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THE general way of thinking about the pathway of expression 
of genetic information in eukaryotes, from DNA to protein 
via RNA, instills a protein-centric point of view, as if the 
protein is the real goal and the RNA is just the intermediate. 
In fact, most of the RNA in the cell is not mRNA but rather 
part of modular structures, RNA-protein machines, that are 
termed ribonucleoprotein (RNP) particles or ribonucleopro- 
rein complexes. The ribosome is one well-known example of 
such a complex. What is new and surprising is the discovery 
of the tremendous variety, complexity, and versatility of 
RNP particles which is reflected by the wide range of cellular 
processes in which they are involved. 

RNPs are involved in each step along the pathway of gene 
expression in eukaryotes, mRNAs are formed from precur- 
sor transcripts (hnRNAs or pre-mRNAs) by splicing of in- 
trons, and transported to the cytoplasm where each needs to 
accumulate to the precise level that will produce the correct 
amount of the particular protein. What has emerged over the 
past few years is that key components involved in processing 
pre-mRNA are complexes of unique small RNAs (snRNAs) 
with specific proteins, small nuclear ribonucleoprotein parti- 
cles (snRNPs). The nuclear precursor transcripts themselves 
are in fact also RNPs, being complexed with specific pro- 
teins, the hnRNP proteins, as are cytoplasmic mRNAs which 
are associated with the mRNP proteins. Parts of the protein 
synthetic machinery, particularly ribosomes, are also com- 
plexes of proteins with RNA. The continual and dynamic as- 
sociation of messenger RNAs and their precursor hnRNA 
molecules with specific sets of proteins in the cell under- 
scores the importance of understanding the molecular nature 
of these hnRNP and mRNP complexes. 

Recent work from numerous laboratories has led to the 
discovery of many additional RNP particles that are involved 
in an unexpected variety of cellular processes including pro- 
tein targeting, priming of mitochondrial DNA synthesis, and 
transcription termination (see Table I). Here we review some 
of the most recent findings on the structure, composition, 
and function of RNP particles in the eukaryotic cell. Ribo- 
somes, mRNPs, and viral RNPs are not discussed here. Also, 
since several reviews (1-6) have been published over the last 
two years that discuss pre-mRNA processing, we confine the 
discussion to only the most recent data in this rapidly ad- 
vancing field. 

Many of the unpublished observations in this minireview were first reported 
at a meeting on eukaryotic RNPs at the European Molecular Biology Labo- 
ratory, Heidelberg, Federal Republic of Germany on October 22-24, 1987. 

Nuclear Events 

hnRNPs 

The hnRNAs, which are the substrates of pre-mRNA pro- 
cessing, have long been known to be associated with pro- 
teins, the hnRNP proteins, to form hnRNPs-one of the 
major structures in the nucleus (reviewed in reference 7). 
hnRNP particles have a more complex composition than pre- 
viously thought. Purification of hnRNP particles with mono- 
clonal antibodies revealed that they contain at least 20 differ- 
ent proteins (8). The previously described six abundant 
30-40-kD polypeptides, A1, A2, B1, B2, C1, C2 (9), are a 
subset of this assortment. Additional, unexpected complex- 
ity of hnRNP proteins was further illustrated by the discov- 
ery of isoforms of the hnRNP protein A1 which differ from 
each other by only two amino acids (Riva, S., and K. 
Schafer, personal communications), hnRNP proteins, par- 
ticularly the C proteins, have been previously shown to be 
involved in splicing (10) but the mechanism and specific de- 
tails of their function have not yet been elucidated. Some 
clues to the role of hnRNP proteins in both splicing and 
hnRNA packaging may come from the surprising finding 
that at least some hnRNP proteins have RNA-binding 
specificity. The hnRNP C proteins, for example, bind prefer- 
entially to uridine-rich segments of RNA (10a) including the 
polypyrimidine segment near the 3' end ofintrons (Swanson, 
M. S., and G. Dreyfuss, manuscript submitted for publica- 
tion). These observations raise the possibility that, far from 
being a static particle, the hnRNP proteins may assemble 
into a variety of functional complexes, flexible enough to 
shepherd nascent RNAs from chromatin to the cytoplasm ac- 
cording to the individual destiny of a specific RNA. The rela- 
tionship between hnRNP and snRNP binding is an issue of 
major interest. Electron microscopy indicates an early inter- 
action between snRNPs and nascent pre-mRNA (11, 12) and 
it has been suggested that U1 might influence the binding of 
hnRNP proteins to pre-mRNA (13). If hnRNP proteins are 
bound preferentially to introns, this could be important for 
both splicing and for the mechanism of removal of these pro- 
teins from the pre-mRNA that must accompany nucleocyto- 
plasmic transport. 

