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Abstract: Phase change materials (PCMs) can store/release heat from/to the external environment
through their own phase change, which can reduce the imbalance between energy supply and
demand and improve the effective utilization of energy. Biomass materials are abundant in reserves,
from a wide range of sources, and most of them have a natural pore structure, which is a good carrier
of phase change materials. Biomass-based composite phase change materials and their derived ones
are superior to traditional phase change materials due to their ability to overcome the leakage of
phase change materials during solid–liquid change. This paper reviews the basic properties, phase
change characteristics, and binding methods of several phase change materials (polyethylene glycols,
paraffins, and fatty acids) that are commonly compounded with biomass materials. On this basis, it
summarizes the preparation methods of biomass-based composite phase change materials, including
porous adsorption, microencapsulation based on biomass shell, and grafting by copolymerization
and also analyzes the characteristics of each method. Finally, the paper introduces the latest research
progress of multifunctional biomass-based composite phase change materials capable of energy
storage and outlines the challenges and future research and development priorities in this field.

Keywords: biomass; phase change materials; composite materials; preparation; multifunctional

1. Introduction

With the rapid development of the economy, the dual pressures brought by energy
depletion and environmental pollution have forced mankind to continuously explore new
renewable and clean energy sources [1–4]. At the same time, the imbalance of energy
supply and demand in space and time and low utilization efficiency further aggravate
the waste of resources and environmental problems during energy development and
utilization [5–8]. Therefore, researchers also turn their attention to developing energy
utilization technologies while exploring new energy sources to improve the effective
utilization of existing energy sources. Phase change materials (PCMs) can store/release
heat from/to the external environment through phase change within a narrow temperature
variation range, which can reduce the mismatch between energy supply and demand and
improve the effective utilization of energy [9,10]. Starting to be studied in the 20th century,
PCMs have been widely used in many fields, such as solar energy storage, industrial waste
heat recovery, building energy saving, electronic components, and the thermal regulation of
batteries [11–14]. However, traditional PCMs are prone to leakage during solid–liquid phase
transition, which as an inherent defect that seriously hinders the large-scale application of
PCMs [15,16].

Biomass materials are a class of renewable energy with extremely abundant sources in
nature [17–19]. The development and utilization of biomass resources is of great significance
for relieving the pressure on energy and the environment [20,21]. Most biomass materials
have a natural pore structure, which can provide more adsorption sites to fix PCMs through
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interactions such as capillary force, surface tension, and van der Waals forces [22–24].
Biomass-based composite PCMs, i.e., the composites of biomass materials and PCMs,
broaden the application range of biomass materials, realize their high-value utilization,
and provide a new direction for the research and development of composite PCMs. At
present, the application of biomass and its derived materials in the field of composite PCMs
is still very limited. The development and utilization of diversified and multifunctional
biomass-based composite PCMs has become the focus of future research.

This paper first summarizes the phase change characteristics and binding methods
of PCMs commonly used to prepare biomass-based composite PCMs. Then, it introduces
the preparation methods (porous adsorption, microencapsulation based on biomass shell,
and grafting by copolymerization) of biomass-based composite PCMs and presents some
multifunctional biomass-based composite PCMs. Finally, the paper provides an outlook on
the application and characteristics of biomass materials in composite PCMs.

2. Phase Change Materials (PCMs)

PCMs can release or store heat through phase change at an almost constant tempera-
ture, which are a good choice for latent heat storage. Therefore, utilizing the characteristics
of PCMs to store excess energy can effectively alleviate the problem of uneven energy
distribution. PCMs fall into the categories of organic, inorganic, and eutectic ones, accord-
ing to their chemical structures [25]. In particular, organic PCMs are most studied due
to their high heat storage density, low undercooling, suitable phase change temperature,
non-corrosivity, and stable properties. However, leakage during the solid–liquid phase
change has limited the practical application of organic PCMs. This problem can be solved
to a large extent by using biomass-based porous materials to adsorb PCMs (mainly includ-
ing polyethylene glycols, paraffins, fatty acids) for preparing composite PCMs in stable
shapes [26–29].

