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ABSTRACT

Nanoparticles (NPs) made up of cellular components such as extracellular vesicles (EVs) with a biomimetic outlook have emerged
as a revolutionary approach in nanomedicine, providing significant benefits for targeted drug administration, immunotherapy,
monitoring therapeutic response, and diagnostic applications. Utilizing the distinctive characteristics of natural cell membranes,
membrane proteins, and cellular contents, these biomimetic NPs acquire essential biological functions from their source and
biogenesis, including immune evasion, extended circulation, and target recognition, rendering them optimal candidates for
therapeutic applications. This review offers a comprehensive examination of the methodologies of EVs infused with synthetic
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NP systems with the goal of overcoming their respective shortcomings. For instance, EVs are biogenic with cellular targeting

features, but their isolation yield is limited, and their structural and colloidal stability are weak. Whereas, we have decades of

experience in the mass production of highly stable synthetic NPs, they lack cellular targeting features. Therefore, the integration
of these two systems as a single entity in the field of nanomedicine has gained significant attention. In this review, we empha-
sized the variety of EVs sources, such as erythrocytes, leukocytes, cancer cells, and stem cells, each providing unique biological
benefits. Critical procedures encompassing EV's separation, coating processes, and material integration were examined while

addressing the issues, including scalability, membrane stability, and preservation of functionality. Additionally, their promise in

customized medicine is analyzed, highlighting their immediate medical applications. This review seeks to elucidate the existing

methodologies, their constraints, and prospective advancements in the creation of EV-derived biomimetic NPs for clinical use.

This article is categorized under:

Nanotechnology Approaches to Biology > Nanoscale Systems in Biology
Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease

1 | Introduction

Nanobiotechnology enables molecular-level material manipula-
tion for biomedical applications with the goal of creating non-
toxic bioactive nanodevices that are selective to the intended
biological location. The advantage of utilizing nanomaterials as
drug delivery systems (DDS) resides in their nano size, allowing
them to pass through biological barriers and constricted capil-
laries, ultimately reaching specific organs, tumors, or individual
cells (Sun et al. 2014). The use of nanotechnological materials
for the prevention, monitoring, and intervention of diseases is
termed nanomedicine. Nanomedicine is designed to incorporate
imaging, therapy, diagnosis, repair, and regeneration modalities
for medical applications. Over the past decades, nanomedicine
has been developing into a vital branch in the medical field
(Anjum et al. 2021; Morrow et al. 2007). The commonly avail-
able conventional classes of NPs in the nanomedicine field are
liposomes, biodegradable polymers, hydrogel nanocomposites,
semiconductor nanomaterials, magnetic nanomaterials, solid
lipid NPs, metal NPs, polymer nanocomposites, dendrimers,
inorganic NPs, and micelles (Ferrel et al. 2021; Hajfathalian
et al. 2024; Huang, Zhou, et al. 2022; Jackson et al. 2017; Jiang
et al. 2021; Kass and Nguyen 2022; Lee and Thompson 2017;
Luzuriaga et al. 2021; Movassaghian et al. 2015; Del Rahmani
Bakhshayesh et al. 2023). Conventional NPs become the re-
searcher's first choice because of their in vitro and in vivo drug
stability, therapeutic efficacy, and ease of surface modification
to install unique properties (Greish 2018). The NPs are emerging
as the most advantageous tool in nanomedicine based on the fol-
lowing factors. The tiny size of the NPs allows efficient absorp-
tion and solubility of the conventional drugs, which often need
a combination of various organic solvents and higher doses. NPs
can be designed to minimize adverse side effects on the human
body (Sharma and Alam 2023). After entering the blood circu-
lation, the NPs can interact with key molecules, leading to the
formation of bio-corona and further interaction with organelles,
which can lead to off-target effects and even cell death (Ajith
et al. 2022). Therefore, biomimetic modification of NPs would
result in enhanced targeting, lower toxicity, and may main-
tain the desired pharmacokinetics (Jeevanandam et al. 2018;
Pitchaimani et al. 2018, 2019; Tikhonov et al. 2024).

Biomimetic NPs engineered by the fusion of EVs and synthetic
NPs are an emerging and innovative platform that mimics the

biological characteristics and functions of native cells. These NPs
provide enhanced biocompatibility, exceptional target specificity,
prolonged retention time, and minimum unwanted immune re-
actions (Alimohammadvand et al. 2024; Hu et al. 2023; Sarkar
Lotfabadi et al. 2024; Sherawata et al. 2023; Tikhonov et al. 2024).
These NPs receive significant attention because of their superior
biocompatibility and reduced unwanted immune responses in
comparison to other NPs (Chakraborty et al. 2023). These NPs
have the capability of inducing several desired biological effects
due to their inherent richness in cell-specific functionality (Khojini
et al. 2023). They can be employed as drug delivery system carriers
with high specificity and efficiency (Manika and Pandey 2023).
Additionally, biomimetic NPs have been explored for their applica-
tions in various fields such as cancer immunotherapy, bioanalysis,
and biomedical engineering. Overall, biomimetic NPs hold great
promise for the development of advanced biomaterials with spe-
cialized biological functions. These NPs are designed to emulate
the structural and functional characteristics of natural biomole-
cules and organisms, allowing for unique properties and appli-
cations. The field is leveraging the principles of biology to create
innovative and versatile materials. They have been used in a wide
range of applications, including drug delivery, gene therapy, tissue
engineering, and sensing. One notable application of biomimetic
NPs is in tumor-specific drug delivery.

Extracellular vesicles (EVs) are one of the well-known and
emerging candidates in nanomedicine to derive biomimetic
NPs (Du, Guan, et al. 2023; Mondal et al. 2024). EVs are nano-
sized, lipid bilayer-bounded bodies that facilitate intracellular
communication, impacting cell response. Almost all types of
eukaryotic and prokaryotic cells release these EVs into the ex-
tracellular space through major molecular mechanisms such
as the endosomal pathway (exosome formation), direct plasma
membrane budding (microvesicle formation), and apop-
totic pathway (release of apoptotic bodies) (Maas et al. 2017;
Mathieu et al. 2019; van Niel et al. 2018; Xiang et al. 2024).
The mechanistic action for intracellular communication of
EVs facilitates transport systems for cell-derived bioactive
molecules, including proteins, lipids, RNA, DNA, and met-
abolic intermediate molecules, to the recipient cell from the
donor cell. These EVs are commonly heterogeneous particles
that are classified into different types based on their size and
functions as exosomes (30-150 nm), microvesicles (0.1-2 um),
and apoptotic bodies (1-5um). Based on their cellular origin,
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these are classified; for example, those originating from can-
cer cells are called oncosomes (Liu 2024; Xiang et al. 2024).
These EVs are extensively found in nearly all biological fluids
such as blood, urine, synovial fluid, saliva, breast milk, and
cerebrospinal fluid. The protein markers of EVs play a crucial
role in intracellular communication and also help to assess
and characterize the EVs. The commonly available protein
markers in the EVs include tetraspanins (CD9, CD63, CD81),
heat shock proteins (HSP70), Alix, and tumor susceptibility
gene (TSG101) (Aloi et al. 2024; Das 2024; Papoutsoglou and
Morillon 2024; Yu et al. 2024; Zhang, Wu, et al. 2022).

The EVs are entering different recipient cells by various endo-
cytic mechanisms such as caveolin-mediated uptake, clathrin-
dependent endocytosis, phagocytosis, macro-pinocytosis,
and lipid raft-mediated internalization (Aloi et al. 2024; Geng
et al. 2024; Hirosawa et al. 2025; Xiang et al. 2024). The surface
proteins and glycoproteins of EVs and cells are the primary fac-
tors that direct the uptake mechanisms based on their activities
(Du et al. 2024; Ginini et al. 2022; Mulcahy et al. 2014; Williams
et al. 2019). The functional proteins present on the surface of
the EVs facilitate therapeutic and diagnostic applications, which
are guided by parental cell properties that they acquired. For ex-
ample, EVs generated from immune cells such as macrophages,
T-cells, and natural killer cells were found to target inflamma-
tory cells. Similarly, EVs derived from tumors enhance commu-
nication between cancer cells and other cells within the tumor
microenvironment, such as endothelial cells, fibroblasts, and im-
mune cells, thus influencing cancer growth and immunological
responses (Bao et al. 2022; Tai et al. 2019; Yu et al. 2024). They
can alter the tumor microenvironment by facilitating angiogen-
esis, immune evasion, and the development of premetastatic
niches, promoting cancer progression (Biray Avci et al. 2024; Li,
Zheng, et al. 2024; Mir et al. 2024; Vasconcelos et al. 2019). The
tumor cells derived EVs transport diverse macromolecules, such
as DNA, RNA, proteins, and lipids, capable of imparting ag-
gressive phenotypic traits and drug-resistant properties to other
cancer cells (Hu et al. 2022; Mir et al. 2024; Willms et al. 2018;
Wortzel et al. 2024; Xiong et al. 2024; Zuo et al. 2024). Owing to
their distinctive molecular signatures, tumor-derived EVs serve
as significant diagnostic and predictive indicators in liquid bi-
opsies, facilitating real-time surveillance of cancer development
and treatment response (Dabral et al. 2024; Liao et al. 2024;
Rahbarghazi et al. 2019; Tai et al. 2019). EVs have demonstrated
the capability to identify early-stage neoplastic tissues and cir-
culating tumor cells, which may be employed for early identi-
fication and targeted administration of treatment medicines to
inhibit tumor progression (Garofalo et al. 2021). Their capacity
to transport and administer oncogenic chemicals renders them
significant instruments in precision medicine, with current in-
vestigations focusing on their potential for early detection and
targeted therapy (Pagotto et al. 2023; Rahbarghazi et al. 2019;
Tai et al. 2019). These unique properties of tumor cell-derived
EVs can be advantageous in precision drug delivery when ap-
propriately re-engineered with chemotherapeutics and other
synthetic NPs.

Liposomes are synthetic active tools for efficient drug delivery,
which have already advanced to the clinics (Eugster et al. 2024;
Hamad et al. 2024; Liu et al. 2022; Nsairat et al. 2022; Yi
et al. 2022). Liposomes are spherical-shaped vesicles made of

cholesterol and phospholipids with the ability to encapsulate
both hydrophilic and hydrophobic materials in the core and
bilayer surface of the lipids (Andra et al. 2022; Lombardo and
Kiselev 2022). Since their discovery in the 1960s, liposomes have
been extensively studied and utilized in various medical appli-
cations, including cancer therapy, vaccine delivery, and treat-
ment of infectious diseases (Bozzuto and Molinari 2015; Hsu
et al. 2023; Karunakaran et al. 2023; Mehta, Bui, et al. 2023;
Rommasi and Esfandiari 2021). Understanding the fundamental
concepts of liposomes, which include their formation, structure,
and release kinetics, is crucial for designing effective exper-
iments and products utilizing these lipid-based carriers. The
design of liposomes involves careful consideration of their size,
composition, surface charge, and bilayer fluidity to optimize
drug delivery. Liposomes can control drug release, prevent drug
degradation, and alter drug pharmacokinetics, which is benefi-
cial for treating diseases like cancer and infections. However,
they lack disease-specific targeting capabilities. Addressing
these disadvantages is crucial for expanding their applications
in various fields.