snRNPs 

The snRNAs U1-U5 are transcribed by RNA polymerase II 
and snRNA U6 by RNA polymerase III (see reference 14 for 
review and references). Interestingly, U1-U5 and U6 share 
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Table L Ribonucleoprotein Particles in Higher Eukaryotes 

RNP RNA* Proteins Localization Function 

Nucleus 
hnRNP hnRNA At least 20 (34-120 kD) 

U1, U2, U4/U6, U5 U1, U2, U4, U5, U6 B, B', D, D', E, F, G 
snRNP (107-215nt) (9-27 kD), and 

specific proteins 
U3 snRNP U3 (217nt) 34 kD + 5 proteins 
La RNA pol III nascent tran- 55 kD 

scripts, viral RNAs 
Telomerase At least two (75, 154nt) Not well characterized 

associated with enzyme 

Nucleus hnRNA packaging 
Pre-mRNA processing 

Nucleus Pre-mRNA splicing 

Nucleolus rRNA processing? 
Nucleus and Transcription termination of RNA 

cytoplasm pol III 
Nucleus Addition of telomeric repeats to 

chromosome ends 

Rare species 
U7 snRNP U7 (63nt) Anti-Sm precipitable Nucleus 

U8 snRNP U8 (140nt) Anti-Sm precipitable Nucleolus 
U9 snRNP U9 (135nt) Anti-Sm precipitable ? 
UI0 snRNP UI0 (60nt) Anti-Sm precipitable ? 
U11 snRNP U11 (140nt) Anti-Sm precipitable Nucleus 
RNase P Several RNAs (85-115nt) Not anti-Sm precipitable Nucleus 

associated with enzyme 

Cytoplasm 
mRNP mRNA Poly A binding protein Cytoplasm 

(72 kD) + at least 
4-10 

Ribosomes 5.8, 18, and 28S >50 Cytoplasm 
SRP 7SL (300nt) 9, 14, 19, 54, 68, 72 kD Cytoplasm 
Ro scRNP YI-Y5 (80-110nt) 60 kD Cytoplasm 
Ring bodies (prosomes) Small RNAs? 20-35 kD Cytoplasm and 

(cylinder particles) nucleus 
Mitochondrial DNA 5.8S + others? Not well characterized Mitochondria 

primase 
RNase MRP 135nt Not well characterized Mitochondria 

Vaults 140nt 104 kD plus at l e a s t  Cytoplasm 
four others 

Histone pre-mRNA 3'-end 
processing 

Unknown 
Unknown 
Unknown 
Polyadenylation? 
Pre-tRNA cleavage 

mRNA translation?, stability?, 
storage?, localization? 

Protein translation 
Targeting of proteins to ER 
Unknown 
mRNP repression? multifunctional 

protease? tRNA processing? 
Priming mt DNA synthesis 

Cleaves RNA primer in DNA 
replication 

Unknown 

* The protein and RNA sizes given are, where possible, taken from mammalian RNPs. 

