al. 2024; Suk et al. 2016).

Fusion peptides: Fusion peptides can be designed to facilitate the 
interaction of liposomes with target cells or tissues. These pep-
tides can incorporate sequences that promote cell penetration, 
receptor-targeting, or membrane fusion. Such fusion peptides 
are often embedded into the liposomal bilayer, improving the 
delivery of encapsulated drugs or cargo through enhanced cel-
lular internalization or endosomal escape (Figure  7C; Iversen 
et al. 2024; Zeng et al. 2023).

3.3   |   Aptamer-Coated Biomimetic Liposome 
Nanoparticles

Aptamers are short single-stranded DNA or RNA oligonucle-
otides, typically comprising 25 to 90 nucleotide bases, that at-
tach to specific targets such as proteins and cells via distinct 
three-dimensional conformations (Kar  2024; Zhou, Li, and 
Wu 2024). Aptamers have emerged as exceptional and rapidly 
developing tools for successfully targeting cancer biomarkers 
and are utilized as effective ligands for drug delivery and anti-
cancer therapy. These ligands tend to have the ability to bind 
with the nanomolar to the picomolar range of target molecules 
with precise binding affinities (Safarkhani et al. 2024).

Aptamers are generated using the systematic evolution of ligands 
by exponential enrichment (SELEX) technology, which precisely 
binds a wide array of target materials, including cells, viruses, 
proteins, and small molecules (Brown et al. 2024). Nucleic acid 
aptamers have surpassed antibodies for the targeted delivery of 
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anticancer medicines. Aptamers are useful ligands due to their 
resistance to organic solvents, temperature fluctuations, and pH 
variations, as well as their capability for mass manufacturing 
by chemical synthesis. Aptamers exhibit resistance to denatur-
ation–renaturation cycles and possess lower immunogenicity 
compared to antibodies (Erkmen et al. 2024; Ni et al. 2021).

Aptamer-conjugated liposomes represent the most effective 
drug delivery technique. The US FDA has sanctioned several 
liposome-based therapeutics across various clinics for disease 
treatment (Jiang et  al.  2024; Wong et  al.  2024). Aptamers are 
chemically modified with diverse functional groups at both ter-
mini to improve site-specific conjugation. Nucleic acid aptamers 
demonstrate rapid infiltration into the target cells and enhanced 
serum retention owing to superior stability (Gao et  al.  2024; 
Malone et al. 1989; Miller et al. 2017; Zhou, Li, and Wu 2024). 
The proliferation and spread of tumors are facilitated by some 
immunosuppressive cells, including tumor-associated macro-
phages, myeloid-derived suppressor cells, and tumor-resident 
regulatory T cells (Ghebremedhin et al. 2024; Park et al. 2024). 
Targeting these immunosuppressive cells can enhance the effec-
tiveness of cancer treatment.

Various research works demonstrated that the RNA aptamer 
(Interleukin-4 receptor subunit alpha (IL-4Ra)) inhibits the 
human IL-4 receptor (Roth et al. 2012; Sharif-Askari et al. 2024) 
and concurrently suppresses myeloid-derived suppressor cells 
(Liu et  al.  2017). CpG (Cytosine-phosphate-Guanine) oligode-
oxynucleotide-10 demonstrated remarkable anti-tumor activity 
as an aptamer, although the IL-4Ra-liganded liposome precisely 
targets the IL-4Ra receptor present on CT26 carcinoma cells, 
which shows a significant expression of the IL-4Ra receptor 
(Liu et  al.  2017; Loira-Pastoriza et  al.  2021). The effective up-
take of CpG by tumor cells markedly hinders in  vivo CT26 
tumor growth, and the delivery of this cancer-targeting ap-
tamer through liposomes may provide a formidable approach 
to surmount immunosuppression and augment immunotherapy 
(Kim, Lee, and Jon 2024; Wang, Chen, et al. 2023).