2.1. Polyethylene Glycols (PEG)

PEG is a class of typical PCMs which features high latent heat, suitable phase change
temperature, and low thermal hysteresis [30,31]. Their controllable molecular weights
enable them to have different properties at different average molecular weights. The
properties of some common PEG are listed in Table 1. With the increase in molecular
weight, the phase change temperature and latent heat of PEG also show an upward trend.
In practice, PEG can be selected according to different application scenarios.

Table 1. Phase change properties of PEG with different molecular weight.

Polyethylene Glycols
(PEG)

Melting Process Freezing Process
Reference

Tm (◦C) ∆Hm (J/g) Tf (◦C) ∆Hf (J/g)

PEG-1000 42.8 129.3 23.6 129.8 [32]
PEG-2000 51.0 185.4 34.52 184.8 [33]
PEG-4000 60.5 172.4 41.96 207.0 [34]
PEG-6000 61.7 178.6 35.3 169.9 [35]
PEG-8000 64.6 180.0 44.3 167.9 [36]

PEG-10000 63.7 189.2 39.1 167.3 [37]
PEG-20000 67.7 160.2 42.9 155.7 [38]
PEG-35000 64.4 174.0 48.9 173.9 [39]

Jiang et al. [40] used PEG-10000 as PCMs and wood flour as support materials to
develop new composite PCMs by direct impregnation (Figure 1). The results showed that
the latent heat and phase change temperature of the composite were 90.9 J/g and 36.8 ◦C,
respectively. The PEG was adsorbed on the wood flour by hydrogen bond interaction,
capillary force, and surface tension. Leakage was not found during heating at 100 ◦C
for 30 min. The composite materials showed excellent thermal properties and the ability
of leakage protection. Moreover, the PEG can also improve the dimensional stability of
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wood. Li et al. [41] prepared a biomass-based composite PCMs by impregnating PEG-
1000 into green fir wood and applying a varnish coating to prevent PEG from leakage.
The composite PCMs had a phase change temperature of 26.74 ◦C and a latent heat of
73.59 J/g. After impregnation, the PEG penetrated the cell walls and then provided a thin,
semipermeable layer to block the water molecules inside (Figure 2), which reduced the
volume shrinkage of wood by 34.55% and improved its dimensional stability. In addition
to wood, other biomass materials can also be combined with PEG to prepare composite
PCMs. Zhang et al. [42] took nanosilver-coated eggplant-based biological porous carbon
(BPC) as support materials and PEG-6000 as PCMs to prepare PEG-6000/BPC composite
PCMs. The phase change temperature and the latent heat of PEG-6000/BPC were 59.8 ◦C
and 147.8 J/g, respectively. PEG-6000 was adsorbed on the support materials by capillary
force, and the resulting composite had a good anti-leakage ability. Wu et al. [43] selected
PEG-4000 as PCMs and calcined diatom as support materials to prepare shape-stabilized
PCMs (SSPCMs). The SSPCMs had a phase change temperature and a latent heat of 54.3 ◦C
and 128.9 J/g, respectively. No leakage was observed when the SSPCMs were heated at
80 ◦C for 60 min.
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In general, the biomass-based composite PCMs prepared by PEG have excellent
thermal properties and leakage resistance, thus becoming promising materials in the fields
of new environmental protection and energy-saving materials.

2.2. Paraffins

Paraffins are mainly straight-chain n-alkanes. They are characterized by high latent
heat, no undercooling phenomenon, excellent thermal stability, and rich sources, which
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make them PCMs with immense potential [44]. The thermal properties of paraffins are
related to the molecular chain length (the number of carbon atoms). Herein, Table 2 presents
the properties of several common paraffins. Their phase change temperatures are found
closer to the ambient temperature, and as a result of which they have been widely used for
heat storage based on phase change.

Table 2. Phase change properties of common paraffins.