at least one promoter element, the octamer motif ATGCAAAT 
(15, 16), and a common transcription factor appears to bind 
to this site in both genes (15). This is a striking finding be- 
cause it implies that this factor may influence both RNA 
polymerase ILl and III. U6 requires a 3' run of  uridines for 
termination but, in contrast to all previously characterized 
pol III genes, except 7SK RNA (17), U6 does not require 
gene internal promoter elements for transcription initiation 
(Reddy, R.,  personal communication). Indeed sequence in- 
spection suggests that the 7SK and U6 promoters may be 
closely related. Plants also contain snRNAs but the tran- 
scription signals, at least for U2 and U5, are different from 
those in vertebrates. These two genes have similarities in 
their 5'-flanking regions, including TATA-like boxes at - 3 0  
(18), The snRNAs 3'-end formation (for U1-U5) is a complex 
process that involves recognition of  promoter elements as 
well as a 13-16nt t element located downstream of the 3' end 
of  the mature snRNA (19, 20). Mutational analysis of pro- 
moter sequences involved in U1-U5 3'-end formation has not 

1. Abbreviations used in this paper: ER, endoplasmic reticulum; nt, 
nucleotides; SRP, signal recognition particle. 

so far dissociated them from elements that are also required 
for initiation of  transcription, 

Once formed, the monomethyl G-capped U snRNA is rap- 
idly transported to the cytoplasm. There the modification of 
the cap occurs which converts it to a trimethyl G structure 
and the interaction with proteins to assemble the U snRNP 
takes place (reviewed in reference 21). Many of the U 
snRNPs have several common core proteins, B, B', D, D', E, 
E and G (see reference 22 for a review of  snRNP composi- 
tion). The B, B', and D proteins are relatively frequent tar- 
gets for human anti-Sm autoimmune antibodies often found 
in patients with connective tissue disease (23). Particular 
snRNPs also have specific proteins such as the U1 70 kD, A 
and C, and the U2 A '  and B". One of  the common and evolu- 
tionarily conserved features of several snRNAs (U1, U2, U4, 
and U5) is the sequence PuA(U)nGPu(n > 3) which is 
flanked by double-stranded stems. This region is the "Sm- 
binding site" for the anti-Sm-reactive snRNP proteins (see 
reference 21 for further references). The binding sites of the 
other snRNP proteins on snRNAs are also being determined 
and snRNPs that are functional by at least some criteria have 
been reconstituted in vitro (21, 24, 25; Green, M., personal 
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communication). The first glimpses of an snRNP, U1 
snRNP, have been obtained by electron microscopy and it 
looks much like a head with two big ears (Kastner, B., and 
R. Liihrmann, manuscript in preparation). 

Systematic analysis of the snRNAs in the yeast Sac- 
charomyces cerevisiae (see, for example, references 26-28) 
show that there is a direct one-to-one correspondence be- 
tween the yeast and mammalian snRNAs involved in mRNA 
splicing. There are differences in size of most snRNAs; yeast 
UI and U2 are three and six times larger, respectively, than 
their mammalian counterparts. A striking exception is the 
extraordinary conservation of U6 which is very similar in 
size and sequence to the mammalian counterpart (Brow, D., 
and C. Guthrie, personal communication). 

Molecular cloning and sequence analysis of the cDNAs 
and the genes for several human snRNP proteins yielded 
much information about the primary structure of these pro- 
teins. These include the snRNP core proteins B, B', and D 
(Hoch, S., personal communication) and E (29), the U1 
snRNP 70-kD protein (30-32), U1 snRNP A (33), the U2 
snRNP ,n/ (Fresco, L., and J. Keene, personal communica- 
tion), and the U2 snRNP B" protein (34). One generality that 
emerges so far is that several of the snRNP proteins (e.g., 
U1 70 kD and A, and the U2 B") contain the RNP consensus 
sequence. This is a segment of eight amino acids, Lys (Arg) 
Gly Phe (Tyr) Gly (Ala) Phe Val x Phe (Tyr), which is the 
most highly conserved segment in a 90-100 amino acid 
RNA-binding domain. This larger domain also contains 
other less conserved elements, such as a segment of six 
aliphatic and aromatic residues ~35--40 amino acids amino 
terminal to the RNP consensus sequence (see reference 37 
for discussion of this point). The RNP consensus sequence 
has also been found in other RNA-binding proteins including 
hnRNA-, mRNA-, and nucleolar pre-rRNA-binding pro- 
teins (35-37). Although experiments with the yeast poly (A)- 
binding protein suggest that the RNP consensus sequence 
itself may not be essential for the ability of the protein to as- 
sociate with poly (A) (38), the RNP consensus sequence may 
be useful because of its potential predictive power; proteins 
that contain it are likely to be RNA-binding proteins. It also 
suggests that many RNA-binding proteins along the pathway 
of mRNA formation, those which contain the RNP con- 
sensus sequence, may have evolved from a common ances- 
tral gene and that this motif may define a class of RNA- 
binding proteins. Of course, many RNA-binding proteins 
exist (ribosomal, virus nucleocapsid, etc.) that do not con- 
tain this consensus motif. 

