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Abstract: Rice (Oryza sativa) is a globally important crop that plays a central role in main-
taining food security. This scientific review examines the critical role of genetic disease
resistance in protecting rice yields, dissecting at the molecular level how rice plants de-
tect and respond to pathogen attacks while evaluating modern approaches to developing
improved resistant varieties. The analysis covers single-gene-mediated and multi-gene re-
sistance systems, detailing how on one hand specific resistance proteins, defense signaling
components, and clustered loci work together to provide comprehensive protection against
a wide range of pathogens and yet their production is severely impacted by pathogens such
as Xanthomonas oryzae (bacterial blight) and Magnaporthe oryzae (rice blast). The discussion
extends to breakthrough breeding technologies currently revolutionizing rice improvement
programs, including DNA marker-assisted selection for accelerating traditional breeding,
gene conversion methods for introducing new resistance traits, and precision genome edit-
ing tools such as CRISPR/Cas9 for enabling targeted genetic modifications. By integrating
advances in molecular biology and genomics, these approaches offer sustainable solutions
to safeguard rice yields against evolving pathogens.

Keywords: rice diseases; R genes; QTLs; CRISPR/Cas9; sustainable agriculture

1. Introduction
Rice (Oryza sativa) is the primary food crop source for more than half of humanity and

is particularly important in Asia, where approximately 92% of the world’s rice-growing
area is cultivated [1,2]. As global population projections exceed 8 billion by 2025, agricul-
tural systems face the dual challenge of increasing yields by 50% while transitioning to
more sustainable practices [3]. This imperative makes controlling disease-related yield
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losses not just an agronomic concern, but a critical component of global food security and
sustainable development goals. Rice crops continue to face threats from various destructive
pathogens that have the potential to have severe economic impacts on agricultural com-
munities around the world [4,5]. The most destructive rice diseases include the fungal rice
blast, bacterial leaf blight, sheath blight, and bacterial panicle blight [5,6], each of which
presents unique production challenges (Table 1). Rice blast is particularly destructive, with
documented yield losses of up to 100% under epidemic conditions; these losses dispro-
portionately affect resource-poor regions where rice constitutes up to 70% of daily caloric
intake [7]. In developing countries where rice provides 50–80% of daily calories for over
3 billion people, disease outbreaks exacerbate food insecurity by reducing harvests and
increasing market prices, pushing vulnerable populations toward malnutrition. Bacterial
leaf blight impairs photosynthesis through leaf damage [8], while sheath blight, which
thrives in warm, humid conditions, can reduce yields by 50% [8]. Bacterial panicle blight
directly compromises grain development [9]. The insect-borne Tongro virus causes stunted
growth and leaf discoloration in rice, significantly reducing yield [8]. Table 1 provides a
comprehensive list of the characteristics and economic consequences of these pathogens,
highlighting the need for improved control measurements.

Table 1. Common rice diseases: etiology, symptomatology, and financial impact.

Disease Pathogen Symptoms Region and Year Economic Impact References

Rice Blast Magnaporthe
oryzae

Leaf lesions, neck
rot, panicle blast

Mid-South USA,
2016

Annual producer
gains of USD

69.34 million with
blast-resistant rice

adoption.

[10]

Bacterial
Blight

Xanthomonas
oryzae pv. oryzae

Water-soaked
lesions, wilting,

yellowing of leaves
India, 1980s

Yield losses up to
30% in the Punjab

region.
[11]

Sheath Blight Rhizoctonia solani

Lesions on leaf
sheaths, lodging,

reduced grain
quality

India (Uttar
Pradesh), 2015

Yield losses ranged
between 14.3% and

39.7% across
surveyed districts.

[12]