The delivery systems of EVs and liposomes have numerous
advantageous functions as an envelope for drugs; on the other
hand, their shortcomings lack their efficient drug delivery ef-
fect. These include that EVs are expert in cellular targeting but
are limited in their isolation yield, and their structural and col-
loidal stability is weak, whereas liposomes lack targeting fea-
tures but are well established as NP drug delivery systems. The
uniqueness of these two systems is their similarities in vesicular
structure with an aqueous core. Therefore, the hybridization of
EVs and liposomes is an excellent approach to overcome their
respective shortcomings. These hybrid systems aim to lever-
age the natural properties of EVs and the customizable fea-
tures of synthetic liposomes to enhance therapeutic delivery.
EV-based hybridized biomimetic NPs offer a novel strategy by
merging the intrinsic characteristics of artificial nanocarriers
with the capabilities of biological cell membranes. The major
classes of biomimetic NPs were synthesized based on cellular
membranes and EVs because these NPs easily mimic the target
cells and resemble the characteristics of cell membranes (Ferrel
et al. 2021; Pitchaimani et al. 2018; Qiu et al. 2024; Sushnitha
et al. 2020). The principle behind hybridization is that through
this integration, the parent cell membrane proteins and lipids
are infused into the NPs to feature biocompatibility, targeted
drug delivery, and stealth properties. Among the synthetic NPs,
liposomes are one of the notable NPs that are easily mimicked
by cell membranes. EVs are naturally biocompatible and pos-
sess inherent targeting capabilities due to their protein-rich lipid
bilayer. When combined with liposomes, these hybrid systems
exhibit enhanced cellular uptake, immuno-evasive properties,
and the ability to cross biological barriers, which are signifi-
cant improvements over purely synthetic systems (Rayamajhi
et al. 2019; Rodriguez and Vader 2022; Sulthana et al. 2024).
Hybrid NPs, such as EV-liposome hybrids, have shown improved
delivery of therapeutic agents, diagnostic agents, and siRNA to
target cells (Evers et al. 2022; Kim, Park, et al. 2024; Rayamajhi
et al. 2019; Sulthana et al. 2024). These hybrids encapsulate
siRNA effectively and demonstrate altered cellular uptake and
gene-silencing efficacy compared to traditional liposomes, mak-
ing them a potent delivery system (Du, Guan, et al. 2023; Evers
et al. 2022; Walker et al. 2019).
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FIGURE1 | An overview of strategic nanoparticles reviewed in this article and their interaction with cancer cells. This schematic explains the

structure of various NPs discussed and their mechanism of cellular targeting.

This overall review focused on addressing the isolation and syn-
thetic approaches of membrane-based biomimetic NPs with a
focus on EVs and liposome-integrated systems (Figure 1). We
are highlighting their ability to interact with their biological
targets.

2 | Extracellular Vesicles (EVs)

EVs are phospholipid bilayer-enclosed vesicles released by
all cell types. They can be identified in tissue culture super-
natants, blood, saliva, breast milk, cerebrospinal fluids, and
malignant ascites. EVs are divided into three types based on
their biogenesis: exosomes, microvesicles, and apoptotic bod-
ies (Kalra et al. 2016; van Niel et al. 2018). EVs are stable in
biofluids and organisms, and they can distribute over short
and long distances, even penetrating the biological barrier.
EVs are unique in protecting and delivering their internal
cargo to target cells through ligand-receptor interactions.
Previous research indicates that proteins on EVs' surfaces en-
hance cargo circulation and prolong circulatory half-lives by
enhancing membrane fusion with the targeted cells and inhib-
iting CD47-mediated phagocytic clearance, hence improving
the pharmacological features of EVs (Kamerkar et al. 2017).
Cellular uptake of EVs depends on surface ligands like hep-
aran sulfate proteoglycans (HSPGs) or recipient cell surface
receptors like scavenger receptor class B, type 1 (SR-B1) (Du
et al. 2024). Recent research works appear to indicate that EVs
are predisposed to certain organs, allowing for the targeted

loading of cargo into the EVs to deliver into the recipient cells.
Due to their nanoscale size, EVs can be efficiently transported
through bodily fluids and biological barriers. Considering that
this particular targeting ability can be meticulously regulated
with higher efficiency, EVs will serve as an effective system
for delivering therapeutic agents (Figure 2).

The clinical translation of extracellular vesicles (EVs) has expe-
rienced significant progress recently, with an increasing num-
ber of preclinical studies showcasing their promising ability as
targeted therapeutic carriers, biomarkers, and immunological
modulators. Significant advantages facilitating clinical trans-
lation include the ability of extracellular vesicles (EVs) to cross
biological barriers, their reduced immunogenicity relative to
synthetic nanoparticles, and the potential for the creation of
surface ligands to improve tissue-specific delivery (Ghodasara
et al. 2023). Despite such advantages, the therapeutic utilization
of EVs encounters considerable obstacles, including scalable
production, variability in isolation techniques, reproducibility
between batches, and regulatory categorization. Confronting
these problems has emerged as a principal objective for biotech
startups and academic spin-offs globally, especially notable prog-
ress seen in the Far East countries. The major countries, includ-
ing Japan, South Korea, Singapore, and China, have emerged
as centers for advanced research and development of extracel-
lular vesicles. Korean biotech businesses, including Eutilex and
Curocell, are advancing extracellular vesicle-based immuno-
therapies, whereas Japanese firms like Evox Therapeutics are
concentrating on modified extracellular vesicles for targeted
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The major types of EVs are exosomes, ectosomes, and apoptotic bodies.

drug delivery (Claridge et al. 2021; Uddin et al. 2024; Wiklander
et al. 2019). Singaporean firms such as Paragraf Therapeutics
are investigating diagnostics based on extracellular vesicles,
while Chinese companies like Everest Medicines are investing
in scalable production technology for extracellular vesicles.
These initiatives highlight the worldwide competition for the
commercialization of EVs, focusing on GMP-compliant manu-
facturing, precise cargo loading, and regulated biodistribution.
The aggregate advancements of these biotech innovators feature
the translational readiness of EVs and indicate their potential
incorporation into next-generation therapeutics and diagnostics
(Stawarska et al. 2024).

EVs have a role in various physiological and pathological pro-
cesses and have diverse biological activities. They play a role in
complex biological processes like tumorigenesis, preparation of
metastatic niches, elimination of cytotoxic drugs like cisplatin,
inflammation, immune response modulation, angiogenesis, tis-
sue repair, apoptosis, and homeostasis by transferring a wide
range of molecules between cells (Adamczyk et al. 2023; Aguiar
Koga et al. 2023; Ateeq et al. 2024; Chakraborty et al. 2023;
Das 2024; Lin et al. 2024; Lin et al. 2024; Liu et al. 2024;
Oliva 2023). Since their composition reflects parental cell status
at production, they are attractive diagnostics. EVs are persistent

in many bodily fluids, making them potential biomarker reser-
voirs. Liquid biopsies with circulating EVs could evaluate pa-
tient prognosis, disease progression, and medication response.
EVs also paracrinally regulate cell phenotypes, differentiation,
and recruitment (Bernath-Nagy et al. 2024; Guo et al. 2024;
Malaguarnera and Cabrera-Pastor 2024; Zhao and Huang 2024).
Unlike stem cell therapies, stem cell-derived EVs overcome
some limitations, such as immune rejection and tumorigenic
potential, which may make them a better therapeutic tool than
stem cell therapy (Hur et al. 2020). Although EVs cannot self-
replicate, they may be safer than stem cell transplantation in
regenerative medicine (de Jong et al. 2014; Li, Ji, et al. 2024;
Romano et al. 2020; Tryfonidou 2024). EVs carry a wide range of
biological compounds across biofluids with cellular selectivity,
making them promising medication delivery vehicles. Recent
proposals include putting imaging tracers (for diagnostics) and
therapeutic chemicals into EVs to create an EV-based thera-
nostic delivery platform (Pitchaimani et al. 2016; Rakshit and
Pal 2024; Wu et al. 2021; Zhang et al. 2023). Many preclinical
and clinical research studies are validating these prospective
applications (Ciferri et al. 2021; Kumar et al. 2024; Mizenko
et al. 2024). We thoroughly review and analyze preclinical data
from the previous decade to examine their use as drug delivery
systems (DDS).
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2.1 | Isolation Strategies of EVs

Since the isolation approach affects the EV population and
study outcome, it must be carefully considered for clinical
use. EVs can be isolated and purified from bodily fluids and
cell culture supernatants utilizing many methods (Figure 3;
Admyre et al. 2007; Carnino et al. 2019). EV isolation method
selection depends on the fluid (blood, cell culture superna-
tant, urine, etc.), volume, and required EV purity. As a clinical
treatment, isolated EVs must be uncontaminated, especially
free of proteins and nucleic acids that could affect clinical ad-
ministration. Separating EVs from proteins and nucleic acids
guarantees that therapeutic vesicles’ biological effects are due
to EV payloads, not co-purified impurities. EV purity may
not matter for clinical biomarker investigations, depending
on the study. Sequencing, ELISA, or nanoscale flow cytome-
try would focus on quantity rather than purity for biomarker
analysis. However, biomarker discovery investigations require
excellent purity and EV characterization before validation and
clinical applications.

The standard EV isolation method is differential ultracentrif-
ugation. This procedure, known as the “gold standard” for EV
separation, involves centrifugation to remove cells and debris

from cell culture supernatant (300g and 2500xg), pellet large
EVs (10,000xg), and finally small EVs (100,000xg/ 200,000Xg).
Literature results suggest that the reproducibility of isolation
experiments is highly varied with the parameters such as rotor
type (swing bucket vs. fixed angle), sample viscosity, and tube k-
factor. From this process, about 66% of EV preparations utilize
high centrifugal forces that may result in aggregated proteins
and other impurities. Ultracentrifugation alone cannot extract
lipoproteins from biological samples like blood without a gradi-
ent or other chromatographic methods. In the density gradient
approach, EVs can be separated from contaminating proteins
by layering sucrose or iodixanol solutions of increasing concen-
trations (Théry et al. 2006; Zhang et al. 2020). EVs contained in
lipids float higher during ultracentrifugation (200,000xg over-
night) based on density, separating them from contaminating
proteins (Kurian et al. 2021; Schulz-Siegmund and Aigner 2021;
Taylor and Shah 2015). Ultracentrifugation is useful for labo-
ratory research but impractical for clinical usage because of its
time-consuming preparation, equipment requirements, and low
throughput scalability.