Paraffins
Melting Process Freezing Process

Reference
Tm (◦C) ∆Hm (J/g) Tf (◦C) ∆Hf (J/g)

n-Dodecane
(C12) −6.1 219.0 −16.5 218.8 [45]

n-Tetradecane (C14) 5.88 225.8 2.15 225.4 [46]
n-Hexadecane

(C16) 20.84 254.7 16.78 250.6 [47]

n-Octadecane (C18) 28.74 209.1 21.16 209.8 [48]
n-Eicosane

(C20) 39.17 237.1 32.93 239.7 [49]

n-Docosane
(C22) 42–46 234.4 36–39 233.6 [50]

Luo et al. [51] proposed a unique biomass-based composite PCMs formed by impreg-
nation with a paraffin as the PCMs and garlic peel as the support materials. The composite
underwent phase change at 60.2 ◦C and had a latent heat of 52.5 J/g. The paraffin was
held in the pore structure by hydrogen bond interaction and van der Waals forces. The
composite PCMs were heated at 80 ◦C for 60 min without leakage and showed good shape
stability. Wang et al. [52] developed a new type of biomass-based composite PCMs by
vacuum impregnation with the wild daisy stem carbonized at a high temperature as the
support materials and a paraffin as the PCMs (Figure 3). The phase change temperature
and the latent heat of the composite PCMs were 40.1 ◦C and 213.6 J/g, respectively. The
pore structure of the wild daisy stem adsorbed the PCMs by capillary force. After heating at
70 ◦C for 2 h, the weight loss rate of the composite materials was only 2.1%, which indicated
its good leak-proof performance. Yu et al. [53] used rice husk ash as support materials
and paraffins as PCMs to prepare a biomass-based composite PCMs by impregnation. The
composite PCMs had a phase change temperature of 48.2 ◦C and a latent heat of 95.7 J/g.
After 300 cycles of heating and cooling, it still remained in excellent shape and had good
thermal stability.

Currently, the composites of biomass materials and paraffins remain to be further
studied. Especially, paraffin-based microcapsules are expected to form composites with
biomass materials, which, however, is rendered difficult due to complex preparation and
high costs.

2.3. Fatty Acids

Common PCMs of the fatty acid group include stearic acid (SA), lauric acid (LA), de-
canoic acid, myristic acid (MA), and palmitic acid (PA). Fatty acids have the characteristics
of high latent heat, good thermal stability, no supercooling, and low costs [54,55].

Wen et al. [56] prepared composite PCMs by vacuum impregnation method with
carbonized corn stover as the support materials and SA as the PCMs. Regarding the
composite PCMs, phase change occurred at 67.62 ◦C, and the latent heat was 160.74 J/g. The
physical interactions of capillary force and surface tension prevented the leakage of melt SA
from the porous structure of carbonized corn stover. As displayed in Figure 4, the composite
still had good shape stability after 3 h of heating at 80 ◦C. Due to the high phase change
temperatures of single fatty acids (40–60 ◦C), different fatty acids are usually combined into
binary or multiple co-melting systems to meet the requirements of temperature regulation
and human comfort. Table 3 lists the phase change temperatures of some binary and
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ternary fatty acids after mixing. The phase change temperatures of the mixed systems
can be determined by the Schroeder equation. Zhang et al. [57] used a eutectic mixture
of LA-SA as PCMs and incorporated it into the carbonized corn cob to prepare SSPCMs
(Figure 5). The resulting composite PCMs had a phase change temperature of 35.1 ◦C
and latent heat of 148.3 J/g. Evidently, the phase change temperature of the binary fatty
acid system was significantly lowered. LA-SA was fixed in the pore structure by physical
adsorption mainly via surface tension and capillary force. After 200 thermal cycles, the
composite PCMs can still maintain good shape stability. Sari et al. [58] designed leak-proof
biomass-based composite PCMs with carbonized sugar beet pulp as the support materials
and a eutectic mixture of CA-SA as the PCMs, which had a phase change temperature
and a latent heat of 24.0 ◦C and 117.0 J/g, respectively. This phase change temperature
was quite close to the human comfort temperature. The capillary force and surface tension
between the support materials and PCMs can prevent the seepage of the molten PCMs.
The latent heat capacity of the composite decreased by only 3% after 2000 cycles of cooling
and heating.
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Table 3. Phase change properties of different fatty acids and their complexes.