Maintaining rice productivity requires an integrated disease management strategy,
in which early detection is critical for timely intervention [13]. Traditional diagnostic
methods rely on visual symptoms and laboratory testing, which are time-consuming and
require technical expertise and therefore have limitations [14]. Understanding rice’s innate
defense mechanisms provides a foundation for developing sustainable solutions. The plant
immune system operates through a complex two-tiered defense strategy. The first layer,
called PAMP-triggered immunity [15], is activated when cell surface receptors recognize
conserved microbial patterns, triggering downstream defenses including kinase cascades,
oxidative burst, and defense gene activation [16,17] (Figure 1). Pathogens counteract this
by inhibiting the effector proteins of PTI, thereby establishing effector-triggered susceptibil-
ity [18]. Rice plants overcome this disruption by detecting resistance proteins of pathogen
effectors, initiating a more robust effector-triggered immunity response characterized by
local cell death and systemic resistance [18]. Modern breeding programs exploit these
natural defense systems to develop resistant varieties to reduce reliance on pesticides while
ensuring stable production [19].
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Figure 1. Mechanisms of plant immune responses to fungal, bacterial, and viral pathogens, including
PAMP-triggered immunity (PTI), effector-triggered immunity (ETI), activation of defense genes, and
systemic immunity, leading to resistance. Rice plants recognize pathogen-associated molecular pat-
terns (PAMPs) via cell surface receptors, initiating PTI through the mitogen-activated protein kinase
(MAPK) cascade and reactive oxygen species (ROS) burst, leading to defense gene activation [20,21].
Additionally, intracellular nucleotide-binding leucine-rich repeat receptor (NLR) proteins recognize
specific pathogen effectors, triggering ETI characterized by hypersensitive response and systemic
immunity [18,20]. Both pathways contribute synergistically to establishing resistance in rice, as
represented by the outcome of a resistant plant.

Modern breeding programs exploit these natural defense mechanisms to develop
varieties that reduce pesticide use by 30–50% while maintaining or improving yields [22,23].
Contemporary breeding combines three complementary approaches: conventional hy-
bridization techniques [24], DNA marker-assisted selection, and genetic engineering meth-
ods [25,26] (Figure 2). Key to these efforts is the identification and characterization of
resistance genes through molecular mapping, gene cloning, and transgenic line devel-
opment [27]. While natural genetic variation provides the necessary resources, breeders
complement this through mutagenesis and targeted genetic modification to overcome the
limitations of available diversity [28].

This review systematically examines genetic resistance mechanisms in rice, focusing on
molecular interactions between the host and pathogen, genetic determinants of immunity,
signaling networks, and defense regulation. With a particular focus on resistance to major
fungal, bacterial, and viral pathogens, Figure 2 illustrates modern breeding technologies,
including conventional methods, marker-assisted selection, and transgenic approaches,
which together have facilitated the development of the next generation of resistant varieties
that can meet global food security challenges. By bridging fundamental research with
practical breeding applications, we highlight pathways to develop rice varieties that can
meet rising global demand while reducing agriculture’s environmental footprint, a crucial
step toward achieving both food security and sustainability goals.



Plants 2025, 14, 1694 4 of 22

 

Figure 2. The figure outlines four key approaches: (1) conventional breeding (selection, mutation,
hybridization, and back-crossing) [29]; (2) marker-assisted selection (MAS, including marker-assisted
backcrossing (MABS), genome-wide association studies (GWAS), and genomic selection (GS)) [30];
(3) transgenic technologies (RNA interference (RNAi) and virus-induced gene silencing (VIGS)) [31];
and (4) DNA editing (identification of resistant/susceptible genes or mutated variants, genetic
modification via transgenes, and foreground/background selection) [32]. These methods collectively
target resistance mechanisms against bacterial, viral, and fungal pathogens in rice.

2. Rice–Pathogen Interactions at the Genetic Level
Strategic incorporation of resistance genes into rice varieties has become an essential

approach for sustainable disease management, environmental protection, and reduced
reliance on agrochemicals. Cutting-edge genome editing technologies, particularly the
CRISPR-Cas platform, now allow precise modification of the rice genome to enhance de-
fense responses to evolving pathogen populations [33]. Contemporary research efforts have
successfully identified multiple genetic components that confer broad-spectrum resistance,
including major R genes [34], defense regulatory elements [35], and quantitatively inher-
ited chromosomal regions (QTLs) [36]. Notably, comprehensive genome-wide association
analyses have identified key QTL clusters on chromosomes 5, 6, and 9 associated with
durable resistance to the bacterial wilt pathogen, providing valuable genetic targets for
breeding programs [37].