However, ultrafiltration methods like tangential flow filtration
(or sequential) can quickly isolate EVs from vast cell culture su-
pernatants and biological fluids (Hou et al. 2024). Tangential flow

Isolation strategies of EVs Physical Biochemical Emerging
Ultrafiltration Differential Density gradient Size exclusion
ultracentrifugation ultracentrifugation chromatography
e
« . Low
— m—  []e.e Molecular
s 3 19 _._i_ lWeight
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FIGURE 3 | Isolation methods of EVs. EVs are isolated by using various techniques. Physically, EVs are isolated using ultrafiltration, ultracen-
trifugation, density gradient centrifugation, size exclusion chromatography, and precipitation. Under biochemical strategy, immunoaffinity and mi-

crofluidic techniques are commonly used to isolate the vesicles precisely. The anion exchange chromatographic method is an emerging technique. In

addition combination of these methods is also in practice.
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filtration allows proteins and liquid to pass through a membrane
filter with a molecular weight cut-off (usually 500kDa) while
keeping EVs in the retentate. This method concentrates large
or small liquid quantities while capturing EVs. The approach
produces EVs with substantial protein contamination, and the
filtering membrane may damage EV integrity. Tangential flow
filtering must be utilized with size exclusion chromatography
to achieve high purity. Alternatively, sequential filtering isolates
protein-free EVs in three phases. Dead-end filtering removes
cells and detritus first. The sample is then concentrated, and
EVs are retained via tangential flow filtration. Final filtering via
a track-edged membrane with increasing pore sizes (50-200 nm)
isolates and fractionates EVs by size (Shu et al. 2021; Vergauwen
et al. 2017; Yuan et al. 2023).

Size exclusion chromatography efficiently separates particles by
size. This is used to decontaminate EVs from complex biological
samples’ proteins. When biological fluids like blood plasma or
serum are processed into a Sepharose-based size exclusion col-
umn, the differential exclusion approach navigates EVs elution at
first and proteins to elute in later fractions. Size exclusion chro-
matography cannot efficiently filter EVs from plasma or serum li-
poproteins of equal size. Density gradient ultracentrifugation and
size exclusion chromatography are needed to completely remove
lipoproteins. Affinity and ion exchange chromatography are other
EV purifying methods (Sidhom et al. 2020; Merij et al. 2024).
Membrane affinity purification technologies, such as exoEasy
spin columns, are used to isolate EVs from the biological samples,
but the purity of the isolated EVs may be lower than that of size ex-
clusion chromatography (Masaki et al. 2023; Stranska et al. 2018;
Yang et al. 2021). Tim4, a calcium-sensitive phosphatidylserine
binding protein, has optimized affinity-based approaches. EVs
bound to Tim4 can be freed by calcium chelators (Kawakami
et al. 2021; Wang, Liu, et al. 2023; Yoshida et al. 2017). Other
commonly available immuno-affinity capture agents are hepa-
rin, epithelial cells, tetraspanins, and adhesion molecules (Balaj
et al. 2015; Gurunathan et al. 2022; Tauro et al. 2012). However,
immuno-affinity capture agents only purify certain EV popula-
tions and can be difficult to extract from the substrate without ex-
treme conditions like low pH. Anion exchange chromatography is
the final chromatographic method for scalable and effective EV
separation from cell culture supernatant (Koch et al. 2024; Pirolli
et al. 2023). Positively charged columns bind negatively charged
EVs, which are eluted with increasing salt concentrations. Anion
exchange chromatography can separate EVs from 1L of cell
culture-conditioned media in 2h with minimal user input. This
method for EV isolation is scalable and fast, suggesting it could
enable EV therapy (Pirolli et al. 2024; Silva et al. 2023).

EVs are often isolated from clinical biological samples by pre-
cipitation with commercial reagents. EVs can be pelleted by
centrifugation at lower speeds without ultracentrifugation by
precipitating them with polyethylene glycol (PEG) or commercial
reagents like exoquick86 (Ding et al. 2018; Ludwig et al. 2018).
EVs can be captured from tiny biological fluids or preconcen-
trated biological fluids/cell culture supernatants. Although user-
friendly and suitable for many biological samples, precipitation
can pellet proteins and lipoproteins, lowering EV purity. A pure
EV preparation may require a second purification step after pre-
cipitation. Precipitation reagents in EV preparations can also
alter recipient cell survival and biological activity.

Finally, microfluidic devices can isolate and analyze EVs from
small clinical samples and may be beneficial for liquid biopsy
disease detection. Immunocapture microfluidic devices use
tumor-specific antigens or other markers (Kwon et al. 2025;
Park et al. 2025). HER2 and PSA-positive tumor-derived EVs
have been collected on chips using nano-shearing fluid flow
(Mun et al. 2024). EGFR wild type or EGFR v III EVs may be
identified and measured from glioblastoma plasma. Eluted
EVs from a chip were employed for more in-depth EGFR v III
EV RNA sequencing. An alternate chip device used EpCAM
aptamers to capture EVs and electro-oxidation of metal NPs
to detect EpCAM and PSMA epitopes (Amrollahi et al. 2019;
Salmond and Williams 2021; Sun et al. 2023; Zhu et al. 2023).
Electrochemical peaks from metal particle oxidation can be uti-
lized to quantify collected EVs (Zhou et al. 2016). Microfluidic
devices with particular size thresholds catch tumor-derived
microvesicles. EVs pass through the microfluidic chip and are
eluted from size-dependent ports for downstream processing.
Table 1 summarizes the advantages and disadvantages of typ-
ical EV isolation methods.

2.2 | Extracellular Vesicles as Drug Delivery
Systems

Several research works have evidenced that EVs are excellent
candidates for various therapeutic and diagnostic applications.
The dynamic protein sources in the outer layer channel these
EVs to specific targets. So, the encapsulated materials are ac-
tively delivered to the specific target sites. Table 2 lists the nu-
merous sources and cell types that are widely utilized to isolate
EVs, as well as their applications. The therapeutic and diagnos-
tic payloads contained within the EVs are detailed in Table 3.

Abello et al. have undertaken a comprehensive investigation
into the use of labeled exosomes as potential diagnostic and
therapeutic tools. The authors have utilized gadolinium for
MRI and near-infrared (NIR) fluorescence imaging to track
the biodistribution of exosomes derived from human umbil-
ical cord mesenchymal stromal cells (hUC-MSCs) in tumor-
bearing mice (Abello et al. 2019). This dual-labeling approach
provides a robust strategy to monitor exosome trafficking with
high sensitivity and resolution (Figure 4A). The exosomes
were isolated from hUC-MSCs and characterized by dynamic
light scattering (DLS), nanoparticle tracking analysis (NTA),
and transmission electron microscopy (TEM) and confirmed
the presence of protein markers using dot blot and western
blot. After that, the gadolinium lipid (GdL) was loaded into
the exosomes. The characterization studies showed the naive
exosomes exhibited a hydrodynamic size of 171 +42nm with
a polydispersity index (PDI) of 0.43 +0.03 and zeta potential
at —16.03+0.72mV, indicating good colloidal stability, sug-
gesting a surface composition favorable for cellular uptake.
Meanwhile, the GdL-exosomes exhibited a hydrodynamic
size of 148+3nm and a zeta potential of —19.70+0.82mV
(Figure 4B). The longitudinal relaxivity (r1) of Exo-GdL was
assessed with a 14.1 T MRI system, resulting in an r1 value of
5.1mM™'s7!, in contrast to 2.9mM~'s™! for Magnevist (clin-
ical agent). T1-weighted MRI images validated the superior
contrast of Exo-GdL at equivalent Gd concentrations relative
to Magnevist, indicating its potential as a highly sensitive
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Commonly used cell types to isolate EVs and their applications.

TABLE 2 |
Primary cells/cell

Cell type lines/source EVs application area Significance References
Mesenchymal Bone marrow-derived Cardiac therapy, Widely used because (Aguiar Koga et al. 2023;
stem cells MSCs (BM-MSCs) immune modulation, of its regenerative Bertolino et al. 2022;
(MSCs) tissue repair and immune- Chen, Qu, et al. 2021; Ding

Adipose tissue-derived Arthritis, wound modulat'ory et al. 2024; Lelek and Zuba-

properties. Surma 2020; Matsuzaka

MSCs (AD-MSCs) healing, and skin repair

Immunotherapy, anti-

Umbilical cord-derived
fibrosis, neuroprotection

MSCs (UC-MSCs)
Inflammation,

Placenta-derived
autoimmune disorders

MSCs (P-MSCs)

Amniotic fluid-derived
MSCs (AF-MSCs)

Prenatal therapy,
neurodevelopmental
disorders

Bone regeneration,

Dental pulp-derived
Neuroprotection

MSCs (DP-MSCs)
Cardiovascular repair,

Induced pluripotent
personalized therapy

stem cell-derived
MSCs (iPSC-MSCs)
Osteoarthritis,

Synovial membrane
joint repair

MSCs (SM-MSCs)

Wound healing,
uterine regeneration

Endometrium-derived
MSCs (eMSCs)

Menstrual blood-derived Neuroprotection,

MSCs (MenSCs) endometrial repair
Immune cells Dendritic cells (DCs) Cancer immunotherapy, EVs carry immune
vaccines signals and MHC
T cells (CD4+, CD8+) Immunomodulation, molecules.
anti-viral application,
EV-based cytotoxicity
B cells Antigen presentation,
autoimmune
disease models
Macrophages Inflammation, Infection

models, Wound healing

Cancer immunotherapy,

Natural killer (NK) cells
cytotoxic EV studies

Neutrophils Inflammatory
modulation, anti-
microbial activity

Monocytes Atherosclerosis,

chronic inflammation

Immune tolerance,
suppressing
autoimmunity

Regulatory T cells (TRegs)

Neurodegenerative
disease models, brain
injury response

Mast cells

and Yashiro 2022; Mutlu
et al. 2015; Ulpiano
et al. 2023; Um et al. 2020;
Wang, Xu, et al. 2023;
Yang, Sun, and Yan 2024;
Zhao et al. 2024)

(Gargiulo et al. 2020;
He et al. 2024; Kowal
and Tkach 2019; Lin
et al. 2022; Lou et al. 2022;
Putthanbut et al. 2024;
Shefler et al. 2021; Wang
et al. 2021; Wen et al. 2017;
Zhang, Liu, et al. 2022)

(Continues)
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TABLE 2 | (Continued)

Primary cells/cell

Cell type lines/source

EVs application area

Significance References

Cancer cells Breast cancer (MCF-7,

MDA-MB-231, BT-474)

Glioblastoma (U87,
U251, LN229)

Lung cancer (A549,
H1299, H460)

Colorectal cancer
(HCT116, SW480, HT-29)

Prostate cancer (PC3,
DU145, LNCaP)

Pancreatic cancer (PANC-
1, AsPC-1, BxPC-3)

Ovarian cancer
(SKOV3, OVCAR3)

Melanoma (B16-F10, A375)

Leukemia (K562,
HL-60, Jurkat)

Hepatocellular carcinoma
(HCC; HepG2, Huh7)

Cervical cancer
(HeLa, SiHa)

Epithelial cells Renal epithelial cells

(HK-2, primary renal
epithelial cells)

Mammary epithelial cells
(MCF10A, HMEC)

Bronchial epithelial
cells (BEAS-2B, primary
bronchial cells)

Intestinal epithelial
cells (Caco-2, HT-
29, enterocytes)

Corneal epithelial
cells (HCE-T, primary
corneal epithelial cells)

Prostate epithelial cells
(RWPE-1, PrEC)