3.4   |   Vitamins-Coated Biomimetic Liposome 
Nanoparticles

The utilization of vitamins as a surface coating ligand for lipo-
somes has enhanced their utility in customized cargo delivery 
(Misra and Pathak 2022; Patel et al. 2024). Different types of 
cancer cells exhibit a higher expression of vitamin receptors 
compared to normal cells, thus necessitating a comprehension 
of these receptors for the effective docking of vitamin-liganded 
liposomes. Malignant phenotypes frequently demonstrate 
elevated expression of several vitamin receptors (Dinakar 
et  al.  2023; Kułdo et  al.  2005; Soe et  al.  2018). The predomi-
nant liposome ligands for malignant cell receptors are folate; 
however, tocopherol, pyridoxal phosphate, and pyridoxine have 
also been utilized (Dinakar et al. 2023; Khan et al. 2020; Kumar 
et al. 2022). Vitamin E can be used as a liposomal ligand to tar-
get diseased cells in the form of d-alpha tocopheryl polyethylene 
glycol succinate (TPGS). This amphiphilic structure has PEG 
as the hydrophilic element and tocopherol succinate as the lipo-
philic moiety. TPGS's hydrophilic–lipophilic balance renders it 
an efficient solubilizer, emulsifier, and bioavailability enhancer 

for hydrophobic pharmaceuticals (Duhem et  al.  2014; Jasim 
et  al.  2021; Yang et  al.  2018). Pérez-Herrero and Fernández-
Medarde  (2015) assert that TPGS enhances drug absorption, 
cytotoxicity, and reduces multidrug resistance (Pérez-Herrero 
and Fernández-Medarde 2015). Vitamin E is employed to safe-
guard liposomes from free radical damage and to mitigate 
oxidative stress during storage (Kilicarslan You et  al.  2024; 
Suntres 2011).

During carcinogenesis, overexpression of folate receptors occurs 
in their plasma membranes, which is especially a special affin-
ity receptor for folic acid (Bertel et al. 2024; Gonzalez et al. 2024; 
Paulos et al. 2004). One of the commonly approached methods for 
conjugating folic acid to the liposomes involves the preparation 
of folate-linked peptides, cholesterol, or phospholipids before de-
veloping tumor-specific liposomes (Kumar et al. 2019; Nogueira 
et  al.  2015; Shmendel et  al.  2023). Normal tissues typically ex-
hibit low or lack folate receptor expression on cells (Varaganti 
et al. 2023). The selective expression of folic acid receptors in can-
cer cells has been utilized as a signal marker for liposomes to ac-
tively target and deliver treatment and diagnostic cargo into the 
cancer cells (Nehal et al. 2024; Wen et al. 2024). Numerous che-
motherapeutics and diagnostic imaging agents target tumor cells 
through a folate receptor binding mechanism (Cheung et al. 2016; 
Fernández et al. 2018; Ledermann et al. 2015; Xu et al. 2017). In an 
earlier stage of folate-mediated liposome preparation, phospholip-
ids were directly conjugated with folic acid. Later research works 
demonstrated that tumor cells' folate receptors did not engage with 
folate-conjugated liposomes when folic acid was directly bound 
to phospholipids (Drummond et al. 2000; Kumar et al. 2019). To 
focus on this constraint, linkers like polyethylene glycol (PEG) and 
hydrazine were used to achieve the direct binding of folic acid to 
protein, cholesterol, and other spacers (Aucoin et al. 2024; D'Souza 
and Shegokar 2016; Sampogna-Mireles et al. 2017). Tang and co-
workers demonstrated that using PEG in folate-conjugated lipo-
somes boosted therapeutic effectiveness by increasing solubility, 
half-life, and drug reserve at the tumor site (Tang et al. 2023). Folic 
acid conjugation with PEG for liposome development improved 
liposome retention in the tumor sites and paved the path for endo-
cytosis via folate receptors (Lim et al. 2023).

3.5   |   Effect of Liposomal Drug Delivery Systems

Based on various synthesis and surface coating strategies, numer-
ous liposomal drug delivery systems were developed for cancer 
therapeutics and diagnostics applications. The liposome, which is 
coated with folic acid to target folate receptors, is one of the ef-
fective drug delivery systems to target cancer cells that are highly 
expressed with folate receptors. Oliveira and the team have investi-
gated the efficacy and safety of a folate-coated doxorubicin-loaded 
pH-sensitive liposome (SpHL-DOX-Fol) to improve doxorubicin 
(DOX) administration to folate receptor-positive (FR+) cancer 
cells. The researchers analyzed the impact of folate functionaliza-
tion on DOX delivery to breast cancer (MDA-MB-231, MCF-7) and 
lung cancer cells (A549). The study shows that SpHL-DOX-Fol has 
a much higher cellular uptake and cytotoxicity against FR+ MDA-
MB-231 breast cancer cells than nontargeted SpHL-DOX and free 
DOX. This increased efficacy is related to the folate-mediated en-
docytosis mechanism, which results in an IC50 of 387 nM for SpHL-
DOX-Fol, significantly lower than that of SpHL-DOX (450 nM) 
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and free DOX (518 nM). In  vivo acute toxicity tests in BALB/c 
mice revealed that SpHL-DOX-Fol efficiently reduced systemic 
and cardiotoxicity compared to free DOX. Animals treated with 
SpHL-DOX-Fol had considerably decreased creatine kinase-MB 
(CK-MB) levels, less hepatic and renal toxicity, and few histopatho-
logical changes in cardiac and renal tissues. Importantly, SpHL-
DOX-Fol had improved hematological profiles, with no significant 
leukopenia or thrombocytosis, unlike free DOX-treated groups. 
These findings underline SpHL-DOX-Fol's improved therapeu-
tic efficacy and safety profile, indicating its promise as a promis-
ing nanocarrier for targeted cancer therapy, particularly for FR+ 
breast cancers. This study provides a solid foundation for future 
translational research and clinical uses of folate-functionalized li-
posomal systems (Figure 8; de Oliveira Silva et al. 2023).