Recent studies have highlighted the crucial role of microRNAs (miRNAs) in regulating
rice immune responses against bacterial and fungal pathogens. For instance, Osa-miR398
has been shown to negatively regulate rice blast resistance by targeting genes involved in
reactive oxygen species (ROS) detoxification, including CSD1 and CSD2, thus modulat-
ing the oxidative burst during M. oryzae infection [38]. Similarly, Osa-miR164a has been
implicated in enhancing resistance to Xanthomonas oryzae pv. oryzae by targeting NAC
transcription factors involved in programmed cell death and pathogen defense [39]. These
miRNA-target modules demonstrate the layered complexity of post-transcriptional regu-
lation in rice–pathogen interactions and provide promising molecular targets for genetic
improvement strategies focused on durable resistance. Deployment of natural resistance
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genes in commercial rice varieties is often challenging, as they are associated with reduced
yield performance and rice quality parameters. This requires a thorough characterization
of two fundamentally different resistance mechanisms: qualitative resistance, mediated
by a single major gene with a dominant effect, and quantitative resistance, involving the
cumulative effects of multiple minor-acting genes. A proper understanding of these com-
plementary systems is essential for breeding rice varieties that achieve the optimal synergy
between robust disease resistance and superior agronomic performance.

2.1. Qualitative Resistance Mechanisms in Rice

Qualitative resistance in rice is marked by clear phenotypic differences that follow
predictable Mendelian inheritance patterns and are usually controlled by a small number of
genes with major effects. These significant R genes provide strong defense against specific
pathogen strains and can be efficiently identified and mapped through genetic screens [40].
A well-known example is the Sarawak landrace rice cultivar, where researchers isolated
a resistance gene effective against the rice blast fungus, confirming the qualitative nature
of this resistance [41]. This type of resistance operates on the gene-for-gene model, where
the interaction between the plant’s R genes and the pathogen’s avirulence (Avr) genes
triggers a hypersensitive response that blocks pathogen infection [37]. However, pathogens
can evolve to overcome this resistance, as seen with rice blast strains that have defeated
resistance conferred by genes like Pi2 and Pi9 through mutations in their Avr genes [24,26].

The genetic basis of qualitative resistance involves two key classes of proteins en-
coded by R genes: receptor-like kinases (RLKs) and nucleotide-binding leucine-rich repeat
(NLR) proteins, both crucial for plant immunity [42]. RLKs recognize general pathogen-
associated molecular patterns (PAMPs), while NLRs detect specific pathogen effectors.
These recognition events activate two defense pathways, PAMP-triggered immunity and
effector-triggered immunity [43], leading to the production of reactive oxygen species and
antimicrobial compounds that restrict pathogen growth [44]. NLR proteins are particu-
larly effective at inducing localized cell death to contain infections, a key mechanism in
preventing pathogen spread [45]. Research on the OsSPK1-OsRac1-RAI1 signaling pathway
has revealed a conserved defense mechanism among various NLR proteins in rice [46]. In
the rice genome, genes encoding RLKs and NLRs are often clustered in disease resistance
hotspots, which frequently overlap with quantitative trait loci (QTLs) linked to disease
resistance [47]. For example, QTL-seq analysis identified key resistance regions on chro-
mosomes 1, 9, and 10 against rice ear blight, with RLK and NLR genes as the primary
candidates [48].

A major limitation of qualitative resistance is its race specificity, making it susceptible
to evolving pathogens [49]. Xanthomonas oryzae pv. oryzae (Xoo), the bacterium causing
bacterial blight, is a classic example, as it can adapt to overcome certain R gene defenses.
Traditional farming has used multi-line breeding, growing different rice varieties with
distinct resistance genes to reduce pathogen selection pressure. Modern breeding programs
improve resistance durability by stacking multiple R genes into a single variety [50,51].
The Zhachanglong rice variety is an example, combining Xa3/Xa26, Xa22, and Xa31 genes
for broad-spectrum resistance against multiple Xoo strains [52]. Advances in genetic
engineering have also been promising. The N46(Xa23R) rice line, developed in Brazil,
contains an effector-binding element in the xa23 gene promoter, providing resistance
against multiple Xoo and Xoc strains without affecting yield [53].