Diagnostic biomarkers,
drug resistance studies,
immune modulation

Brain-targeted drug
delivery, tumor
progression

Anti-metastatic
applications,
immune evasion

Diagnostic applications,
anti-metastasis, and
cell signaling

Biomarker development,
EV-based liquid biopsy

Early diagnosis, drug
resistance models

Anti-metastasis,
EV-based biomarker
discovery

Vaccine development,
Immunotherapy

Drug resistance,
hematologic malignancy
monitoring

Anti-angiogenesis, liver
cancer biomarkers for
diagnostic applications

Diagnosis, oncoviral
studies

Diagnostic biomarkers
for kidney injury,
urinary diagnostics

Breast cancer research,
intercellular signaling

Lung inflammation,
asthma, COPD,
COVID-19

Gut immunity, host-

microbe communication

Immune modulation,
ocular surface healing

Cancer diagnostics,

prostate health

Carries parent cell
tumor antigens
and reflects tumor
microenvironment

(Acevedo-Sanchez
et al. 2021; Chang
et al. 2021; Chen,
Jin, and Wu 2021; Qi
et al. 2021; Saviana
et al. 2021; St-Denis-
Bissonnette et al. 2022;
Strum et al. 2024)

Handling the cell
is simple, easy
to culture, and

enhanced EV yield

(Chen et al. 2022; Cui
et al. 2024; Pirisinu 2023;
Xue and Mi 2024)

(Continues)
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TABLE 2 | (Continued)
Primary cells/cell
Cell type lines/source EVs application area Significance References
Cervical epithelial Cancer biomarker

cells (HeLa, primary
cervical cells)

Salivary gland
epithelial cells (HSG,
primary SGECs)

Skin keratinocytes
(HaCaT, NHEK)

Liver epithelial cells
(HepG2, primary
hepatocytes)

Neural cells Neurons (primary cortical

neurons, SH-SY5Y)

Astrocytes (Primary
astrocytes, U373)

Microglia (BV2,
primary microglia)

Oligodendrocytes (OLN-93,
primary oligodendrocytes)

Neural stem cells
(hNSCs, ReNcell VM)

Schwann cells (primary
Schwann cells)

Retinal ganglion cells
(primary Schwann cells)

Endothelial
cells

Human umbilical vein
endothelial cells (HUVECS)

Brain microvascular
endothelial cells (hCMEC/
D3, primary BMECs)

Coronary artery
endothelial cells (HCAEC)

Aortic endothelial
cells (HAEC)

Pulmonary artery
endothelial cells (HPAEC)

Lymphatic endothelial
cells (HDLEC)

Microvascular endothelial
cells (HMEC-1,
dermal MVECsS)

discovery, HPV
infection studies

Saliva-based
diagnostics,
autoimmune research

Wound healing, skin
inflammation

Liver disease modeling,
drug toxicity

Neurodegenerative
disease modeling

Neuronal protection,
neuroinflammation

Neuroinflammation,
brain injury

Myelin support

Brain development,
regenerative medicine

Peripheral nerve
regeneration

Glaucoma, optic
nerve injury

Angiogenesis,
inflammation,
atherosclerosis

Blood-brain barrier
integrity, neurovascular
research

Cardiovascular disease,
ischemia-reperfusion

Atherosclerosis,
inflammation research

Pulmonary
hypertension,
lung injury

Lymphangiogenesis,
tumor metastasis

Microcirculation,
skin repair

Carry synaptic and
neuronal proteins

Release EVs in
response to stress
or inflammatory

signals

(Li, Zhu, et al. 2023; Li
and Fang 2023; Marangon
et al. 2023; Zappulli
et al. 2016; Zhu et al. 2024)

(Deng et al. 2024;
Liu et al. 2023;
Piryani et al. 2024;
Terriaca et al. 2021;
Villata et al. 2020;
Weksler et al. 2013;
Yang et al. 2023)

(Continues)
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TABLE 2 | (Continued)

Primary cells/cell
Cell type lines/source EVs application area Significance References
Platelets Resting platelets Hemostasis regulation Release (Anitua et al. 2023;
(healthy donor blood) platelet-derived Chaudhary et al. 2023; Das
Activated platelets Coagulation, ml(égﬁ(;sf les etal. 2024; Fan et al. 2024)
(thrombin/ADP/collagen- inflammation, s
stimulated platelets) and cancer
Stored platelets (blood Transfusion
bank platelets) quality control
Platelet-rich plasma Regenerative therapy
(PRP from blood)
Megakaryocytes (MEG- Platelet biogenesis
01, primary cells)
Platelets under shear Thrombosis,
stress (shear flow- atherosclerosis
exposed platelets)
Fibroblasts NHDFs (primary Wound healing, Often used for (Hua et al. 2021; Laurent
dermal fibroblasts) anti-aging baseline EV studies et al. 2021; Mehta,

HFFs (HFF-1, BJ
fibroblasts)

MEFs (primary MEFs)

CAFs (tumor-associated
fibroblasts)

Gingival fibroblasts
(primary gingival
fibroblasts)

Lung fibroblasts
(MRC-5, WI-38)

Cardiac fibroblasts

Endometrial fibroblasts

Skin repair, cosmetics

Developmental biology

Cancer progression

Oral regeneration

Pulmonary fibrosis

Heart failure therapy

Fertility research

Kadoya, et al. 2023;
Prieto-Vila et al. 2024; Sui
et al. 2023; Xie et al. 2025;

Zhang et al. 2024)

(primary endometrial
stromal cells)

MRI contrast agent (Figure 4C). These findings highlight
the efficacy of exosome-based contrast agents in enhancing
imaging sensitivity and resolution. In vivo MRI studies in
osteosarcoma-bearing mice revealed that Exo-GdL accumu-
lated at the tumor site in a time-dependent manner, with peak
enhancement at 30 and 90min after injection (Figure 4D).
ICP-MS analysis revealed 18% of injected Exo-GdL accumu-
lated in the tumor after 24h, outperforming conventional
liposomes and NPs due to the natural homing ability of hUC-
MSC-derived exosomes and the EPR effect. Tumor target-
ing was twice as effective as Magnevist, and near-infrared
imaging confirmed longer circulation and better targeting
than PEGylated NPs, indicating potential for targeted cancer
diagnostics and therapy (Figure 4E,F). The study highlights
the ability of exosomes to preferentially accumulate in tumor
tissues, emphasizing their potential as targeted drug delivery
vehicles. Additionally, the findings provide valuable insights
into the pharmacokinetics and tumor microenvironment

interactions of exosomes. This work represents a significant
advancement in the application of nanomedicine for cancer
diagnostics and therapy, offering a promising platform for fur-
ther exploration in preclinical and clinical settings. However,
future studies focusing on the mechanisms of tumor target-
ing and potential immunological responses will be crucial for
clinical translation (Abello et al. 2019).

Several researchers show high interest in tumor-derived EVs
(TEVs), which have remarkable functional properties and pave
the way to target the cancer cells to deliver their cargo. Recently,
Bi and his research group derived the TEVs from mouse breast
cancer cells and developed a multifunctional drug delivery
platform for effective cancer treatment (Bi et al. 2024). This
study focused on developing the nano platform loaded with
melanin and paclitaxel albumin. The work employs EVs as a
drug delivery system, leveraging their inherent tumor-targeting
ability, biocompatibility, and low immunogenicity to ensure
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ment of their tumor targeting efficacy in tumor-bearing mice. (A) Schematic representation of the overall study. (B) DLS, Zeta, NTA, and TEM
Characterization of Exosomes and Exo-GdL showed the accessible structural characteristics for active drug delivery. (C) Magnetic properties of
Exo-GdL. The Exo-GdL showed enhanced contrast when compared to Magnevist. (D) The magnetic resonance imaging of tumor-bearing mice to

assess the Exo-GdL distribution. (E) Biodistribution of NIR dye-labeled exosomes in ectopic osteosarcoma mice model. (F). Exo-DiR accumulation

in mouse K7M2 osteosarcoma tumors. The in vivo studies demonstrated that the exosomes derived from hMSC showed enhanced targeting ability.
(Reprinted with permission from Abello et al. (2019). Copyright 2019 Ivyspring International Publisher).

accurate administration of therapeutic drugs while reducing
off-target effects. The study combines chemotherapy, photo-
thermal therapy, and immunotherapy into a cohesive system,
exhibiting a strong synergistic impact that significantly inhib-
its tumor growth and metastasis. The combinatorial chemo-
photothermal therapy facilitates effective tumor ablation, while
the use of immunomodulatory drugs stimulates systemic anti-
tumor immunity, thereby diminishing the risk of recurrence.
EVs were produced and isolated from 4T1 mouse breast can-
cer cells. The EVs loaded with paclitaxel albumin and melanin
(EPM) were formulated by co-extruding EVs with Paclitaxel
Albumin (PA) and melanin to obtain a spherical-shaped vesi-
cle with an average size of 113.9 nm. The other characterization
studies showed the efficient loading of drugs. Melanin load-
ing and stability in the biological medium were confirmed by
a zeta potential drop from —24.8 to —28.5mV. HPLC showed
91.51% paclitaxel encapsulation and 31.73% melanin encapsu-
lation, demonstrating the system's drug-loading effectiveness
(Figure 5A). The in vitro cellular uptake by fluorescent label-
ing showed that EPM is rapidly internalized by breast cancer
cells (4T1) with an uptake rate of 99.1% within 3h. The apop-
tosis experiments demonstrated that EPM triggered 71.6%
apoptosis, markedly exceeding that of free PA. Notably, near-
infrared laser irradiation elevated the apoptotic rate to 87.7%,
illustrating the significant synergistic effect of chemotherapy

and photothermal therapy (Figure 5B). The in vivo studies were
undertaken using an orthotopic breast cancer mouse model to
evaluate the therapeutic efficacy of EPM in combination with
laser-induced photothermal therapy. The results revealed
increased accumulation of EVs at the tumor site, extended
circulation time, and greater treatment efficacy relative to tra-
ditional monotherapies (Figure 5C,D). The interesting aspect of
this study is the demonstration of immune system activation by
EPM through flow cytometry. These results showed that EPM
promoted dendritic cells (DCs) by 50.7%, increasing CD80+ and
CD86+ markers, which are essential for antigen presentation.
EPM + laser increased CD8+ cytotoxic T-cell infiltration in the
tumor microenvironment by 11.2%, supporting this immuno-
logical response (Figure 5E). The study notably addresses prob-
lems such as medication resistance and significant systemic
toxicity, emphasizing the safety and efficacy of the combination
method. This research highlights the promise of tumor-derived
EVs as advanced nanocarriers and creates a flexible frame-
work for individualized cancer treatment. This work signifies
substantial progress in cancer nanomedicine, facilitating the
development of more targeted and varied therapy approaches.
This approach not only optimizes drug delivery and therapeutic
response but also represents a significant advancement in per-
sonalized cancer treatment, paving the path for more effective
and less toxic combination therapies (Bi et al. 2024).
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manner. (E) Assessment of the immune effect of EPM in CD8 + T cells (Reprinted with permission from Bi et al. (2024). Copyright 2024 Elsevier Ltd).