PEG coating is a pivotal strategy in the development of liposome-
based drug delivery systems for enhanced drug delivery and 
safety profiles. The PEGylated and gadolinium-infused thera-
nostic liposome was developed by Pitchaimani and coworkers to 
improve diagnostic and therapeutic capabilities against various 
cancer types. The team ingeniously incorporates gadolinium 
ions into the hydrophilic heads of phospholipids, improving the 
liposomes' structural stability and magnetic features. The lipo-
somes exhibited a homogenous spherical vesicle with a hydrody-
namic size of 150 ± 10 nm and also showcased enhanced loading 
of doxorubicin and sustained drug release (Figure  9A,B). In 
comparison with the conventional contrast agent Magnevist, 
the Gd-infused liposomes displayed three times higher T1 

relaxivity (12.3 mM−1 s−1 at 14.1 T; Figure  9C). These meticu-
lously designed liposomes not only maintain stable and uniform 
size distribution but also exhibit significantly higher relaxivity 
than traditional gadolinium-based treatments. This increase 
potentially improves the quality of MRI images (Figure  9C). 
The cellular uptake study undertaken with B16F10 melanoma 
cells demonstrated consistent intracellular distribution, while 
in vitro cytotoxicity assays revealed comparable therapeutic ef-
fects to free DOX (Figure 9D). These results strongly suggested 
that the developed PEGylated liposome has considerable poten-
tial as a theranostic nanosystem for clinical applications, espe-
cially in targeted cancer therapy and diagnostics. The study is 
well-structured, presenting a clear methodology and substantial 
evidence supporting the therapeutic and diagnostic superiority 
of gadolinium-infused liposomes over conventional approaches 
(Pitchaimani et al. 2016).

Berlin Grace and coworkers successfully developed cationic 
liposome NPs loaded with all-trans-retinoic acid (ATRA) and 
studied their pharmacokinetics and therapeutic function against 
chemical carcinogen-induced animal models (Berlin Grace and 
Viswanathan 2017). The study demonstrates the successful for-
mulation of a cationic liposome-based nano-delivery system, ad-
dressing key limitations of ATRA, such as poor bioavailability 
and rapid degradation. Pharmacokinetic analysis reveals signif-
icant improvements in drug stability, systemic circulation time, 
and targeted delivery to tumor sites. The therapeutic efficiency, 
evaluated in vivo using a lung cancer mouse model, highlights 

FIGURE 8    |    Acute toxicity and in vitro antitumor activity of Dox-loaded folate-coated liposomes (SpHL-DOX-FOL). (A) Model illustration of the 
anatomy of the nanoparticle. (B) Characterization of free liposomes and drug-loaded liposomes. (C) In vitro cell migration assessment. (D) In vitro 
cellular uptake of DOX SpHL-DOX-FOL. SpHL-DOX-FOL showed enhanced internalization as compared to that of other treatment groups. (E) 
Histopathological evaluation of various tissues treated with SpHL-DOX and SpHL-DOX-FOL (Reprinted with permission from de Oliveira Silva 
et al. (2023). Copyright 2023 Elsevier Ltd).
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a marked reduction in tumor growth and enhanced survival 
rates compared to conventional ATRA treatment. Additionally, 
the paper provides compelling evidence of reduced systemic 
toxicity, underscoring the formulation's safety profile. This 

innovative work not only advances the field of nanomedicine 
but also witnesses the potential of liposomal delivery systems 
for improving cancer therapy outcomes (Figure 10; Berlin Grace 
and Viswanathan 2017).