2.2. Quantitative Resistance in Rice: Key Genetic Advances

Quantitative resistance in rice is governed by a complex network of multiple genetic
loci, each contributing small but cumulative effects to overall disease resistance [54]. Unlike
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qualitative resistance that depends on a single major gene for complete protection against
specific pathogens, quantitative resistance offers broader and more durable protection that
is less susceptible to pathogen adaptation [55]. This form of resistance involves numerous
genes participating in pathogen recognition, signal transmission, and hormonal regulation
within the plant [54]. The foundation of quantitative resistance lies in quantitative trait
loci (QTLs), which help mitigate diseases like rice streak necrosis virus (RSNV) and false
smut [56]. These QTLs are distributed across various chromosomal regions and influence
different defensive mechanisms to reduce disease impact. Significant progress has been
made in identifying and characterizing these QTLs, providing insights into the genetic
architecture of disease resistance. For instance, the qHBV4.1 locus has been established as a
major contributor to resistance against white heads disease [57]. Research on false smut
has also uncovered genomic regions rich in resistance genes, with the QTL qRFSr9.1 on
chromosome 9 showing particularly strong phenotypic effects, making it a prime target
for breeding programs. These QTLs correlate with critical resistance indicators such as
infection rates per plant and smut ball formation per panicle [58].

Additional studies have deepened our understanding of resistance mechanisms. Re-
search by Inoue and Hayashi demonstrated that the qPbm11 QTL, which provides blast
resistance in Miyazaki Mochi varieties, functions independently of the known Pb1 gene [59].
This finding suggests that combining multiple QTLs through gene pyramiding could en-
hance blast resistance. Similarly, genome-wide association studies by Zhang et al. [60]
highlighted the significance of jasmonic acid and salicylic acid pathways in regulating
resistance to sheath blight, suggesting that these hormonal pathways may be potential
targets for breeding strategies.

Further discoveries include the identification of qRFS12.01, a novel QTL associated
with false smut resistance, emphasizing the value of quantitative resistance given the
absence of completely resistant rice varieties [61,62]. Through QTL analysis, researchers
mapped a new resistance gene, OsDRq12, to chromosome 12. This gene belongs to the NLR
family and significantly boosts disease resistance in rice cultivars [63]. Large-scale genome-
wide association studies have identified 74 QTLs linked to resistance against panicle blight
and leaf blight, with the qPBR1 locus showing particularly strong, development-stage-
independent resistance [64]. Research by Okello et al. [37], using the MAGIC indica
panel, pinpointed three QTLs on chromosomes 5, 6, and 9 that confer broad resistance
against African bacterial blight strains, underscoring the need for novel resistance genes
against evolving pathogens. An important development has been the strategic combination
of multiple QTLs, particularly those conferring resistance to major diseases like blast,
sheath blight, and bacterial blight, into clusters within specific chromosomal regions
(Table 2) [43,65]. This clustering not only refines the genetic targeting of QTLs but also
facilitates the identification of candidate genes for breeding programs. These advances
enable scientists to substantially enhance rice resistance and develop more sustainable
disease management approaches in rice cultivation [66,67].

Table 2. Major QTLs and genes associated with resistance to important fungal and bacterial pathogens
in rice.

Gene/QTLs Pathogen Role References

qSB-9 R. solani Decreases the severity of sheath blight infection [68]
qSBR11 R. solani Promotes sheath blight resistance [69]

hb9-2 R. solani Imparts partial resistance to sheath blight [70]
qBlsr5a Xoo Increases host resistance to bacterial leaf streak [71]

qSBR11-1 Xoo Provides durable resistance across bacterial blight races [72]
Pi21 M. oryzae Offers partial resistance to M. oryzae [73]
Pi35 M. oryzae Provides partial resistance to M. oryzae [74]
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3. Gene-for-Gene Concept in Rice Disease Resistance
The gene-for-gene concept forms a fundamental framework for understanding rice–

pathogen interactions and plays a crucial role in developing disease-resistant rice varieties.
Originally proposed by Harold Flor in the 1950s [75], this model establishes that specific R
genes in the host plant interact with corresponding Avr genes in the pathogen. Extensive
research in rice has validated this principle through studies of its interactions with major
pathogens, including Xoo and M. oryzae, revealing the intricate molecular interplay between
host defenses and pathogen virulence mechanisms [76].

This concept has been particularly well documented in rice’s defense against bacterial
blight and blast disease, where the recognition of pathogen Avr proteins by plant R proteins
triggers a strong immune response (Figure 3). The interaction follows a precise molecular
recognition system, where the presence of both matching R and Avr genes leads to resistance,
while the absence or mutation in either component can result in susceptibility. These
findings have not only confirmed Flor’s original hypothesis but have also provided critical
insights for breeding programs aiming to develop durable resistance in rice cultivars
through the strategic deployment of R genes. The elucidation of genetic mechanisms such
as gene-for-gene interactions and the identification of specific resistance loci (e.g., Pi and
Xa genes) have provided a strong molecular foundation for modern rice breeding. These
insights not only clarify how plants mount defense responses but also guide the strategic
use of breeding technologies, such as marker-assisted selection and CRISPR-based genome
editing to introduce, pyramid, or fine-tune resistance traits in elite cultivars. The following
sections build upon these genetic principles by examining how breeders translate them into
practical strategies to develop resilient, high-yielding rice varieties capable of withstanding
evolving pathogen threats.