Araujo-Abad and his research group derived EVs from glioblas-
toma and studied their efficacy as NPs for glioma treatment
(Araujo-Abad et al. 2023). This study provides an innovative
perspective on leveraging glioblastoma-derived small EVs
(GAMEVs) as therapeutic agents for glioma treatment. By ex-
ploring the dual role of small EVs (SEVs) as both mediators of
glioblastoma progression and potential therapeutic carriers, the
study accentuates their unique biological characteristics, includ-
ing intrinsic tumor tropism, the ability to cross the blood-brain
barrier, and their biocompatibility (Araujo-Abad et al. 2023).
The authors feature the role of GAMEVs in transporting func-
tional biomolecules, such as proteins, lipids, and nucleic acids,
to modify the tumor microenvironment. Furthermore, the
paper explores engineering approaches to load therapeutic
cargo, such as small interfering RNAs (siRNAs), microRNAs,
or chemotherapeutics, into these sEVs to target glioblastoma
cells effectively. This strategy represents a promising avenue for
precision medicine, addressing the challenges of drug delivery
in glioblastoma. However, the authors also acknowledged the

hurdles in standardizing sEV isolation, large-scale production,
and minimizing potential off-target effects (Figure 6). Overall,
this study offers compelling evidence for the therapeutic poten-
tial of GAMEVs and provides a foundation for future research
into nanoparticle-based strategies for glioma therapy (Araujo-
Abad et al. 2023).

3 | Liposome Nanoparticles

Surface-coated liposomes are synthetically tailored drug deliv-
ery systems that have garnered considerable interest in both re-
search and clinical applications due to their ability to improve
the pharmacokinetics and pharmacodynamics of various ther-
apeutic agents. These liposomes are typically modified on the
surface with various molecules to enhance their stability, tar-
geting capability, and circulation time (Chen et al. 2023; Eugster
et al. 2024; Gunasekaran et al. 2023; Lee and Thompson 2017;
Nsairat et al. 2022). Considering the advantages of the liposome
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FIGURE 6 |

Glioblastoma-derived small extracellular vesicles (GdAMEVs) for glioma treatment. (A) Isolation of small EVs by the ultracentrif-

ugation method. (B) Characterization of GAMEVs through FE-SEM and DLS. (C) Cell proliferation assessment was undertaken with free drugs
Tmozolamide and EPZ015666 inhibitor, along with those compounded loaded EVs. The EVs loaded with EPM showed an efficient proliferation in-
hibitory effect (Reprinted with permission from Araujo-Abad et al. (2023). Copyright 2023 MDPI).

in theragnostic applications, some modifications in the liposome
system are needed to enhance the targeting ability, stability, and
efficient drug delivery.

Conventional liposome NPs are composed of a phospholipid bi-
layer and cholesterol, which is uptaken by the Reticuloendothelial
system (RES). But these particles have a short half-life in the
blood circulation (Akbarzadeh et al. 2013; Berlin Grace and
Viswanathan 2017; Bozzuto and Molinari 2015). Liposomes ex-
hibit their actions in two different modes, such as passive targeting
and active targeting. Passive targeting utilizes the enhanced per-
meability and retention (EPR) effect, a distinctive feature of tumor
and inflamed tissues (Haley and Frenkel 2008). The vasculature
of diseased tissues is permeable; therefore, the liposomes are more
easily accumulated in these tissues compared with normal tis-
sues. This permits the enhanced local concentration of drugs in

the tumor site while reducing the drug's exposure to the rest of the
body and limiting any associated adverse side effects (Chehelgerdi
et al. 2023). Liposomes could aggregate specifically in tumor loca-
tions, which is highly beneficial in cancer therapy and diagnostic
applications, and the cargo efficiently delivered by this aggrega-
tion results in efficient therapeutic activity by targeting the molec-
ular pathways (Berlin Grace et al. 2017; Gunasekaran et al. 2023;
Berlin Grace et al. 2025; Viswanathan et al. 2019; Viswanathan
and Grace 2018). However, in this passive targeting mode, lipo-
somes frequently encounter obstacles in clinical environments
due to the off-target effect and RES, which swiftly eliminate the
liposomal system from blood circulation (Daraee et al. 2016).

The second and most efficient mode of targeting liposomes is
the active targeting mode. Considering the different constraints
of the passive targeting mode of liposomes, the development of
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unique approaches resulted in the discovery of active targeted
liposomes (Byrne et al. 2008). Active targeting denotes the pro-
cess of altering the outer surface of liposomes by conjugating
the targeting moieties on the phospholipid bilayer, including ap-
tamers, small molecules, antibody fragments, or whole antibod-
ies, peptides, and other compounds that can specifically target
and bind to the receptors found on the desired cells (Alghamdi
et al. 2022; Khan et al. 2020). This approach improves the pre-
cision and effectiveness of cargo material distribution. These
liposomes are specially designed to lessen the off-target effects.
Surface modification of the liposome is one of the best meth-
ods to enhance its stability and target site reachability. Surface
coating of liposomes plays a vital role in improving their perfor-
mance and ability to interact with biological systems. Various
coating strategies have been explored to improve the efficient
pharmacokinetic and pharmacodynamic characteristics of lipo-
somes (de Leo et al. 2021). Hereby, we are discussing the surface
modification strategies to develop biomimetic liposomal NPs
with specific coating materials such as antibodies, polypeptides,
aptamers, folic acid, and transferrin (Figure 7A).

3.1 | Antibody Coated Liposomes
The liposomes conjugated with antibodies on the surface are

also called immunoliposomes, which are engineered biomi-
metic NPs to actively target specific sites and deliver the drugs

efficiently (Hama et al. 2021; Li et al. 2021). Antibodies play a
vital function in targeted drug delivery systems by enhancing
their selectivity and specificity for cancer treatment and diag-
nostic applications. Engineering drug delivery systems with
antibodies as bioactive agents facilitates the precise delivery
of drugs to target sites (Kaneko 2023). The conjugation of an-
tibodies on the surface of the liposome is one of the promising
approaches for targeted drug delivery. Several studies have ex-
plored various methods to effectively accommodate antibod-
ies onto the surface of the liposomes (Figure 7B; Di et al. 2020;
Hama et al. 2021; Safari et al. 2024). The level of antibody
coating on the liposomal surface is essential for their func-
tionality. Researchers have demonstrated that a larger density
of antibodies covering a surface can result in enhanced acti-
vation of the complement system, increased concentration of
blood plasma, higher numbers of white blood cells, and im-
proved removal of substances by the liver (Tan 2022). In addi-
tion, the valency of antibodies on liposomal surfaces disturbs
their binding abilities, and the density of surface ligands is a
crucial factor in determining their binding capabilities (Zhou
et al. 2023). Furthermore, the process of altering antibodies on
the liposomal surface can be accomplished quickly by utiliz-
ing liposomes that display high-affinity protein. This permits
the targeted drug administration based on the modified anti-
bodies. Optimizing the concentration and valency of antibody
coating on the liposomal surface is crucial for maximizing
the effectiveness of targeting ability, reducing the side effects,
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FIGURE7 | (A)Surface-coated biomimetic liposome nanoparticle. The surface of the liposome is commonly functionalized with antibodies, poly-

peptide, aptamer, folic acid, and transferrin to enhance its targeting property; (B) Antibody-coated immune liposomes. Various ab and ab-fragments

conjugated with surface phospholipid of liposomes by employing different techniques: (a) direct adsorption; (b) binding of whole ab by utilizing PEG

spacers; (c) covalent conjugation of whole ab; (d) covalent conjugation of ab fragment (Fab’); (e, f) whole ab conjugation through avidin-biotin with

either the biotin or avidin bound to the liposome surface; (g) conjugation through hapten; (C) Peptide tagging on the surface. (i) electrostatic conju-

gation. (ii) direct conjugation. (iii) secondary interaction. (iv) covalent attachment to surface ligand. (v) encapsulation or fusion.
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and improving cargo delivery (Hardy and Dimmock 2003; Ho
et al. 2024; Mohammad Faizal et al. 2023).

Antibodies are functional molecules composed of two sets of
light and heavy chains linked by intrachain disulfide bonds.
Due to their immunologic properties, these are revolutionized in
the diagnostics and therapeutics fields (Daly 2022). Antibodies
are categorized into different classes based on their structure
and function. The major classes of immunoglobulins are IgA,
IgD, IgE, IgG, and IgM (Parija 2023). IgG is the prime choice for
conjugation with liposomes due to its structural property, and
IgM is used in some formulations. The fundamental architec-
ture of an IgG antibody molecule is composed of four polypep-
tide chains with two light and two heavy chains linked together
by disulfide bonds.

Epidermal growth factor receptor (EGFR) is a cell surface recep-
tor, highly expressed in several cell types, especially in cancer
cells (Byeon et al. 2019; Ciardiello and Tortora 2003; Normanno
et al. 2006). Several research studies demonstrate that EGFR
overexpression correlates with cancer cell differentiation and
migration. Cetuximab, a chimeric monoclonal antibody, selec-
tively binds to EGFR, inhibiting its activation and subsequent
signaling pathways, hence affecting cancer development and
progression. Cetuximab is the predominant anti-EGFR an-
tibody employed for the alteration of nanocarrier surfaces.
McDaid et al. targeted EGFR overexpression and Cetuximab
(CTX) resistant cancer cells with cetuximab when utilized with
camptothecin-loaded polymer NPs. This study found that the
CTX-coupled nano drug delivery system improved NPs' cell sur-
face targeting via interacting with EGFR. Further research indi-
cates that the CTX-modified nano-drug carrier system enhances
tumor suppression and targeting (McDaid et al. 2019).

3.2 | Polypeptide-Coated Biomimetic Liposome
Nanoparticles

Peptides are tumor-specific ligands made up of less than 50
amino acids. They possess a small size, excellent affinity, good
stability, ease of modification, and minimal immunogenicity.
They have become more common in the field of tumor diagnosis
and treatment. Peptides have garnered considerable attention in
biological applications, including drug delivery, cancer therapy,
and vaccine creation, owing to their specificity, low toxicity, and
biocompatibility. Peptides have numerous obstacles, such as in-
adequate stability, vulnerability to proteolytic degradation, and
restricted bioavailability, which impede their therapeutic appli-
cation (Nhan et al. 2023; Samec et al. 2022; Sonju et al. 2021).

Electrostatic tagging: The interaction between cationic peptides
and negatively charged liposomes is a simple and traditional
method for forming stable peptide-liposome complexes. This
technique utilizes electrostatic interactions, which are straight-
forward and efficient for coating applications. The stability of
these compounds can be affected by environmental conditions,
including ionic strength and pH. Among various peptides, RGD
(arginine-glycine-aspartate) is pivotal in targeting integrin re-
ceptors, especially integrin av33, which are overexpressed on
tumor endothelial cells and are integral to tumor angiogenesis
(Chen et al. 2009). Cationic liposomes, owing to their positive

charge, can electrostatically bind with negatively charged RGD
peptides, resulting in the formation of a stable peptide-liposome
complex (Figure 7C; Sapra and Allen 2003).

Covalent attachment: Covalent conjugation of peptides to the
liposome surface enhances stability and prevents premature
release. Common methods include attaching peptides through
functional groups like amines, carboxyl, or thiol groups to re-
active moieties on the liposome surface. This method provides
a stronger and more stable interaction, ensuring better control
over peptide release and reducing the risk of dissociation in
the bloodstream (Figure 7C; Gyongyossy-Issa et al. 1998; Liu
et al. 2021; Taneichi et al. 2006).