FIGURE 9    |    Gadolinium-infused theranostic liposomes. (A) Model illustration of nanoparticles. (B) Characterization of DOX-Gd-Liposomes us-
ing DLS, TEM, and in vitro drug release assays. The DOX-loaded Gd liposomes showcase the efficient physiological features. (C) Magnetic properties 
of Gd-liposomes. Contrast phantoms of infused theranostic liposomes acquired at 14.1 T. (D) In vitro cytotoxicity and cellular uptake of DOX-Gd-
Liposomes. (Reprinted with permission from Pitchaimani et al. (2016). Copyright 2016 The Royal Society of Chemistry).
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FIGURE 10    |    Cationic liposome system loaded with All trans Retinoic Acid (ATRA) for lung cancer treatment. (A) Model illustration of nanopar-
ticles. (B) TEM, DLS, and drug release profile of Lipo-ATRA. Characterization studies show a gradual drug release profile. (C) In vivo pharma-
cokinetics and anti-cancer studies of Lipo-ATRA reveal the efficient therapeutic efficacy. (Reprinted with permission from Berlin Grace and 
Viswanathan (2017). Copyright 2017 Elsevier Ltd).

FIGURE 11    |    Synthetic strategies and overview of hybridized biomimetic EVs. EVs are commonly hybridized with synthetic nanoparticles using 
freeze–thaw, PEG incubation, Incubation, and extrusion strategies.
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4   |   Extracellular Vesicle and Liposome Hybrid 
System

EVs are essential for intercellular communication, facilitating 
the transport of bioactive substances, including proteins, nucleic 
acids, and lipids, between cells. EVs have garnered considerable 
attention as prospective carriers for therapeutic agents, espe-
cially in drug administration, cancer treatment, and regenera-
tive medicine, owing to their inherent biocompatibility, capacity 
to navigate biological barriers, and natural targeting abilities.

EVs from cells are an emerging alternative to nanoparticle drug 
delivery systems due to their biological origin and targeting 
capabilities (Debbarma et al. 2024; Sanyal and Banerjee 2024; 
Ubanako et  al.  2024). They serve crucial functions in cellular 
communication, genetic material transfer, and immune re-
sponse regulation (Aloi et al. 2024; Essola et al. 2023; Sunkara 
et al. 2025). The study on EVs biogenesis, isolation, and charac-
terization has been extensively undertaken by various research-
ers (de Sousa et al. 2023; Miron and Zhang 2024; Salmond and 
Williams 2021; Sani et al. 2024; Sonbhadra et al. 2023). EVs have 
more complicated lipid components than liposomes, affecting 
their physical characteristics and interactions with recipient 
cells (Skotland et al. 2020). Several proteins have been found to 
be incorporated or linked to the EV membrane. The presence of 
molecules like integrins, tetraspanins, and proteoglycans may 
contribute to their biocompatibility, stability, targeting spec-
ificity, and ability to cross biological barriers (Alvarez-Erviti 
et  al.  2011; Millard et  al.  2018; Murphy et  al.  2019; Schindler 
et al. 2019). However, the intricacy of EV surfaces limits drug 
loading. Two main ways for loading therapeutic cargo into EVs 
are endogenous (passive) and exogenous (e.g., electroporation).

Liposomes are synthetic spherical vesicles made of phospholipid 
bilayers. They have been utilized in drug delivery for an extended 
period because of their capacity to encapsulate both hydrophilic 
and hydrophobic pharmaceuticals, enhancing their stability, bio-
distribution, and bioavailability (Dymek and Sikora 2022; Mehta, 
Bui, et al. 2023; van der Koog et al. 2022). Liposomes are adaptable 
and can be modified with ligands or peptides to improve target-
ing and therapeutic effectiveness, as discussed above. Membrane 
fusion-based hybrid exosomes (MFHE) are a new nanoparticle for 
drug administration that combines the benefits of liposomes and 
exosomes through various membrane fusion mechanisms (Lu and 
Huang 2020). MFHEs possess strong drug loading, stability, and 
surface modification capabilities, as well as high biocompatibility 
and low exosome immunogenicity. This sheds light on nanoparti-
cle medicine delivery (Figure 11).

4.1   |   Synthetic Strategies

Various synthetic strategies were developed to engineer EVs 
and liposome hybrid systems as discussed in the table below 
(Table 4).