 

Figure 3. Schematic representation of effector-triggered immunity (ETI) in rice, illustrating the
interaction between pathogen-derived avirulence (Avr) proteins and host resistance (R) proteins.
Recognition of effectors such as AvrXa7, AvrPita, and AvrPiz-t by corresponding R proteins (Xa7,
Pi-ta, and Piz-t, respectively) activates a robust immune response in the host plant. These gene-for-
gene interactions are well characterized in Xanthomonas oryzae pv. oryzae and Magnaporthe oryzae
systems [77,78].
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3.1. Gene-for-Gene Resistance Mechanisms in Rice Against Xanthomonas oryzae

The interaction between rice and Xanthomonas oryzae (Xoo) operates through a precise
gene-for-gene relationship, where specific R genes in rice recognize corresponding Avr
genes in the pathogen [79]. This molecular recognition system serves as a cornerstone of rice
immunity against bacterial blight. A well-characterized example is the Xa23 gene in rice,
which confers resistance to Xoo strains carrying the matching avrXa23 gene [53]. Similarly,
other R genes, including Xa3, Xa2, xa5, and xa8, recognize their respective Avr counterparts
(avrXa3, avrXa2, avrxa5, avrxa8) and provide resistance in compatible rice varieties [24].
When an R protein detects its cognate Avr effector, it triggers a robust immune response.
For instance, Xa3 detects pathogen-associated molecular patterns (PAMPs) on bacterial
membranes, activating localized defense reactions that restrict pathogen spread [80]. This
often leads to hypersensitive cell death at infection sites, creating a physical barrier against
further invasion.

Central to this process is Xoo’s type III secretion system (T3SS), which delivers Avr
effectors directly into rice cells [81]. Recent studies have elucidated key aspects of these
interactions. For example, the Avr effector Xa7 binds to the promoter region of the rice Xa7
resistance gene, inducing a hypersensitive response that suppresses bacterial growth [82].
Similarly, research by Zou et al. [83] demonstrated how Avr recognition activates rice de-
fense pathways, effectively halting disease progression. These insights highlight the poten-
tial for leveraging R-Avr interactions to engineer broad-spectrum resistance in rice breeding
programs. A critical feature of rice–Xoo interactions involves transcription activator-like
effectors (TALEs), which Xoo secretes via T3SS to manipulate host gene expression [84].
TALEs function as virulence factors by activating susceptibility genes or suppressing plant
immunity [85]. However, rice has evolved countermeasure R genes like Xa1, Xa10, and
Xa23 that detect specific TALEs and mount a hypersensitive response to block infection [53].

This defense is sometimes circumvented by Xoo strains producing interfering TALEs
(iTALEs), which disrupt R gene recognition and enable immune evasion [84]. Such adap-
tations underscore the ongoing evolutionary arms race between rice and Xoo [86]. The
avrBs3/pthA gene family in Xoo plays a particularly significant role in modulating resis-
tance. These genes, which may exist singly or in clusters within the pathogen genome,
influence resistance patterns in rice [87]. The gene-for-gene model explains why specific
cultivars are resistant to bacterial blight while others remain susceptible. Notably, some R
genes (e.g., Xa3 and Xa21) share signaling pathways, suggesting partially overlapping yet
distinct defense mechanisms [88]. Many R genes, including Xa3, Xa26, and Xa4, encode
receptor-like kinases (RLKs) that recognize PAMPs and initiate immune responses such
as cell wall reinforcement and defense pathway activation [51]. These RLKs are pivotal
components of rice immunity, and deciphering their interactions could inform strategies
for developing disease-resistant rice varieties with durable immunity. By harnessing this
knowledge, breeders can design rice cultivars with stacked R genes or edited promoter
regions to outpace pathogen evolution and sustain crop protection.