Lipid anchoring: Lipid-modified peptides can be anchored into
the liposome bilayer through hydrophobic interactions. Peptides
can be conjugated with lipid moieties, such as fatty acids or cho-
lesterol, allowing them to insert into the liposomal membrane.
This method enhances the stability of peptide-liposome for-
mulations, facilitates membrane fusion, and improves cellular
uptake (Figure 7C; Dissanayake et al. 2022; Nsairat et al. 2022).

PEGylation: Polyethylene glycol (PEG) can be conjugated to pep-
tides and used to coat liposomes, offering steric stabilization and
reducing immune recognition. PEGylation prolongs circulation
time by reducing opsonization and clearance by the reticuloen-
dothelial system (RES; Askarizadeh et al. 2024; Xia et al. 2023).
It also provides a platform for attaching targeting ligands or pep-
tides, which can improve the specificity of liposomal delivery
to certain tissues or cells, such as tumors (Figure 7C; Mehrizi
et al. 2024; Suk et al. 2016).

Fusion peptides: Fusion peptides can be designed to facilitate the
interaction of liposomes with target cells or tissues. These pep-
tides can incorporate sequences that promote cell penetration,
receptor-targeting, or membrane fusion. Such fusion peptides
are often embedded into the liposomal bilayer, improving the
delivery of encapsulated drugs or cargo through enhanced cel-
lular internalization or endosomal escape (Figure 7C; Iversen
et al. 2024; Zeng et al. 2023).

3.3 | Aptamer-Coated Biomimetic Liposome
Nanoparticles

Aptamers are short single-stranded DNA or RNA oligonucle-
otides, typically comprising 25 to 90 nucleotide bases, that at-
tach to specific targets such as proteins and cells via distinct
three-dimensional conformations (Kar 2024; Zhou, Li, and
Wu 2024). Aptamers have emerged as exceptional and rapidly
developing tools for successfully targeting cancer biomarkers
and are utilized as effective ligands for drug delivery and anti-
cancer therapy. These ligands tend to have the ability to bind
with the nanomolar to the picomolar range of target molecules
with precise binding affinities (Safarkhani et al. 2024).

Aptamers are generated using the systematic evolution of ligands
by exponential enrichment (SELEX) technology, which precisely
binds a wide array of target materials, including cells, viruses,
proteins, and small molecules (Brown et al. 2024). Nucleic acid
aptamers have surpassed antibodies for the targeted delivery of
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anticancer medicines. Aptamers are useful ligands due to their
resistance to organic solvents, temperature fluctuations, and pH
variations, as well as their capability for mass manufacturing
by chemical synthesis. Aptamers exhibit resistance to denatur-
ation-renaturation cycles and possess lower immunogenicity
compared to antibodies (Erkmen et al. 2024; Ni et al. 2021).

Aptamer-conjugated liposomes represent the most effective
drug delivery technique. The US FDA has sanctioned several
liposome-based therapeutics across various clinics for disease
treatment (Jiang et al. 2024; Wong et al. 2024). Aptamers are
chemically modified with diverse functional groups at both ter-
mini to improve site-specific conjugation. Nucleic acid aptamers
demonstrate rapid infiltration into the target cells and enhanced
serum retention owing to superior stability (Gao et al. 2024;
Malone et al. 1989; Miller et al. 2017; Zhou, Li, and Wu 2024).
The proliferation and spread of tumors are facilitated by some
immunosuppressive cells, including tumor-associated macro-
phages, myeloid-derived suppressor cells, and tumor-resident
regulatory T cells (Ghebremedhin et al. 2024; Park et al. 2024).
Targeting these immunosuppressive cells can enhance the effec-
tiveness of cancer treatment.

Various research works demonstrated that the RNA aptamer
(Interleukin-4 receptor subunit alpha (IL-4Ra)) inhibits the
human IL-4 receptor (Roth et al. 2012; Sharif-Askari et al. 2024)
and concurrently suppresses myeloid-derived suppressor cells
(Liu et al. 2017). CpG (Cytosine-phosphate-Guanine) oligode-
oxynucleotide-10 demonstrated remarkable anti-tumor activity
as an aptamer, although the IL-4Ra-liganded liposome precisely
targets the IL-4Ra receptor present on CT26 carcinoma cells,
which shows a significant expression of the IL-4Ra receptor
(Liu et al. 2017; Loira-Pastoriza et al. 2021). The effective up-
take of CpG by tumor cells markedly hinders in vivo CT26
tumor growth, and the delivery of this cancer-targeting ap-
tamer through liposomes may provide a formidable approach
to surmount immunosuppression and augment immunotherapy
(Kim, Lee, and Jon 2024; Wang, Chen, et al. 2023).

3.4 | Vitamins-Coated Biomimetic Liposome
Nanoparticles

The utilization of vitamins as a surface coating ligand for lipo-
somes has enhanced their utility in customized cargo delivery
(Misra and Pathak 2022; Patel et al. 2024). Different types of
cancer cells exhibit a higher expression of vitamin receptors
compared to normal cells, thus necessitating a comprehension
of these receptors for the effective docking of vitamin-liganded
liposomes. Malignant phenotypes frequently demonstrate
elevated expression of several vitamin receptors (Dinakar
et al. 2023; Kuldo et al. 2005; Soe et al. 2018). The predomi-
nant liposome ligands for malignant cell receptors are folate;
however, tocopherol, pyridoxal phosphate, and pyridoxine have
also been utilized (Dinakar et al. 2023; Khan et al. 2020; Kumar
et al. 2022). Vitamin E can be used as a liposomal ligand to tar-
get diseased cells in the form of d-alpha tocopheryl polyethylene
glycol succinate (TPGS). This amphiphilic structure has PEG
as the hydrophilic element and tocopherol succinate as the lipo-
philic moiety. TPGS's hydrophilic-lipophilic balance renders it
an efficient solubilizer, emulsifier, and bioavailability enhancer

for hydrophobic pharmaceuticals (Duhem et al. 2014; Jasim
et al. 2021; Yang et al. 2018). Pérez-Herrero and Fernandez-
Medarde (2015) assert that TPGS enhances drug absorption,
cytotoxicity, and reduces multidrug resistance (Pérez-Herrero
and Fernandez-Medarde 2015). Vitamin E is employed to safe-
guard liposomes from free radical damage and to mitigate
oxidative stress during storage (Kilicarslan You et al. 2024;
Suntres 2011).

During carcinogenesis, overexpression of folate receptors occurs
in their plasma membranes, which is especially a special affin-
ity receptor for folic acid (Bertel et al. 2024; Gonzalez et al. 2024;
Paulos et al. 2004). One of the commonly approached methods for
conjugating folic acid to the liposomes involves the preparation
of folate-linked peptides, cholesterol, or phospholipids before de-
veloping tumor-specific liposomes (Kumar et al. 2019; Nogueira
et al. 2015; Shmendel et al. 2023). Normal tissues typically ex-
hibit low or lack folate receptor expression on cells (Varaganti
et al. 2023). The selective expression of folic acid receptors in can-
cer cells has been utilized as a signal marker for liposomes to ac-
tively target and deliver treatment and diagnostic cargo into the
cancer cells (Nehal et al. 2024; Wen et al. 2024). Numerous che-
motherapeutics and diagnostic imaging agents target tumor cells
through a folate receptor binding mechanism (Cheung et al. 2016;
Fernandez et al. 2018; Ledermann et al. 2015; Xu et al. 2017). In an
earlier stage of folate-mediated liposome preparation, phospholip-
ids were directly conjugated with folic acid. Later research works
demonstrated that tumor cells’ folate receptors did not engage with
folate-conjugated liposomes when folic acid was directly bound
to phospholipids (Drummond et al. 2000; Kumar et al. 2019). To
focus on this constraint, linkers like polyethylene glycol (PEG) and
hydrazine were used to achieve the direct binding of folic acid to
protein, cholesterol, and other spacers (Aucoin et al. 2024; D'Souza
and Shegokar 2016; Sampogna-Mireles et al. 2017). Tang and co-
workers demonstrated that using PEG in folate-conjugated lipo-
somes boosted therapeutic effectiveness by increasing solubility,
half-life, and drug reserve at the tumor site (Tang et al. 2023). Folic
acid conjugation with PEG for liposome development improved
liposome retention in the tumor sites and paved the path for endo-
cytosis via folate receptors (Lim et al. 2023).

3.5 | Effect of Liposomal Drug Delivery Systems

Based on various synthesis and surface coating strategies, numer-
ous liposomal drug delivery systems were developed for cancer
therapeutics and diagnostics applications. The liposome, which is
coated with folic acid to target folate receptors, is one of the ef-
fective drug delivery systems to target cancer cells that are highly
expressed with folate receptors. Oliveira and the team have investi-
gated the efficacy and safety of a folate-coated doxorubicin-loaded
pH-sensitive liposome (SpHL-DOX-Fol) to improve doxorubicin
(DOX) administration to folate receptor-positive (FR+) cancer
cells. The researchers analyzed the impact of folate functionaliza-
tion on DOX delivery to breast cancer (MDA-MB-231, MCF-7) and
lung cancer cells (A549). The study shows that SpHL-DOX-Fol has
amuch higher cellular uptake and cytotoxicity against FR+ MDA-
MB-231 breast cancer cells than nontargeted SpHL-DOX and free
DOX. This increased efficacy is related to the folate-mediated en-
docytosis mechanism, which resultsin an IC, of 387nM for SpHL-
DOX-Fol, significantly lower than that of SpHL-DOX (450nM)
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and free DOX (518nM). In vivo acute toxicity tests in BALB/c
mice revealed that SpHL-DOX-Fol efficiently reduced systemic
and cardiotoxicity compared to free DOX. Animals treated with
SpHL-DOX-Fol had considerably decreased creatine kinase-MB
(CK-MB) levels, less hepatic and renal toxicity, and few histopatho-
logical changes in cardiac and renal tissues. Importantly, SpHL-
DOX-Fol had improved hematological profiles, with no significant
leukopenia or thrombocytosis, unlike free DOX-treated groups.
These findings underline SpHL-DOX-Fol's improved therapeu-
tic efficacy and safety profile, indicating its promise as a promis-
ing nanocarrier for targeted cancer therapy, particularly for FR+
breast cancers. This study provides a solid foundation for future
translational research and clinical uses of folate-functionalized li-
posomal systems (Figure 8; de Oliveira Silva et al. 2023).