snRNPs in Splicing 

At least five snRNPs, U1, U2, U4, U5, and U6, are involved 
in pre-mRNA splicing (see references 1-5 for reviews). U1 
binds to the 5' intron junction and U2 binds to the branch site. 
Results from various laboratories suggest that the U2 binding 
requires not only ATP but also at least one other factor. Two 
candidates, designated U2AF (39) and IBP (which has been 
found in two forms possibly related by proteolysis [40, 41]), 
have been identified. Both of these bind to the 3' part of in- 
trons independently of snRNPs, although IBP may associate 
with an snRNP, probably US. These factors are therefore 
proposed to recognize the 3' intron junction and to promote 
U2 snRNP binding to the branch point. U2AF and IBP are 

not identical. Unfortunately, the fractionation conditions 
used in the most extensive purification of splicing activities 
to date (42) are not similar enough to those used in the study 
of U2AF or IBP to identify them with one of the splicing fac- 
tor (SF1-SF4) activities. Two of these activities, SF1 and 
SF3, which appear to be proteins, are both required for U2 
snRNP binding to the branchpoint (Kdimer, A., personal 
communication). 

SnRNPs U4 and U6, which are also required for splicing, 
exist as a base-paired complex-U4/U6, (43-45). They proba- 
bly do not interact with the pre-mRNA directly (46). Work 
from several groups indicates that the snRNPs exist in com- 
plexes in both mammalian cells and yeast and that their inter- 
actions are ordered, dynamic, and ATP dependent (46-51) 
(see Fig. 1). U4, U5, and U6 form a major complex indepen- 
dent of other snRNPs (47, 50, 51) which may react differently 
to exogenous ATP in yeast and mammalian extracts, al- 
though results obtained using different methods in yeast dis- 
agree on the effect of ATP on the U4-U5-U6 complex (50, 
51). Analysis of splicing complexes following native gel elec- 
trophoresis or affinity purification showed that U4 dissoci- 
ates from the spliceosome at the same time as, or before, 
cleavage at the 5' splice site and that U2, U5, and U6 remain 
in a complex that is released with the intron lariat (47, 49, 
50, 52). The snRNPs, therefore, have to dissociate and as- 
semble in the nucleus with every splicing cycle, reminiscent 
of the cycling of the translational machinery. 

The impressive power of genetic analysis in yeast com- 
bined with the yeast in vitro-splicing system has been further 
used and continues to turn up new information. Several of 
the rna mutants (53), many of which turned out to be splicing 
mutants (54, 55), have now been characterized. The gene 
product of RNA 8, for example, is essential for viability and 
encodes a large 260-kD protein which is stably associated 
with U5 and is detected in the spliceosome (51). A new col- 
lection of additional splicing mutants has been generated 
(Vijayraghavan, U., and J. Abelson, personal communica- 
tion) and it can be anticipated that after analysis much more 
will be learned about nuclear RNA metabolism. 