Fatty Acids Attribute Proportion Tm (◦C) ∆Hm (J/g) Reference

Lauric acid (LA) Single - 44.2 165.8 [59]
Myristic acid (MA) Single - 54.6 181.0 [60]

LA-MA Binary 67.66:32.34 34.6 163.0 [61]
Palmitic acid (PA) Single - 62.8 207.0 [62]
Capric acid (CA) Single - 30.15 164.6 [63]
Stearic acid (SA) Single - 53.32 182.39 [64]

LA-SA Binary 70:30 29.4 281.8 [65]
CA-MA Binary 72:28 18.21 148.5 [66]
LA-PA Binary 79:21 37.15 183.07 [67]

LA-PA-SA Ternary 62.2:24.6:13.2 32.1 151.6 [68]
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However, fatty acids are mostly derived from animals and plants, and biomass materi-
als are easily influenced by microorganisms. Therefore, it is necessary to further explore
the biological durability of fatty acid–biomass composite PCMs.

3. Preparation Methods of Biomass-Based Composite PCMs

Biomass and its derivatives are commonly used as support materials to prepare
composite PCMs because of their advantages of wide sources, abundant varieties, low
costs, and simplicity to obtain and renew [69]. According to the research on biomass-based
composite PCMs in recent years, their preparation methods can be roughly categorized
as follows: (1) Natural biomass or its derived materials are employed as raw materials
to develop porous adsorption matrices on which PCMs are then loaded so as to prepare
biomass-based composite PCMs. (2) Biomass materials were used as shell materials to
prepare microencapsulated PCMs (MEPCMs). (3) Biomass-grafted composite PCMs can
be synthesized by copolymerization. The applicable methods for different types of PCMs
and biomass materials and the specific conditions required for the preparation process are
shown in Table 4.

Table 4. The applicable methods for different types of PCMs and biomass materials and the spe-
cific conditions.

Phase Change
Materials
(PCMs)

Specific Conditions Biomass Materials

Porous adsorption PEG, paraffins,
fatty acids, etc.

High temperature
carbonization

Most porous biomass
materials

MEPCMs PEG, paraffins,
fatty acids, etc. - Starch, chitosan,

cellulose, etc.
Grafting by

copolymerization PEG and others - Polysaccharide
biomass materials
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3.1. Porous Adsorption

In the porous adsorption method, the unique pore structure of biomass materials
is utilized to provide adsorption sites for the encapsulation of PCMs. After drying and
high-temperature carbonization (400–1000 ◦C), biomass materials are used as the support
materials, and then PCMs are introduced into the pore structure to prepare biomass-
based composite PCMs. Alternatively, natural biomass-derived materials are used as
raw materials to construct porous aerogel adsorption matrices with a three-dimensional
structure, and then composite PCMs are prepared by the porous adsorption method.

Gu et al. [70] obtained biomass-based composite PCMs by direct impregnation with
PA as the PCMs and biomass porous carbon prepared from pepper straw as the support
materials. Since PA was successfully encapsulated in biomass porous carbon, the leakage
problem was greatly improved. Zhao et al. [71] first prepared biomass hierarchical porous
carbon through hydrothermal carbonation and high-temperature carbonation of water
chestnut in the presence of aluminum hypophosphite as an activator and then biomass-
based composite PCMs through vacuum impregnation by loading octadecane into the
biomass hierarchical porous carbon (Figure 6). The maximum loading of octadecane can
reach 85%, and no leakage occurred at that time. The phase change temperature and the
latent heat of the composite PCMs were 34.2 ◦C and 216.2 J/g, respectively. Moreover, after
100 cycles of heating and cooling, its latent heat capacity decreased by merely 1%, indicative
of good cycle stability. Polysaccharide biomass such as cellulose and its derivatives, lignin
and chitosan, is often used to prepare biomass-derived aerogels on account of the good
functionality, strong designability, and high added value endowed by the functional groups
on its molecular structure. With cellulose as the raw materials and tert-butanol and deion-
ized water as co-solvents, Wu et al. [72] prepared cellulose-based carbon aerogels through
soaking expansion, orientation, freeze-drying, and high-temperature carbonization. Then,
they loaded SA into the cellulose-based carbon aerogels by vacuum impregnation to form
three-dimensional (3D) composite PCMs. The leakage rate of the composite PCMs was only
0.13% at 80 ◦C (higher than the melting point of SA), and its phase change temperature
and latent heat were 67.92 ◦C and 201.53 J/g, respectively. In short, the composite PCMs
exhibited excellent leak-proof performance and thermal storage capacity. After prepar-
ing biomass-based carbon aerogels with sunflower receptacle and stalk as raw materials,
Wang et al. [73] realized 1-hexadecanamine/carbon aerogel composite PCMs by vacuum
impregnation (Figure 7), which had a high heat storage capacity (above 200 J/g) and
good shape stability. Wood is a kind of abundant biomass material in nature with a pore
structure inside and is able to act as matrix materials to encapsulate PCMs. Ma et al. [74]
prepared CA-PA/delignified wood composite PCMs by delignifying wood and loading
CA-PA into the wood by vacuum impregnation. The obtained composite PCMs had a good
encapsulation effect, whose phase change temperature and latent heat were 23.4 ◦C and
94.4 J/g, respectively.