PEG coating is a pivotal strategy in the development of liposome-
based drug delivery systems for enhanced drug delivery and
safety profiles. The PEGylated and gadolinium-infused thera-
nostic liposome was developed by Pitchaimani and coworkers to
improve diagnostic and therapeutic capabilities against various
cancer types. The team ingeniously incorporates gadolinium
ions into the hydrophilic heads of phospholipids, improving the
liposomes' structural stability and magnetic features. The lipo-
somes exhibited a homogenous spherical vesicle with a hydrody-
namic size of 150+ 10nm and also showcased enhanced loading
of doxorubicin and sustained drug release (Figure 9A,B). In
comparison with the conventional contrast agent Magnevist,
the Gd-infused liposomes displayed three times higher T1

relaxivity (12.3mM's™! at 14.1T; Figure 9C). These meticu-
lously designed liposomes not only maintain stable and uniform
size distribution but also exhibit significantly higher relaxivity
than traditional gadolinium-based treatments. This increase
potentially improves the quality of MRI images (Figure 9C).
The cellular uptake study undertaken with B16F10 melanoma
cells demonstrated consistent intracellular distribution, while
in vitro cytotoxicity assays revealed comparable therapeutic ef-
fects to free DOX (Figure 9D). These results strongly suggested
that the developed PEGylated liposome has considerable poten-
tial as a theranostic nanosystem for clinical applications, espe-
cially in targeted cancer therapy and diagnostics. The study is
well-structured, presenting a clear methodology and substantial
evidence supporting the therapeutic and diagnostic superiority
of gadolinium-infused liposomes over conventional approaches
(Pitchaimani et al. 2016).

Berlin Grace and coworkers successfully developed cationic
liposome NPs loaded with all-trans-retinoic acid (ATRA) and
studied their pharmacokinetics and therapeutic function against
chemical carcinogen-induced animal models (Berlin Grace and
Viswanathan 2017). The study demonstrates the successful for-
mulation of a cationic liposome-based nano-delivery system, ad-
dressing key limitations of ATRA, such as poor bioavailability
and rapid degradation. Pharmacokinetic analysis reveals signif-
icant improvements in drug stability, systemic circulation time,
and targeted delivery to tumor sites. The therapeutic efficiency,
evaluated in vivo using a lung cancer mouse model, highlights
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FIGURE 8 | Acute toxicity and in vitro antitumor activity of Dox-loaded folate-coated liposomes (SpHL-DOX-FOL). (A) Model illustration of the
anatomy of the nanoparticle. (B) Characterization of free liposomes and drug-loaded liposomes. (C) In vitro cell migration assessment. (D) In vitro
cellular uptake of DOX SpHL-DOX-FOL. SpHL-DOX-FOL showed enhanced internalization as compared to that of other treatment groups. (E)
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a marked reduction in tumor growth and enhanced survival
rates compared to conventional ATRA treatment. Additionally,
the paper provides compelling evidence of reduced systemic
toxicity, underscoring the formulation's safety profile. This

innovative work not only advances the field of nanomedicine
but also witnesses the potential of liposomal delivery systems
for improving cancer therapy outcomes (Figure 10; Berlin Grace
and Viswanathan 2017).
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4 | Extracellular Vesicle and Liposome Hybrid
System

EVs are essential for intercellular communication, facilitating
the transport of bioactive substances, including proteins, nucleic
acids, and lipids, between cells. EVs have garnered considerable
attention as prospective carriers for therapeutic agents, espe-
cially in drug administration, cancer treatment, and regenera-
tive medicine, owing to their inherent biocompatibility, capacity
to navigate biological barriers, and natural targeting abilities.

EVs from cells are an emerging alternative to nanoparticle drug
delivery systems due to their biological origin and targeting
capabilities (Debbarma et al. 2024; Sanyal and Banerjee 2024;
Ubanako et al. 2024). They serve crucial functions in cellular
communication, genetic material transfer, and immune re-
sponse regulation (Aloi et al. 2024; Essola et al. 2023; Sunkara
et al. 2025). The study on EVs biogenesis, isolation, and charac-
terization has been extensively undertaken by various research-
ers (de Sousa et al. 2023; Miron and Zhang 2024; Salmond and
Williams 2021; Sani et al. 2024; Sonbhadra et al. 2023). EVs have
more complicated lipid components than liposomes, affecting
their physical characteristics and interactions with recipient
cells (Skotland et al. 2020). Several proteins have been found to
be incorporated or linked to the EV membrane. The presence of
molecules like integrins, tetraspanins, and proteoglycans may
contribute to their biocompatibility, stability, targeting spec-
ificity, and ability to cross biological barriers (Alvarez-Erviti
et al. 2011; Millard et al. 2018; Murphy et al. 2019; Schindler
et al. 2019). However, the intricacy of EV surfaces limits drug
loading. Two main ways for loading therapeutic cargo into EVs
are endogenous (passive) and exogenous (e.g., electroporation).

Liposomes are synthetic spherical vesicles made of phospholipid
bilayers. They have been utilized in drug delivery for an extended
period because of their capacity to encapsulate both hydrophilic
and hydrophobic pharmaceuticals, enhancing their stability, bio-
distribution, and bioavailability (Dymek and Sikora 2022; Mehta,
Bui, et al. 2023; van der Koog et al. 2022). Liposomes are adaptable
and can be modified with ligands or peptides to improve target-
ing and therapeutic effectiveness, as discussed above. Membrane
fusion-based hybrid exosomes (MFHE) are a new nanoparticle for
drug administration that combines the benefits of liposomes and
exosomes through various membrane fusion mechanisms (Lu and
Huang 2020). MFHES possess strong drug loading, stability, and
surface modification capabilities, as well as high biocompatibility
and low exosome immunogenicity. This sheds light on nanoparti-
cle medicine delivery (Figure 11).

4.1 | Synthetic Strategies

Various synthetic strategies were developed to engineer EVs
and liposome hybrid systems as discussed in the table below
(Table 4).

4.1.1 | Extrusion Methods

The membrane extrusion method involves the concurrent
ejection of exosomes and liposomes via membrane pores of

Technical strategies, advantages, and disadvantages of EV and liposome hybridization techniques.

TABLE 4

References
(Evers et al. 2022; Hu

Disadvantages

Advantages

Technical procedure

Methods

 Potential damages arise to the EVs

« Rapid technique

Co-extrusion of the EVs with liposomes

through a polycarbonate membrane of
defined pore size (disrupts the lipid layers,

Extrusion

et al. 2021; Rayamajhi

membrane
« Relatively complicated procedure

« Relatively higher efficiency

et al. 2019; Sulthana

et al. 2024)

(Cheng et al. 2021;
Kannavou et al. 2021; Lv

transiently utilizing the physical forces)

« Loss of drug

« Rapid and easy procedure
« Relatively high efficiency

Hybridization undertaken by freezing the
mixture of EVs and liposomes repeatedly

Freeze-thaw

« Disruption of EVs membrane

et al. 2020; Sato et al. 2016;

« Potential leakage and loss of the

(transient disruption of the lipid layers

Singh et al. 2021)

components

through the formation of ice crystals)

(Lin et al. 2018)

« Lesser fusion efficiency
« Time taking process

o Straightforward

Incubated basis hybridization was undertaken
by keeping the mixture of EVs and liposomes at

Incubation

« Maintenance of EVs and liposome

« Restrictions by physicochemical

membranes

37°C (due to the lipid structure of these two NPs)

properties of vesicles

« Time-taking method (Kannavou et al. 2021;

o Straightforward

With the help of PEG incubation, the fusion
between EVs and liposomes has been undertaken

PEG

Ma et al. 2022;
Piffoux et al. 2018)

« Negative effect on cellular uptake

« Maintenance of EVs and liposome

Incubation

MFHES blood circulation time

membranes
« Significant prolongation of the

(facilitates tight contact of lipid bilayers and
triggers protein-free membrane fusion)
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adjustable dimensions under applied physical pressure to cre-
ate mixed vesicles. In comparison to incubation and freeze-
thaw techniques, membrane extrusion offers the benefit of
achieving a more uniform particle size in hybrid vesicles.
Sun et al. created hybrid nanovesicles utilizing clodronate-
loaded (CLD) liposomes and exosomes produced from fibro-
blasts for the therapeutic intervention of pulmonary fibrosis.
The researchers combined L-929 (Murine fibroblast cell line)
fibroblast-derived exosomes with a suspension of synthetic li-
posomes at a 1:5 protein equivalent ratio, vortexed and soni-
cated the mixture, and subsequently extruded it through 400
and 200nm polycarbonate ester membranes 10 times. This
led to the effective creation of exosome-hybridized liposomes
(Sun et al. 2021).

Other research teams synthesized hybrid vesicles using anal-
ogous techniques. Liposome and exosome solutions were
combined in different volumetric proportions. Thereafter, the
mixtures were typically vortexed and sonicated for 2-3min
using a sonicator set at 20%-33% of its maximum amplitude
to achieve complete solvation of the solution. The mixes were
extruded via pore diameters of 400, 200, or 100nm (Evers
et al. 2022; Hu et al. 2021; Jhan et al. 2020; Li, He, et al. 2022;
Rayamajhi et al. 2019). The pore size of the polycarbonate
membrane and the frequency of membrane extrusion influ-
ence the characteristics of MFHEs. While membrane extrusion
techniques exhibit elevated fusion efficiency, the shear stress
produced during the extrusion process may compromise the
structural integrity of natural exosomes.
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4.1.2 | Freeze-Thaw Methods

Freeze-thaw procedures are routinely used to load drugs onto
liposomes. Creating ice crystals can rupture the plasma mem-
brane and allow water-soluble compounds to enter liposomes
(Roque et al. 2023). This procedure can also be used to create
hybrid EVs. Many research teams have achieved good fusion
efficiency while using varied numbers of freeze-thaw cycles.
Sato et al. combined Raw 264.7 cell-derived exosomes with dual
fluorescently labeled liposomes (1:1 by volume). After freezing
in liquid nitrogen, the mixture was thawed at ambient tempera-
ture for 15min. The hybrid exosomes produced after repeated
freeze-thaw cycles have a greater cellular absorption rate than
liposomes (Sato et al. 2016).

Cheng et al. created hybrid exosomes by combining genetically al-
tered exosomes with heat-sensitive liposomes for cancer treatment
using photothermal therapy and immunotherapy. Researchers
created exosome-liposome hybrid NPs by mixing heat-sensitive
liposomes and genetically altered exosomes at a 1:1 ratio and
freezing-thawing them three times. The fusion efficiency of this
synthetic approach reached 97.4% (Cheng et al. 2021).

4.1.3 | Natural Incubation

Membrane fusion is an autonomous process that employs the
physicochemical properties of vesicles to facilitate fusion.
Hybrid exosomes are generated via electrostatic or hydrophobic
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studies showed the presence of bio-markers in the vesicles which further revealed the efficient hybridization. (D, E) In vitro cellular uptake studies

showed the active internalization of HEs over the liposomes. (Reprinted with permission from Rayamajhi et al. (2019). Copyright 2019 Elsevier Ltd).
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interactions, maintaining the integrity of the lipid bilayer and
preventing the leakage of vesicular contents. Lin et al. synthe-
sized hybrid exosomes by incubating HEK293FT cell-derived
exosomes with CRISPR/Cas9-expressing liposomes at 37°C for
12h, presenting a novel approach for the secure and efficient
delivery of the CRISPR-Cas9 system (Lin et al. 2018). This
technique inflicts minimal harm to vesicles and pharmaceuti-
cals. However, the fusion efficiency is comparatively poor.