Substantial progress is also being made in the biochemical 
fractionation of both HeLa (42) and yeast (56) nuclear ex- 
tract for splicing activities. Fractionation is greatly facili- 
tated by the use of high resolution gel electrophoretic separa- 
tions of intermediate complexes and analysis of specific 
pre-mRNA mutants; for example, to resolve which acces- 
sory factors, if any, are required for UsnRNP binding to the 
intron, as discussed above. A new column chromatography 
preparative fractionation method of functional and probably 
highly purified spliceosomes has been developed and used 
for the observation of the complexes by electron microscopy 
(Reed, R., and T. Maniatis, personal communication). It can 
be expected that important information will be obtained by 
this approach, particularly once specific antibodies are used 
for immunoelectron microscopy. 

The combination of biochemical and genetic approaches 
will no doubt yield a detailed picture of RNA splicing. But 
it is already apparent that the multicomponent splicing com- 
plex is an efficient and precise splicing machine that is made 
up of modular parts, snRNPs, and other components, such 
as hnRNP proteins, that assemble in an ordered manner to 
perform the reaction and dissociate once it is done. In the 
end, it may well turn out that the RNA constituents of the 
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Figure l. The splicing pathway of pre-mRNA in mammalian cells. 
IVS, intervening sequence (intmn); IVS*, intervening sequence in 
lariat form; poly Py, polypyrimidine stretch; E, exons; IBP, intron- 
binding protein(s); U2AF, U2 snRNP auxiliary factor; SF/, SF3, 
splicing factors 1 and 3. The question mark at the exit point of UI 
snRNP indicates the uncertainty as to the stage at which UI snRNP 
dissociates. 

snRNPs catalyze the cleavage and ligation reactions, without 
protein enzymes, and that the function of the snRNPs is to 
bring the junctions together to form the reaction center. 

snRNPs in 3'-end Processing, Polyadenylation, 
and Transcription Termination 

Analysis of 3' cleavage and polyadenylation in vitro has led 
to the discovery that this process, like intron splicing, takes 
place in large complexes. Formation of these complexes is 
inhibited by either mutation within, or chemical modifica- 
tion of, the AAUAAA polyadenylation signal (57-60). 

Various autoimmune antisera containing antibodies di- 
rected against snRNPs have been shown to inhibit polyade- 
nylation reactions in vitro (61, 62) and sequences including 
the AAUAAA signal are protected from RNase digestion by 
nuclear extract components, some of which have determi- 
nants recognized by anti-Sm antisera (63). These observa- 
tions have led to the expectation that at least one U snRNP 

would be involved in polyadenylation. However, cleavage 
and polyadenylation in vitro are not inhibited specifically by 
micrococcal nuclease digestion, although there is a require- 
ment for bulk RNA in the extract (64). This might simply 
mean that any snRNA required is resistant to nuclease diges- 
tion, and one of the fractions required for polyadenylation 
contains snRNP(s), predominantly an snRNA-designated 
Ull (65). The complete nucleotide sequence of Ull has now 
been determined (Montzka, K., and J. Steitz, personal com- 
munication) and it does not contain any complementarity to 
the polyadenylation motif AAUAAA. It therefore remains 
unclear whether UII snRNP provides for specific recogni- 
tion of the polyadenylation signal. A 64-kD nuclear protein 
that binds to RNA segments that contain the AAUAAA se- 
quence has been detected (66) and may be a better candidate. 

A more definite role for an snRNP has been reported for 
histone pre-mRNA 3'-end processing. Work in sea urchins 
led to the discovery of a snRNA, U7, which is required for 
3'-end processing of sea urchin histone pre-mRNA (6, 67). 
In the mammalian system it appears that a cell cycle-depen- 
dent heat labile factor is also involved and this is now being 
purified (6, 68). Two mammalian U7 homologues from hu- 
man (69) and mouse (70) have also been identified and se- 
quenced and contain segments that can base pair with the 
downstream element of the historic pre-mRNA that is re- 
quired for its processing. Ull and U7 are much lower in 
abundance (~,1:10-1:100) than U1 snRNA and they can be 
precipitated with anti-Sm antibodies. Many more anti-Sm 
precipitable low abundance snRNAs can be detected on two- 
dimensional gels and remain to be characterized (Steitz, J., 
personal communication). It will be interesting to see if they, 
like the high abundance U snRNAs, also correspond to some 
of the many identified yeast snRNAs (71). 