In summary, the preparation of composite PCMs based on biomass materials has
the advantages of simple operation, superior performance, and adjustable orientation.
However, the types of biomass materials currently studied are far from sufficient. On
the one hand, the scope of biomass materials should be actively developed, and on the
other hand, new methods should be explored to prepare porous biomass matrices with
better performance.

3.2. Microencapsulated Phase Change Materials (MEPCMs)

MEPCMs consist of PCMs core and a biomass shell. The biomass shell is capable
of isolating the internal PCMs from the external environment, thereby preventing the
internal PCMs from leakage at high temperatures. At present, there are not many biomass
materials available as the shell materials for MEPCMs, mainly including starch, chitosan,
and cellulose.
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Songpon et al. [75] took a mixture of ethyl cellulose (EC) and methyl cellulose (MC) in
a mass ratio of 2:1 as the shell materials and eicosane (C20) as the core materials to develop
EC-MC/C20 microcapsules with simple self-assembly. The preparation mechanism is
presented in Figure 8. The results showed that when the ratio of the core materials to the
shell materials of the MEPCMs was 10:1, the latent heat of the microcapsule was as high as
239.8 J/g, higher than that of pure C20, which indicated an excellent heat storage capacity.
This may be due to the interaction of C20 and the EC/MC polymeric shell materials
interferes with the solidification of C20 inside the spheres in such a way that the transition
is multi-stepped and more exothermic than that of the pure C20. Huo et al. [76] used
a chitosan and styrene-maleic anhydride copolymer composite as shell and a comb-like
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polymer as core to achieve MEPCMs by coagulation. In addition, they investigated the
effect of the core-to-shell mass ratio on the morphology and thermal properties of the
microcapsules. The latent heat of the microcapsules was found to decrease gradually with
the increase in the shell materials proportion. In the case of the core-to-shell ratio at 1:2,
the microcapsules possessed a good microstructure and excellent heat storage and release
capacity. Irani et al. [77] utilized graphene and starch as shell and n-heptadecane as core to
prepare MEPCMs by self-assembly depending on the mechanism in Figure 9. The obtained
microcapsules had a regular spherical morphology with a phase change temperature of
23.13 ◦C and a latent heat of 174.30 J/g.
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At present, there are still few studies on the preparation of MEPCMs by coating PCMs
with biomass materials. It is mainly because of the complex preparation process and
high costs of microcapsules, which impede the development of MEPCMs. Therefore, it is
necessary to develop new technologies, simplify preparation processes, reduce costs, and
expand the application of biomass materials in MEPCMs.

3.3. Grafting by Copolymerization

Biomass-grafted composite PCMs adopt biomass materials as a fixed matrix on which
the PCMs are grafted and fixed with the help of a cross-linking agent. This makes the
molecular chain movement confined within the biomass network structure, thereby real-
izing the effective encapsulation of PCMs. Polysaccharide biomass materials are a good
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choice for the preparation of such composite PCMs because they contain a large number
of hydroxyl groups on the molecular chain, which can provide active sites for grafting
reactions [78,79].