4.1.1   |   Extrusion Methods

The membrane extrusion method involves the concurrent 
ejection of exosomes and liposomes via membrane pores of T
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adjustable dimensions under applied physical pressure to cre-
ate mixed vesicles. In comparison to incubation and freeze–
thaw techniques, membrane extrusion offers the benefit of 
achieving a more uniform particle size in hybrid vesicles. 
Sun et  al. created hybrid nanovesicles utilizing clodronate-
loaded (CLD) liposomes and exosomes produced from fibro-
blasts for the therapeutic intervention of pulmonary fibrosis. 
The researchers combined L-929 (Murine fibroblast cell line) 
fibroblast-derived exosomes with a suspension of synthetic li-
posomes at a 1:5 protein equivalent ratio, vortexed and soni-
cated the mixture, and subsequently extruded it through 400 
and 200 nm polycarbonate ester membranes 10 times. This 
led to the effective creation of exosome-hybridized liposomes 
(Sun et al. 2021).

Other research teams synthesized hybrid vesicles using anal-
ogous techniques. Liposome and exosome solutions were 
combined in different volumetric proportions. Thereafter, the 
mixtures were typically vortexed and sonicated for 2–3 min 
using a sonicator set at 20%–33% of its maximum amplitude 
to achieve complete solvation of the solution. The mixes were 
extruded via pore diameters of 400, 200, or 100 nm (Evers 
et al. 2022; Hu et al. 2021; Jhan et al. 2020; Li, He, et al. 2022; 
Rayamajhi et  al.  2019). The pore size of the polycarbonate 
membrane and the frequency of membrane extrusion influ-
ence the characteristics of MFHEs. While membrane extrusion 
techniques exhibit elevated fusion efficiency, the shear stress 
produced during the extrusion process may compromise the 
structural integrity of natural exosomes.

4.1.2   |   Freeze–Thaw Methods

Freeze–thaw procedures are routinely used to load drugs onto 
liposomes. Creating ice crystals can rupture the plasma mem-
brane and allow water-soluble compounds to enter liposomes 
(Roque et al. 2023). This procedure can also be used to create 
hybrid EVs. Many research teams have achieved good fusion 
efficiency while using varied numbers of freeze–thaw cycles. 
Sato et al. combined Raw 264.7 cell-derived exosomes with dual 
fluorescently labeled liposomes (1:1 by volume). After freezing 
in liquid nitrogen, the mixture was thawed at ambient tempera-
ture for 15 min. The hybrid exosomes produced after repeated 
freeze–thaw cycles have a greater cellular absorption rate than 
liposomes (Sato et al. 2016).

Cheng et al. created hybrid exosomes by combining genetically al-
tered exosomes with heat-sensitive liposomes for cancer treatment 
using photothermal therapy and immunotherapy. Researchers 
created exosome–liposome hybrid NPs by mixing heat-sensitive 
liposomes and genetically altered exosomes at a 1:1 ratio and 
freezing–thawing them three times. The fusion efficiency of this 
synthetic approach reached 97.4% (Cheng et al. 2021).

4.1.3   |   Natural Incubation

Membrane fusion is an autonomous process that employs the 
physicochemical properties of vesicles to facilitate fusion. 
Hybrid exosomes are generated via electrostatic or hydrophobic 

FIGURE 12    |    Hybridization of macrophage-derived EVs for targeted drug delivery. (A) Schematic of hybrid exosomes (HEs). (B) Hybridization 
of EVs with liposomes. (C) Physico-chemical properties assessment for HEs. The DLS studies showed the optimum physical properties, and dot blot 
studies showed the presence of bio-markers in the vesicles which further revealed the efficient hybridization. (D, E) In vitro cellular uptake studies 
showed the active internalization of HEs over the liposomes. (Reprinted with permission from Rayamajhi et al. (2019). Copyright 2019 Elsevier Ltd).
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interactions, maintaining the integrity of the lipid bilayer and 
preventing the leakage of vesicular contents. Lin et al. synthe-
sized hybrid exosomes by incubating HEK293FT cell-derived 
exosomes with CRISPR/Cas9-expressing liposomes at 37°C for 
12 h, presenting a novel approach for the secure and efficient 
delivery of the CRISPR–Cas9 system (Lin et  al.  2018). This 
technique inflicts minimal harm to vesicles and pharmaceuti-
cals. However, the fusion efficiency is comparatively poor.