4.1.4 | Polyethylene Glycol Incubation

Polyethylene glycol (PEG) alters cell membranes and is exten-
sively utilized to facilitate cell-to-cell fusion by promoting the
proximity of lipid bilayer membranes and initiating the displace-
ment and restructuring of lipid molecules (Yoshihara et al. 2020).
Piffoux et al. revealed that PEG might facilitate the fusion of exo-
somes and liposomes derived from several cellular sources. The
fusion effectiveness of liposomes and exosomes was assessed
using various ratios, sizes, and concentrations of PEG molecules
(Piffoux et al. 2018). Their findings demonstrate a more efficient
fusion of 30% (v/w) PEG 8000. Due to its facile preparation and
stable activity, PEG can facilitate the effective fusion of exosomes
and liposomes while also prolonging their circulation time in
the bloodstream. Nonetheless, the presence of PEG on the sur-
face of hybrid exosomes may be inadequate to confer the stealth

characteristics necessary to evade swift reception by the RES,
therefore diminishing the cellular uptake of the hybrid exosomes
(Kannavou et al. 2021; Lee et al. 2021; Patras et al. 2022).

4.2 | Effect of Hybridized Biomimetic Nanodrug
Delivery Systems

Hybrid EVs represent a novel and innovative frontier in the area
of nano-engineered drug delivery systems, utilizing the intrinsic
biological features of natural EVs with the tailored properties
of synthetic materials to enhance therapeutic efficacy and tar-
geting specificity. With this idea, there are numerous research
works carried out to engineer innovative hybridized vesicles for
effective therapeutic and diagnostic applications. The study by
Rayamajhi and colleagues explores the synthetic strategy of hy-
brid vesicles that combine the benefits of macrophage-derived
EVs and synthetic liposomes, with the objective of leveraging
the biological targeting potential of EVs while improving drug
delivery efficiency through the adaptable nature of liposomes
(Figure 12A). The research group successfully hybridized the
EVs with synthetic liposomes to generate the hybrid exosomes
(HEs) that retained the size characteristics beneficial towards
biological applications (those less than 200nm hydrodynamic
diameter). The critical aspect of their methodology was confirm-
ing that these HEs retained the surface proteins required for
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targeting tumor cells, a characteristic inherited from their pa-
rental macrophage origin. This research work thoroughly char-
acterized these hybrid vesicles employing various techniques
such as dynamic light scattering and transmission electron mi-
croscopy, demonstrating their anticipated size distribution and
morphological integrity (Figure 12B,C). The researchers empha-
sized the stability of these HEs, which is a notable advancement
over conventional EVs, as it could lead to more predictable and
controlled therapeutic outcomes. This study's one of the most
compelling aspects is its assessment of the targeted drug deliv-
ery potential utilizing the in vitro models. To achieve this, the
vesicles were loaded with doxorubicin, a commonly recognized
chemotherapy drug. The results showed that these HEs could
target the interested cancer cells and deliver their cargo directly
into the destination cells while limiting exposure to normal cells
(Figure 12D,E). The selective toxicity was significantly higher
in cancer cells than in noncancerous cells, showing the vesicles’
potential to effectively target and kill tumor cells. The drug re-
lease experiments emphasized the HEs' ability for controlled re-
lease, exhibiting a pH-sensitive release beneficial in the acidic
tumor microenvironment commonly present in cancer sites.
This feature may diminish chemotherapy side effects by con-
fining drug release to the target site, thus shielding healthy tis-
sues from exposure to hazardous chemotherapeutic agents. In
conclusion, this study notably contributed to the field of drug
delivery, especially in the development of innovative vesicle-
based systems for cancer therapy and diagnostics. By combining
the natural targeting features of EVs with the robustness and

flexibility of liposomes, the study not only addresses some of the
key challenges in the field of EVs but also opens new avenues for
the targeted treatment of cancer. The capability of these hybrid
exosomes to improve the therapeutic index of chemotherapeutic
drugs may have substantial significance for future clinical ap-
plications, representing progress in the search for more effective
and less harmful cancer treatments (Rayamajhi et al. 2019).

Wang et al. developed a novel approach to cancer therapy by
developing an engineered exosome. The authors explore the
potency of hybrid exosomes created by fusing mesenchymal
stem cell (MSC) derived exosomes with folate-modified lipo-
somes containing paclitaxel (PTX) to enhance the drugload and
achieve the specific site targeting ability. This work employed
the ultracentrifuge method to isolate exosomes from mesen-
chymal stem cells (MSCs). The folate-functionalized liposome
has been developed, and the paclitaxel (PTX) has been loaded.
The PTX-loaded hybrid exosomes (PTX-HEs) were formulated
utilizing a freeze-thaw technique (Figure 13A). Higher pacli-
taxel load was observed in the PTX-HEs when compared to the
PTX-exosomes (Figure 13B). The hybrid exosomes enhanced
drug delivery and demonstrated a prolonged release profile,
essential for maintaining therapeutic levels inside the tumor
microenvironment (Figure 13C). The in vivo study undertaken
in the CT26 colon cancer-bearing mice model resulted in the
higher therapeutic efficacy of hybrid exosomes, indicating the
enhanced therapeutic profile of HEs (Figure 13D). The authors
also revealed the ability of PTX-HEs to enhance drug delivery
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and their ability to alter the tumor microenvironment by activat-
ing CD4+ and CD8+ T cells, polarizing macrophages towards
the M1 phenotype, and reducing regulatory T cells (TRegs), thus
augmenting the antitumor immune response (Figure 13E). The
study presents persuasive evidence that hybrid exosomes con-
stitute a promising platform for cancer therapy. They efficiently
encapsulate and deliver chemotherapeutic agents, improve drug
stability, enhance targeting specificity, and beneficially alter the
tumor microenvironment. These diverse benefits establish hy-
brid exosomes as a key advancement in drug delivery systems,
providing a novel approach that can be customized for different
treatment options for cancer (Wang et al. 2024).

The exosomes derived from tumor cells and immune-based
cells exert their functions and target the interested sites by uti-
lizing their parental functional proteins. Kim and his research
group derived the exosomes from pancreatic cancer cells and
hybridized these exosomes with the liposome that is already
loaded with Gemcitabine chemotherapeutic drug (Figure 14;
Kim, Park, et al. 2024). This hybrid nanoplatform is intended
to improve gemcitabine's treatment efficacy against pancreatic

ductal adenocarcinoma (PDAC). By combining EVs isolated
from PANC1 cells with gemcitabine-palmitic acid prodrug-
loaded liposomes, the study takes advantage of EVs' innate tar-
geting capabilities and the controlled drug release of liposomal
carriers. The paper carefully describes how hybridized vesicles
loaded with gemcitabine-palmitic acid NPs targeted pancreatic
cancer cells using exosomes' natural homing properties. In mu-
rine and human pancreatic cancer cell lines, hybridized vesicles
loaded with gemcitabine-palmitic acid had much higher cellular
uptake than liposomal gemcitabine-palmitic acid. Exosomes ex-
ploit the macropinocytosis pathway, which is elevated in PDAC
cells with certain genetic mutations, in order to improve ab-
sorption. Compared to liposomal gemcitabine-palmitic acid and
free gemcitabine, hybridized vesicles loaded with gemcitabine-
palmitic acid had lower IC50 values and higher enhanced apop-
tosis rates against cancer cells. The discussion section of this
research work thoughtfully explores the implications of these
findings, suggesting that the hybrid NPs could overcome the
traditional limitations of gemcitabine treatment, such as rapid
systemic clearance and poor cellular uptake. This study sug-
gests that hybridized vesicles loaded with gemcitabine-palmitic
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acid could improve PDAC treatment outcomes by enhancing the
drug's bioavailability and targeting ability. The hybrid approach
exhibits improved cellular absorption, longer circulation time,
and higher tumor accumulation, addressing the difficulties
of drug resistance and systemic toxicity associated with tradi-
tional gemcitabine treatment. In vivo investigations in PDAC
models show considerable tumor suppression and better sur-
vival rates, underlining the platform's potential for clinical use
(Figure 14; Kim, Park, et al. 2024). Similarly, our research group
has demonstrated an engineered hybrid system generated by re-
engineering EVs derived from mouse breast cancer (4T1 cells)
with synthetic liposomes. The system was routinely compared
for its cancer-targeting potential in the mice bearing 4T1 tu-
mors. Compared to synthetic liposomes, re-engineered liposome
hybridized EVs (LEVs) showed enhanced tumor accumulation,
thereby putting it as one of the potential strategies to maximize
tumor delivery (Figure 15). These studies highlight biomimetic
systems evolved by combining vesicles from unique biogenesis
with synthetic nanoparticles as a promising technique for preci-
sion cancer therapy and diagnosis (Sulthana et al. 2024).

5 | Summary and Future Outlook

With the insertion of nanotechnology back in 1995 in the clinic
(DOXIL, the first FDA-approved liposomal Doxorubicin nano-
drug), a nanoparticle-based drug delivery system has emerged
as a controlled-release technology that alters drug pharmaco-
kinetics and takes advantage of the pathophysiology of disease
to maximize drug delivery. Lessons learned from decades of
research in nanotechnology, we are now moving forward with
precision therapy using nanomedicine as a theranostic agent.
However, it remains a challenge in these rapidly evolving cellu-
lar environments. Mutation in genes, drug resistance, deep tis-
sue inflammation, altered targets, etc., are major limitations that
demand continuous research in these fields. The uniqueness in
NPs systems is their ease in tailoring them to take advantage
of diseased pathologies such as vascular permeability, hypoxia,
pH, and microenvironment. For example, NPs are engineered
as a stimulus-sensitive drug delivery system that enhances drug
release in tumor-acidic environments. Learning from synthetic
NPs systems, the next generation of NPs evolves as biomimetic
NPs, which we have discussed in this review with a focus on
merging synthetic and biogenic systems as a hybrid nanoplat-
form technology.

EVs are nanoscale vesicles mostly found in the extracellular
space of a wide range of cell types, including but not limited to
mast cells, epithelial and endothelial cells, dendritic cells, astro-
cytes, and cancer cells. They carry functional properties from
their mother cells, which depend on their biogenesis, resulting
in various classes of EVs. The first class of EVs is exosomes,
which are of endosomal origin; the second class is microvesicles
originating from the plasma membrane; and the third class of
EVs originates from apoptotic bodies. Due to their distinctive
origins, EVs are well-trained to target their destination with the
help of membrane-bound proteins to trigger a response. For ex-
ample, alarge amount of transferrin (Tf) on the surface of cancer
cells can bind to transferrin receptors (TfR) naturally present on
the surface of EVs. Similarly, cancer cell-derived EVs localize
into tumors more efficiently. While there have been a number of

reports explaining the response of EVs, we are in a very prelim-
inary stage to take EVs to the clinic. Limitations such as their
isolation yield, variation in functional properties, heterogeneity
in isolated populations, and, more importantly, their colloidal
stability and scalability are hindering factors to take EVs to the
next level. Therefore, it is highly essential to look for alternatives,
which we have summarized in this review as a hybrid platform
technology by re-engineering EVs with a synthetic NP system.
While encouraging results have been observed, questions such
as the optimum ratio of synthetic and biogenic systems, stabil-
ity of the engineered system, in vivo tracking, purification, and
payload loading need to be studied to streamline the study to-
wards biomedical applications.
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