In line with the polymerization mechanism in Figure 10, Yang et al. [80] prepared
novel composite PCMs by solvent-free bulk polymerization using PEG as PCMs, diphenyl-
methane diisocyanate (MDI) as a coupling agent, and xylitol as a molecular framework.
This composite PCMs can store or release heat through a solid–solid phase transition and
avoid leakage during solid–liquid transformation. It had the phase change temperature
and the latent heat of 41.65 ◦C and 76.37 J/g, respectively, and retains more than 40% of
the heat storage capacity of pure PEG. Similarly, PEG can also be selected as the functional
medium of phase change. Liu et al. [81] synthesized new solid–solid composite PCMs
of polyurethane with castor oil as the molecular skeleton and MDI or hexamethylene
diisocyanate (HDI) as a coupling agent. The composite PCMs prepared with HDI as the
coupling agent had better heat storage and release ability. Its phase change temperature
and latent heat were 51.4 ◦C and 117.7 J/g, respectively. Moreover, the composite PCMs
was not subjected to any decomposition at 250 ◦C, which implied good thermal stability.
Peng et al. [82] prepared four kinds of solid–solid PCMs capable of energy storage with
different cross-linking densities by using PEG as the functional phase change segment and
β-cyclodextrin as the molecular framework. They found that the cross-linking density
had a significant effect on the energy storage capacity of the composite PCMs, which was
inversely proportional to the heat storage performance. The composite PCMs with the
lowest cross-linking density had the highest heat storage and release capacity. Its phase
change temperature and latent heat were 60.5 ◦C and 114.8 J/g, respectively.
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Intermolecular chemical reactions are the most effective encapsulation method for
PCMs. However, overly efficient encapsulation restricts the molecular chain movement
of the phase change segments, resulting in poor heat storage capacity of the composite
PCMs. Moreover, grafting reactions have the disadvantages of complicated processes and
high energy and time consumption. They also require a cross-linking agent to achieve
cross-linking between molecules. Therefore, how to simplify the synthesis process, develop
green organic synthesis technologies, and improve materials properties has become the
future research focus for further development.

4. Multifunctional Biomass-Based Composite PCMs

At present, composite PCMs have been widely applied in energy-saving buildings,
intelligent clothing, solar energy utilization, power batteries, electromagnetic radiation,
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chemical sensing, and many other fields. In the future, with the diversification of applica-
tion scenarios, multifunctional composite PCMs will become an important research topic.
Researchers have modified PCMs by physical or chemical means, and efforts are made
to design and construct new composite PCMs with special functions such as photother-
mal conversion and thermochromism. Compared with traditional PCMs, functionalized
composite PCMs further improve the comprehensive performance, expand the application
scope, and create new ideas for the development of composite PCMs. However, intelligent
multifunctional PCMs aimed at meeting greater demands for materials utilization remain
to be developed.

4.1. Composite PCMs with Photothermal Conversion Ability

Solar energy is the most abundant and cleanest renewable energy in nature. Solar
radiation can be converted into heat energy and stored in PCMs, which can bridge the
intermittency and uncertainty of solar radiation to a large extent. Photothermal materials
can be divided by type into carbon-based materials, organic materials, metal-based mate-
rials, semiconductor materials, and other photothermal materials. A good photothermal
material should have a broad-spectrum absorption capacity. If photothermal materials and
organic PCMs are combined, the excellent optical absorption ability of the photothermal
materials can be leveraged to prepare composite PCMs with photothermal conversion and
storage ability. This will be an advanced energy conversion and utilization technology with
great potential and broad application prospects [83].

Hu et al. [84] synthesized novel composite PCMs having a photothermal conversion
ability, with waste coffee grounds doped with 1–5wt% reduced graphene oxide taken
as the support framework and a PEG as the functional medium for phase change. The
results demonstrated that after being doped with reduced graphene oxide, the coffee
grounds had a better 3D porous structure, which enhanced the uptake of PEG to 60.3%.
The addition of reduced graphene oxide was highly conducive to the light absorption of the
composite PCMs in the entire UV-Vis-NIR range, which started to store solar energy when
the illumination time reached 245 s. Chen et al. [85] carbonized natural wood at a high
temperature to produce biomass porous carbon. The porous matrix was then interacted
with PCMs, n-octadecane, during vacuum impregnation to form biomass wood-based
composite PCMs. Moreover, the surface layer of the composite PCMs was reinforced
with a thin graphite layer, which further enhanced the stability of n-octadecane during
phase change. As the matrix materials performed excellently in absorbing sunlight, the
composite PCMs showed a photothermal conversion efficiency of up to 97%. In addition,
the graphite layer enhanced the thermal conductivity of the composite materials and
improved its heat storage and release rate, which was more conducive to its use in practical
scenarios. Xie et al. [86] freeze-dried radishes and deposited a layer of polydopamine on
their surface. A PEG as PCMs was combined with the matrix materials by dipping method
with polydopamine as a binder to effectively prevent the leakage of PEG. In this way, a
kind of sandwich-structured composite PCMs was synthesized (Figure 11). Thanks to the
light absorption ability of polydopamine in a wide wavelength range, the composite PCMs
realized photothermal conversion followed by energy storage.