A subset of seven tri-methyl capped snRNAs, including 
the yeast U3 equivalent (72), have recently been shown to be 
found associated with ribosomal RNA precursor species in 
the S. cerevisiae nucle(ol)us (73). Deletion of one of them, 
snR10, results in impaired cleavage of the 35S precursor 
RNA, although evidence for direct participation of any of 
these RNAs in particular pre-rRNA processing steps will 
probably have to await the development of an in vitro pro- 
cessing system. 

The autoantigen RNP protein La, which is associated with 
RNA polymerase III products, has also been cloned and se- 
quenced from human (74; partial sequence) and Xenopus 
(complete sequence; Scherly, D., and S. Clarkson, manu- 
script in preparation) and it also contains a region which 
resembles the RNP consensus sequence. La binds to the 
U-rich end of all newly synthesized RNA polymerase III 
transcripts. An extremely exciting finding about the function 
of La is that it appears to be a transcription termination fac- 
tor, required for accurate and efficient dissociation of RNA 
polymerase III from nascent transcripts (Gottlieb, E., and J. 
Steitz, manuscript in preparation). 

snRNPs in Other Nuclear Functions 

The latest addition to the family of nuclear functions involv- 
ing RNPs is telomerase (75). This enzyme, which adds telo- 
meric repeats to the ends of chromosomes, has so far only 
been characterized in Tetrahymena. The similarity in telo- 
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mere structure exhibited by various organisms, however, 
suggests that the telomerase activity may also be conserved. 
The enzyme is sensitive to both RNase and protease diges- 
tion and highly purified enzyme is associated with at least 
two short RNAs. This example adds to the diversity of func- 
tions involving RNPs, and serves as a warning against the as- 
sumptions that newly characterized activities are not RNPs 
or that newly characterized RNPs are necessarily involved 
in RNA metabolism. 

Cytoplasmic Events 
Apart from ribosomes the most studied cytoplasmic RNP is 
the signal recognition particle (SRP)? SRP is an abundant 
small RNP that mediates the targeting to the endoplasmic 
reticulum (ER) of secretory, membrane, and lysosomal pro- 
teins (76). SRP, at least in some in vitro systems, recognizes 
and interacts with the signal peptide in these proteins while 
they are ribosome associated and causes pausing in the elon- 
gation (arrest) of translation. The SRP-arrested ribosome 
complex is then targeted to and docked at the ER through 
binding to a SRP receptor, which has also been called dock- 
ing protein (77, 78). With this interaction, a transla- 
tion-translocation complex is established, and the transla- 
tion that now resumes is coupled to trans-membrane 
insertion of the nascent polypeptide into the lumen of the 
ER. The SRP is composed of one molecule of RNA, 7SL 
RNA, (of •300 nucleotides), and six proteins (79). It has 
been purified to homogeneity and reconstituted (80) and its 
structure, functions, and interactions with other components 
of the translational apparatus and the ER have been studied 
in detail. The 7SL RNA appears to serve a structural role; 
it is an elongated scaffold for the organized binding of the 
proteins (81, 82). The four largest proteins bind at one end 
to form a domain which promotes translocation into the ER 
lumen, while the proteins bound at the other end are thought 
to cause translational arrest (83, 84). Consistent with this 
structural role for the RNA is the finding that the nucleotide 
sequence of 7SL RNA from the yeast Schizosaccharomyces 
pombe bears very little similarity to mammalian 7SL RNA, 
but both RNAs can be folded into similar predicted second- 
ary structures (85, 86, 87). The same holds true for 7SL RNA 
from the yeast Yarrowia lipolytica. In spite of this lack of se- 
quence conservation, mammalian SRP proteins bind specifi- 
cally to these yeast RNAs, as determined by RNA footprint- 
ing (87). 7SL thus provides an interesting contrast to other 
small RNAs (e.g., sn RNAs U1, U2, and U7), which func- 
tion in nucleic acid (pre-mRNA) recognition through speci- 
fic, conserved, base pairing. 