3.2. Gene-for-Gene Resistance Mechanisms in Rice Against Magnaporthe oryzae

The genetic interactions between rice and the rice blast fungus Magnaporthe oryzae
(formerly M. grisea) exemplify a sophisticated coevolutionary arms race. The rice blast
fungus spreads through spores carried by the wind, germinating on rice seedlings and
forming adhesive organs to penetrate the tissue. Inside the host, it causes damage, produces
new spores, and completes this cycle in 5 to 7 days. The pathogen can survive in infected
residues and seeds during the season, leading to recurrent outbreaks (Figure 4). At the
core of this battle are specific R genes in rice, particularly the Pi genes (Pi-ta, Pia, Pii) that
recognize the corresponding Avr genes in the pathogen [5]. When a rice plant carrying a Pi
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gene encounters a blast strain with the matching Avr effector, it triggers a hypersensitive
response that halts fungal invasion. The Pi-ta/AVR-Pita interaction serves as a paradigm:
the cytoplasmic NLR protein encoded by Pi-ta directly binds the AVR-Pita effector, initiating
defense responses, including localized cell death, to contain the infection [89].

 

Figure 4. Life cycle of M. oryzae, showing key stages including spore germination, hyphal growth,
lesion development, sporulation, and sexual reproduction via perithecium formation [90,91].

This recognition system drives continuous adaptation on both sides. Pathogen popula-
tions evolve through Avr gene mutations and haplotype diversification to evade detection,
as seen in variants like AvrPi54 and AvrPii [92]. The emergence of novel effectors (e.g.,
AVR-Pi9, AVR-Mgk1) demonstrates the pathogen’s ability to circumvent existing resistance,
necessitating ongoing surveillance and adaptive breeding. To date, researchers have doc-
umented over 30 rice R genes and 12 M. oryzae Avr genes, revealing diverse recognition
mechanisms [44]. While some NLR receptors like Pi-ta detect effectors through direct
binding, others (e.g., Pik) employ integrated decoy domains for indirect recognition, as
shown in the Pik/AVR-Pik and Pia/AVR-Pia systems [93,94]. The evolutionary dynamics
vary across rice subspecies, with indica and japonica cultivars often exhibiting distinct
resistance spectra due to differential pathogen adaptation. Breeding strategies now empha-
size pyramiding multiple Pi genes (e.g., Pi2, Pi9, Pi54) to create durable, broad-spectrum
resistance [95]. The application of Pi genes in breeding programs has led to the develop-
ment of several successful rice cultivars with enhanced resistance to blast. For instance,
the cultivar IRBL9-W incorporates the Pi9 gene and has shown durable resistance to a
wide range of M. oryzae strains. Similarly, Putta Basmati 1509, which combines Pi2 and
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Pi54, has been widely adopted in India due to its broad-spectrum blast resistance. These
examples demonstrate how knowledge of specific R-Avr interactions can be harnessed to
develop and deploy resistant varieties in real-world agriculture. This approach leverages
the observation that combined R genes can collectively block diverse fungal strains. The
continued identification of novel Avr genes and their interactions with host NLR proteins
remains critical for developing next-generation blast-resistant rice, particularly as climate
change accelerates pathogen evolution. These efforts are further supported by advances in
effectoromics, which enable systematic screening of Avr gene diversity in field populations
to predict and counteract emerging virulence trends [96].

4. MAPK Signaling in Rice Immunity: Key Roles in Defense Against Xoo
Mitogen-activated protein kinase (MAPK) cascades serve as central regulators of rice

immune responses against Xoo infection. These signaling pathways are rapidly activated
upon pathogen recognition, initiating phosphorylation cascades that amplify defense mech-
anisms [97]. Transcriptomic analyses reveal that MAPK-mediated signaling drives critical
defensive processes, including cell wall fortification and biosynthesis of antimicrobial com-
pounds [98]. Key components like OsMKK6 and OsMPK4 form an interconnected network
that enhances resistance to bacterial blight [97]. Within hours of Xoo infection, MAPKs such
as OsMPK3, OsMPK4, and OsMPK6 are activated, implicating their role in early defense
responses [99]. These kinases phosphorylate transcription factors, including WRKY13 and
WRKY45, which subsequently orchestrate the expression of defense-related genes [100].
This coordinated action bridges local and systemic immunity, enabling comprehensive
pathogen resistance [101,102].