The composite PCMs with photothermal conversion ability address the common
problem of low solar energy utilization of PCMs and have the capacity of heat storage and
release compared with photothermal materials. However, they are still in the laboratory
stage, and no practical application has yet been reported. Currently, most of the research is
centered on their preparation and performance while less on the comparison of specific
PCMs, photothermal materials, and matrix materials. Additionally, the preparation process
is complicated, and costs are high in general. According to the requirements of materials
characteristics and application scenarios, selecting suitable photothermal materials and
preparation methods for composite PCMs is still the research focus.
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4.2. Thermochromic Composite PCMs

Thermochromic compounds generally consist of a coupler, a developer, and a co-
solvent. Few studies have been reported on the visualization of the phase change process
of PCMs with energy storage ability. Temperature visualization can be achieved if ther-
mochromic materials are added to those PCMs. If the phase change process is visualized,
the current ambient temperature can be easily determined without the aid of a thermometer,
which greatly facilitates people’s lives.

Yang et al. [87] selected crystal violet lactone (CVL) and bisphenol A (BPA) as the color
former and color developer, respectively, and mixed them with the PCMs 1-tetradecanol
(TD) to make thermochromic PCMs. A novel thermochromic wood-based composite PCMs
was prepared by loading the thermochromic PCMs into delignified wood by vacuum
impregnation (Figure 12). Its phase change temperature and latent heat were 34.31 ◦C and
118.5 J/g, respectively. Moreover, the addition of thermochromic materials brought about
an excellent reversible thermochromic ability of the composite PCMs, which can display
the phase change process and temperature in real time through the color alteration from
dark blue to off-white. Figure 13 shows the response of the composite PCMs to temperature
change. Similarly, with CVL/BPA/TD as thermochromic PCMs and bamboo with lignin as
support materials, Heng et al. [88] developed a new type of thermochromic bamboo-based
composite PCMs by vacuum impregnation, which underwent phase change at 40.8 ◦C and
had a latent heat of 113.3 J/g. In the range of 25–60 ◦C, the total color difference of the
composite PCMs changed with temperature, and the discoloration temperature was about
40 ◦C, consistent with the DSC results. The bamboo-based composite PCMs exhibited
excellent thermal properties and realized reversible thermochromism, thus having good
application prospects in thermal insulation, temperature control, and especially interior
decoration materials. Feng et al. [89] chose delignified bamboo as support materials and
loaded the thermochromic compounds [3,3′-bis(1-n-octyl-2-methylindol-3-yl) phthalide
(BP):BPA:TD] into the bamboo-based porous materials through the vacuum impregnation
method to prepare a bamboo-based reversible thermochromic composite materials. They
also investigated the effects of the BP-to-BPA ratio on the properties of reversible thermal
discoloration and phase change energy storage. The experimental results showed that the
synthesized bamboo-based reversible thermochromic composite PCMs had better ther-
mochromic properties and thermal storage capacity when the thermochromic compounds
were prepared at a mass ratio of 1:4:50 (BP:BPA:TD). The phase change temperature and
the latent heat of the composite PCMs were 40.5 ◦C and 115.1 J/g, respectively.
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The research on biomass-based thermochromic composite PCMs is still in its infancy,
with few reports at present. The types of materials studied are still limited, and the prepara-
tion methods are relatively simple, namely the vacuum impregnation of porous materials in
most cases. Therefore, researchers should strive to expand the scope of materials involved,
develop new preparation techniques (such as for thermochromic MEPCMs) and enrich the
forms and applications of thermochromic composite PCMs in future research.