Two distinct activities, both associated with mitochondrial 
DNA replication, have been recently shown to have RNP 
components. The mitochondrial DNA primase activity is 
closely associated with cytosolic 5.8S rRNA, and this RNA 
is essential for its activity. Other possible RNA and protein 
components of this enzyme are as yet not well characterized 
(88). The other enzyme, an endoribonuclease involved in 
primer RNA cleavage, contains a nuclear encoded 135 nt 
RNA and protein components that have not yet been iden- 
tified (89). The intriguing problem of how nuclear RNAs en- 
ter the mitochondrion has not as yet been tackled, but it may 
be instructive to compare this process with the biogenesis of 

snRNPs, whose assembly in the cytoplasm is required before 
nuclear transport of the assembled RNP (21; see reference 
89 for a discussion of the point). 

Other small cytoplasmic RNPs are still elusive in their 
function or have their membership cards to the RNP club 
hotly contested. The latter include the ringlike bodies, cylin- 
der particles, and prosomes which are found both in the nu- 
cleus and cytoplasm, at least in some cell types. The debate 
(90--92) centers on whether all of the different "ring body" 
preparations are in fact the same, and whether they indeed 
contain stoichiometric, or even significant, amounts of 
RNAs. Careful analysis of the particles from Xenopus oo- 
cytes failed to reveal evidence for a specific RNA component 
(90), however, these particles, defined by their ringlike mor- 
phology, size, and a characteristic set of proteins, are appar- 
ently ubiquitous from plants to man and it may be that the 
particles show either species or cell-type differences in com- 
position. Their "legitimacy" as RNPs notwithstanding, there 
is now the interesting possibility that at least some of these 
ring bodies are, or at least copurify with, large multifunc- 
tional proteases (93, 94) and as such may be important ele- 
ments in protein turnover. Another small cytoplasmic RNP 
has been recently isolated and termed vaults to indicate its 
distinct morphology which resembles the multiple arches of 
cathedral vaults (95). Vaults are composed predominantly of 
a 104-kD protein and a small RNA but their function is not 
yet known. 

It has also been reported (96) that RNase P activity co- 
purifies with ring particles from Xenopus oocytes although 
whether RNase P and ring particles are identical, or even as- 
sociated with one another, is disputed. RNase P cleaves 
tRNA precursors to generate the mature 5' end and is, in 
prokaryotes, an RNP whose RNA moiety, M1 RNA, is capa- 
ble alone of catalysing the cleavage reaction in vitro, but 
whose protein component is also essential in vivo (see refer- 
ence 97 for a review). Eukaryotic RNase P has not been 
purified to homogeneity, but there is evidence that it is also 
an RNP. The enzyme activity from S. pombe is associated 
with two RNAs, both of which are transcribed from one 
gene, whose predicted secondary structures are similar to 
that of the M1 RNA. The S. pombe activity is sensitive to 
digestion with micrococcal nuclease (98). HeLa cell nuclear 
RNase P can also be dissociated into RNA and protein com- 
ponents. Interestingly, activity can be reconstituted from 
these fractions by adding back the complementary protein or 
RNA fraction from E. coli RNase P (99). 

Perspectives 
Altogether, it is already clear that the complexity of the 
structure and function of the RNAs and of the RNP proteins 
is much greater than previously envisioned. It is almost cer- 
tain that RNPs will be found to possess wide-ranging activi- 
ties in RNA and protein formation, stability, and function. 
The versatility of RNA-protein machineries is reflected in 
the ability of RNAs to recognize other nucleic acids by base 
pairing and to serve as scaffolds upon which proteins can be 
assembled to form modular RNA-protein units. The RNA- 
protein interaction may also influence their catalytic activity. 
In addition, the potential of RNA itself to function in cataly- 
sis (100) lends yet another novel perspective to the topic of 
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RNPs and their evolution. Since the ways to peek inside-the 
systems and tools of research-continue to develop, the ex- 
citement and pace of discoveries in this field are not likely 
to abate soon. 
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