4.1.4   |   Polyethylene Glycol Incubation

Polyethylene glycol (PEG) alters cell membranes and is exten-
sively utilized to facilitate cell-to-cell fusion by promoting the 
proximity of lipid bilayer membranes and initiating the displace-
ment and restructuring of lipid molecules (Yoshihara et al. 2020). 
Piffoux et al. revealed that PEG might facilitate the fusion of exo-
somes and liposomes derived from several cellular sources. The 
fusion effectiveness of liposomes and exosomes was assessed 
using various ratios, sizes, and concentrations of PEG molecules 
(Piffoux et al. 2018). Their findings demonstrate a more efficient 
fusion of 30% (v/w) PEG 8000. Due to its facile preparation and 
stable activity, PEG can facilitate the effective fusion of exosomes 
and liposomes while also prolonging their circulation time in 
the bloodstream. Nonetheless, the presence of PEG on the sur-
face of hybrid exosomes may be inadequate to confer the stealth 

characteristics necessary to evade swift reception by the RES, 
therefore diminishing the cellular uptake of the hybrid exosomes 
(Kannavou et al. 2021; Lee et al. 2021; Patras et al. 2022).

4.2   |   Effect of Hybridized Biomimetic Nanodrug 
Delivery Systems

Hybrid EVs represent a novel and innovative frontier in the area 
of nano-engineered drug delivery systems, utilizing the intrinsic 
biological features of natural EVs with the tailored properties 
of synthetic materials to enhance therapeutic efficacy and tar-
geting specificity. With this idea, there are numerous research 
works carried out to engineer innovative hybridized vesicles for 
effective therapeutic and diagnostic applications. The study by 
Rayamajhi and colleagues explores the synthetic strategy of hy-
brid vesicles that combine the benefits of macrophage-derived 
EVs and synthetic liposomes, with the objective of leveraging 
the biological targeting potential of EVs while improving drug 
delivery efficiency through the adaptable nature of liposomes 
(Figure  12A). The research group successfully hybridized the 
EVs with synthetic liposomes to generate the hybrid exosomes 
(HEs) that retained the size characteristics beneficial towards 
biological applications (those less than 200 nm hydrodynamic 
diameter). The critical aspect of their methodology was confirm-
ing that these HEs retained the surface proteins required for 

FIGURE 13    |    Active hybrid exosome drug delivery system for paclitaxel. (A) Scheme of PTX-loaded hybrid exosomes (PTX-HEs) development 
with paclitaxel. (B) Morphology, size, and zeta potential of PTX-HEs. (C) In vitro cellular uptake and cell apoptosis, assays revealed the active inter-
nalization of EL and enhanced apoptotic activity of PTX-HEs over free exosomes and free PTX. (D) In vivo antitumor effect of PTX-HEs against CT26 
tumor-induced mouse model. PTX-HEs showed significantly anti-cancer activity than the free PTX. (E) Effect of PTX-HEs on in vivo intra-tumoral 
immunity activation. (Reprinted with permission from Wang et al. (2024). Copyright 2024 MDPI).
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targeting tumor cells, a characteristic inherited from their pa-
rental macrophage origin. This research work thoroughly char-
acterized these hybrid vesicles employing various techniques 
such as dynamic light scattering and transmission electron mi-
croscopy, demonstrating their anticipated size distribution and 
morphological integrity (Figure 12B,C). The researchers empha-
sized the stability of these HEs, which is a notable advancement 
over conventional EVs, as it could lead to more predictable and 
controlled therapeutic outcomes. This study's one of the most 
compelling aspects is its assessment of the targeted drug deliv-
ery potential utilizing the in vitro models. To achieve this, the 
vesicles were loaded with doxorubicin, a commonly recognized 
chemotherapy drug. The results showed that these HEs could 
target the interested cancer cells and deliver their cargo directly 
into the destination cells while limiting exposure to normal cells 
(Figure 12D,E). The selective toxicity was significantly higher 
in cancer cells than in noncancerous cells, showing the vesicles' 
potential to effectively target and kill tumor cells. The drug re-
lease experiments emphasized the HEs' ability for controlled re-
lease, exhibiting a pH-sensitive release beneficial in the acidic 
tumor microenvironment commonly present in cancer sites. 
This feature may diminish chemotherapy side effects by con-
fining drug release to the target site, thus shielding healthy tis-
sues from exposure to hazardous chemotherapeutic agents. In 
conclusion, this study notably contributed to the field of drug 
delivery, especially in the development of innovative vesicle-
based systems for cancer therapy and diagnostics. By combining 
the natural targeting features of EVs with the robustness and 

flexibility of liposomes, the study not only addresses some of the 
key challenges in the field of EVs but also opens new avenues for 
the targeted treatment of cancer. The capability of these hybrid 
exosomes to improve the therapeutic index of chemotherapeutic 
drugs may have substantial significance for future clinical ap-
plications, representing progress in the search for more effective 
and less harmful cancer treatments (Rayamajhi et al. 2019).