4.3. Other Multifunctional Biomass-Based Composite PCMs

At present, multifunctional biomass-based composite PCMs still have great room
for development. In addition to the abovementioned two categories of multifunctional
biomass-based composite PCMs (photothermal conversion and thermochromism), other
kinds have also attracted the attention of researchers, such as biomass-based composite
PCMs with magnetothermal conversion, superhydrophobicity, and other functions.

After preparing carbon aerogel from kapok fiber, Song et al. [90] developed a kind
of biomass-based composite PCMs by vacuum impregnation with carbon aerogel as the
support materials and LA as the PCMs and then modified its internal microtubule structure
with Fe3O4 nanoparticles (Figure 14). In this way, the composite PCMs performed well
in magnetothermal conversion. The phase change temperature and the latent heat of
the composite PCMs were 44.6 ◦C and 167.1 J/g, respectively. The heat storage capacity
reached more than 95% of that of pure LA. In addition, Fe3O4 nanoparticles enabled the
composite PCMs to have not only excellent magnetothermal conversion performance but
also photothermal conversion ability and enhanced its thermal conductivity, playing the
role of “one agent with multiple effects”. Hydrophobicity is also vital to biomass-based
PCMs. If there is too much water, biomass materials are easily corroded by bacteria and
fungi, which affects the use of biomass-based composite PCMs. Yang et al. [91] prepared
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wood-based composite PCMs by vacuum impregnation with delignified wood as the matrix
materials and 1-tetraceol as the PCMs and sprayed a superhydrophobic coating on the
surface to further strengthen the PCMs and make the composite materials hydrophobic.
The results showed that the composite PCMs had a water contact angle of 155◦ due to the
superhydrophobic coating. In the actual humid environment, the wood-based composite
PCMs with the superhydrophobic coating performs better in heat storage and release.
Hydrophobicity enables biomass-based composite PCMs to work in a more complex
environment, further broadening their application scope.
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At present, the research on multifunctional biomass-based composite PCMs has not
formed a complete system, and plenty of fields remain to be explored, such as diversify-
ing the preparation process and PCMs morphology (e.g., multifunctional energy storage
MEPCMs), clarifying the impact of functional materials on composite PCMs while avoiding
negative effects, and striving to achieve the goals of “synergistic enhancement” and “one
agent with multiple effects”.

5. Conclusions

The combination of PCMs and biomass materials not only creates a new way for the
reuse of biomass materials but also provides a new idea for the research and development
of composite PCMs. This paper firstly introduces the basic properties, phase change
characteristics, and combining methods of several phase change materials commonly used
in composites with biomass materials, such as polyethylene glycols, paraffins, and fatty
acids, and the preparation methods of biomass-based composite phase change materials
are summarized, including porous adsorption, microencapsulation based on biomass shell,
grafting by copolymerization, etc., and the characteristics of each method are analyzed.
Finally, the latest research progress of multifunctional biomass-based composite phase
change energy storage materials is introduced. Although the application of biomass and its
derived materials in energy storage composite PCMs have made some achievements, it is
still necessary to further broaden the research scope of these raw materials because they are
abundant and actively explore the composite synergies of biomass materials and PCMs.

In the research and development of biomass-based composite PCMs, the priority
is to tackle the leakage problem during the solid–liquid conversion of traditional PCMs.
On this basis, it is necessary to fully exploit the potential properties of biomass and its



Polymers 2022, 14, 4089 15 of 18

derived materials and seek the best combination of them for new highlights. Future
research should be concentrated on the following areas: exploring more biomass and its
derived materials suitable for composite PCMs; finding new preparation methods for
biomass-based composite PCMs, simplifying preparation processes, and reducing costs;
and actively developing biomass-based composite PCMs that integrate multiple functions
to make their application more comprehensive and high-value. This paper systematically
compares and analyzes the methods for preparing biomass-based composite phase change
materials, points out the advantages and disadvantages of each method, and provides
theoretical guidance for the research and application of biomass-based composite phase
change materials.
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