Wang et  al. developed a novel approach to cancer therapy by 
developing an engineered exosome. The authors explore the 
potency of hybrid exosomes created by fusing mesenchymal 
stem cell (MSC) derived exosomes with folate-modified lipo-
somes containing paclitaxel (PTX) to enhance the drug load and 
achieve the specific site targeting ability. This work employed 
the ultracentrifuge method to isolate exosomes from mesen-
chymal stem cells (MSCs). The folate-functionalized liposome 
has been developed, and the paclitaxel (PTX) has been loaded. 
The PTX-loaded hybrid exosomes (PTX-HEs) were formulated 
utilizing a freeze–thaw technique (Figure  13A). Higher pacli-
taxel load was observed in the PTX-HEs when compared to the 
PTX-exosomes (Figure  13B). The hybrid exosomes enhanced 
drug delivery and demonstrated a prolonged release profile, 
essential for maintaining therapeutic levels inside the tumor 
microenvironment (Figure 13C). The in vivo study undertaken 
in the CT26 colon cancer-bearing mice model resulted in the 
higher therapeutic efficacy of hybrid exosomes, indicating the 
enhanced therapeutic profile of HEs (Figure 13D). The authors 
also revealed the ability of PTX-HEs to enhance drug delivery 

FIGURE 14    |    Gemcitabine prodrug-loaded EVs for PDAC treatment. (A) Overview of HEVs preparation and its targeting mechanism in cells. (B) 
Size, Zeta potential, stability, and morphology assessment of NPs. (C) Cellular uptake evaluation by CLSM in PANC1 cell line. (D) In vitro antitumor 
activity of nanoparticles. (Reprinted with permission from Kim, Park, et al. (2024). Copyright 2024 ACS Publications).
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and their ability to alter the tumor microenvironment by activat-
ing CD4+ and CD8+ T cells, polarizing macrophages towards 
the M1 phenotype, and reducing regulatory T cells (TRegs), thus 
augmenting the antitumor immune response (Figure 13E). The 
study presents persuasive evidence that hybrid exosomes con-
stitute a promising platform for cancer therapy. They efficiently 
encapsulate and deliver chemotherapeutic agents, improve drug 
stability, enhance targeting specificity, and beneficially alter the 
tumor microenvironment. These diverse benefits establish hy-
brid exosomes as a key advancement in drug delivery systems, 
providing a novel approach that can be customized for different 
treatment options for cancer (Wang et al. 2024).

The exosomes derived from tumor cells and immune-based 
cells exert their functions and target the interested sites by uti-
lizing their parental functional proteins. Kim and his research 
group derived the exosomes from pancreatic cancer cells and 
hybridized these exosomes with the liposome that is already 
loaded with Gemcitabine chemotherapeutic drug (Figure  14; 
Kim, Park, et  al.  2024). This hybrid nanoplatform is intended 
to improve gemcitabine's treatment efficacy against pancreatic 

ductal adenocarcinoma (PDAC). By combining EVs isolated 
from PANC1 cells with gemcitabine-palmitic acid prodrug-
loaded liposomes, the study takes advantage of EVs' innate tar-
geting capabilities and the controlled drug release of liposomal 
carriers. The paper carefully describes how hybridized vesicles 
loaded with gemcitabine-palmitic acid NPs targeted pancreatic 
cancer cells using exosomes' natural homing properties. In mu-
rine and human pancreatic cancer cell lines, hybridized vesicles 
loaded with gemcitabine-palmitic acid had much higher cellular 
uptake than liposomal gemcitabine-palmitic acid. Exosomes ex-
ploit the macropinocytosis pathway, which is elevated in PDAC 
cells with certain genetic mutations, in order to improve ab-
sorption. Compared to liposomal gemcitabine-palmitic acid and 
free gemcitabine, hybridized vesicles loaded with gemcitabine-
palmitic acid had lower IC50 values and higher enhanced apop-
tosis rates against cancer cells. The discussion section of this 
research work thoughtfully explores the implications of these 
findings, suggesting that the hybrid NPs could overcome the 
traditional limitations of gemcitabine treatment, such as rapid 
systemic clearance and poor cellular uptake. This study sug-
gests that hybridized vesicles loaded with gemcitabine-palmitic 

FIGURE 15    |    4T1 tumor-derived EVs hybridized with liposome development to maximize the nanoparticle tumor delivery. (A) Schematic rep-
resentation of hybridization. (B) In vitro cellular internalization of liposomes and Liposome hybridized EVs (LEVs) labeled with Rh-B incubated 
4T1 cells. Results showed maximum internalization of LEVs than the control liposomes into 4T1 cells. (C) In vivo NIR fluorescence imaging of 4T1 
tumor-bearing mice injected with DiR-loaded LEVs and liposomes. (Reprinted with permission from Sulthana et al. (2024). Copyright 2024 The 
Royal Society of Chemistry).
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acid could improve PDAC treatment outcomes by enhancing the 
drug's bioavailability and targeting ability. The hybrid approach 
exhibits improved cellular absorption, longer circulation time, 
and higher tumor accumulation, addressing the difficulties 
of drug resistance and systemic toxicity associated with tradi-
tional gemcitabine treatment. In  vivo investigations in PDAC 
models show considerable tumor suppression and better sur-
vival rates, underlining the platform's potential for clinical use 
(Figure 14; Kim, Park, et al. 2024). Similarly, our research group 
has demonstrated an engineered hybrid system generated by re-
engineering EVs derived from mouse breast cancer (4T1 cells) 
with synthetic liposomes. The system was routinely compared 
for its cancer-targeting potential in the mice bearing 4T1 tu-
mors. Compared to synthetic liposomes, re-engineered liposome 
hybridized EVs (LEVs) showed enhanced tumor accumulation, 
thereby putting it as one of the potential strategies to maximize 
tumor delivery (Figure 15). These studies highlight biomimetic 
systems evolved by combining vesicles from unique biogenesis 
with synthetic nanoparticles as a promising technique for preci-
sion cancer therapy and diagnosis (Sulthana et al. 2024).

5   |   Summary and Future Outlook

With the insertion of nanotechnology back in 1995 in the clinic 
(DOXIL, the first FDA-approved liposomal Doxorubicin nano-
drug), a nanoparticle-based drug delivery system has emerged 
as a controlled-release technology that alters drug pharmaco-
kinetics and takes advantage of the pathophysiology of disease 
to maximize drug delivery. Lessons learned from decades of 
research in nanotechnology, we are now moving forward with 
precision therapy using nanomedicine as a theranostic agent. 
However, it remains a challenge in these rapidly evolving cellu-
lar environments. Mutation in genes, drug resistance, deep tis-
sue inflammation, altered targets, etc., are major limitations that 
demand continuous research in these fields. The uniqueness in 
NPs systems is their ease in tailoring them to take advantage 
of diseased pathologies such as vascular permeability, hypoxia, 
pH, and microenvironment. For example, NPs are engineered 
as a stimulus-sensitive drug delivery system that enhances drug 
release in tumor-acidic environments. Learning from synthetic 
NPs systems, the next generation of NPs evolves as biomimetic 
NPs, which we have discussed in this review with a focus on 
merging synthetic and biogenic systems as a hybrid nanoplat-
form technology.

EVs are nanoscale vesicles mostly found in the extracellular 
space of a wide range of cell types, including but not limited to 
mast cells, epithelial and endothelial cells, dendritic cells, astro-
cytes, and cancer cells. They carry functional properties from 
their mother cells, which depend on their biogenesis, resulting 
in various classes of EVs. The first class of EVs is exosomes, 
which are of endosomal origin; the second class is microvesicles 
originating from the plasma membrane; and the third class of 
EVs originates from apoptotic bodies. Due to their distinctive 
origins, EVs are well-trained to target their destination with the 
help of membrane-bound proteins to trigger a response. For ex-
ample, a large amount of transferrin (Tf) on the surface of cancer 
cells can bind to transferrin receptors (TfR) naturally present on 
the surface of EVs. Similarly, cancer cell-derived EVs localize 
into tumors more efficiently. While there have been a number of 

reports explaining the response of EVs, we are in a very prelim-
inary stage to take EVs to the clinic. Limitations such as their 
isolation yield, variation in functional properties, heterogeneity 
in isolated populations, and, more importantly, their colloidal 
stability and scalability are hindering factors to take EVs to the 
next level. Therefore, it is highly essential to look for alternatives, 
which we have summarized in this review as a hybrid platform 
technology by re-engineering EVs with a synthetic NP system. 
While encouraging results have been observed, questions such 
as the optimum ratio of synthetic and biogenic systems, stabil-
ity of the engineered system, in vivo tracking, purification, and 
payload loading need to be studied to streamline the study to-
wards biomedical applications.
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