Concurrently, MAPK signaling induces structural defenses, such as callose deposi-
tion and lignin biosynthesis, thereby reinforcing physical barriers against bacterial inva-
sion [91]. However, Xoo employs counterstrategies to subvert these defenses, beyond its
well-characterized TAL effectors; the pathogen secretes additional virulence factors that
actively suppress MAPK activation [103]. This highlights the dynamic interplay between
rice immune signaling and bacterial evasion tactics. Deciphering the architecture of the
MAPK cascade and its manipulation by Xoo provides critical insights for developing novel
resistance strategies [104]. By targeting specific nodes within this pathway, either through
genetic engineering or precision breeding, researchers can potentially engineer rice varieties
with enhanced, durable resistance to bacterial blight. These approaches could focus on
stabilizing MAPK activation or blocking effector-mediated suppression to maintain robust
immune responses.

5. Conventional Breeding for Disease-Resistant Rice: Challenges
and Advances

Conventional breeding has long served as the foundation for developing disease-
resistant rice varieties, helping to safeguard yields and ensure global food security. Through
methods such as phenotypic selection, controlled crossing, and backcrossing, breeders have
successfully introduced resistance to major diseases like rice blast, bacterial blight, and
sheath blight [105,106]. A key strategy involves transferring resistance genes from wild
relatives or naturally resistant landraces into high-yielding but susceptible elite cultivars.
Notable examples include the introgression of the Pi2 and Pi9 blast resistance genes into
commercial rice varieties, significantly enhancing protection against this devastating fungal
pathogen [107]. Despite its successes, conventional breeding faces several limitations. A
major challenge is linkage drag, where undesirable traits from donor plants are inadver-
tently transferred alongside resistance genes. This can negatively impact critical agronomic
qualities such as yield potential, grain quality, or stress tolerance, reducing farmer adop-



Plants 2025, 14, 1694 11 of 22

tion of new varieties [108]. Additionally, traditional breeding is inherently slow, often
requiring 8 to 12 generations of meticulous crossing and backcrossing to achieve the ideal
combination of disease resistance and superior agronomic performance [109]. Another
critical issue is the durability of resistance: pathogens can rapidly evolve to overcome
single-gene resistance introduced through conventional methods, leading to breakdowns
in field efficacy [110]. Furthermore, balancing resistance with essential traits like high
productivity remains an ongoing challenge, as some resistance mechanisms may incur
fitness costs or alter plant physiology in ways that compromise yield [111].

To address these constraints, modern breeding has adopted marker-assisted selection
as a complementary tool. By using DNA markers linked to resistance genes, breeders can
precisely track and select desired traits while minimizing linkage drag [112]. This approach
accelerates the development of resilient varieties that maintain yield and quality, bridging
the gap between traditional breeding and advanced biotechnological solutions. While
conventional methods remain indispensable, integrating MAS and other precision breeding
techniques offers a pathway to more efficient and sustainable disease management in
rice cultivation.

5.1. Marker-Assisted Selection in Rice Breeding: Successes, Challenges, and Future Directions

Marker-assisted selection (MAS) has revolutionized rice breeding by enabling precise
introgression of resistance genes into elite varieties, significantly enhancing their ability
to combat major pathogens [113]. This approach has proven particularly effective against
devastating diseases like rice blast and bacterial blight, allowing breeders to develop
cultivars with durable, broad-spectrum resistance [28]. The technique’s success is evident
in several landmark achievements: in China, resistant lines such as Huahui 7713 and
Huahui 3006 were developed by incorporating the Pigm, Bph6, and Bph9 genes, leading
to high-yielding hybrids like Weiliangyou 7713 that maintain both disease resistance and
superior grain quality [28]. Similar success was seen in India, where MAS introduced
Xa21, xa13, and xa5 into aromatic rice varieties, creating lines with robust bacterial blight
resistance without compromising desirable traits [15].

However, MAS faces significant challenges that limit its effectiveness. The rapid
evolution of pathogens can render resistance genes ineffective over time, as seen with
some Xanthomonas oryzae strains that have overcome Xa23-mediated resistance [53].
Additionally, the process of stacking multiple resistance genes remains technically de-
manding and time-consuming, complicated by genetic interactions and environmental
influences [114]. Perhaps most critically, MAS typically targets specific pathogens or strains,
leaving crops susceptible to emerging diseases or new pathogen variants [115]. These
limitations highlight the need for complementary approaches to ensure durable resistance.
Looking ahead, the integration of MAS with emerging technologies offers promising solu-
tions [116]. CRISPR/Cas9 genome editing enables precise modification of resistance genes
or their regulatory elements, potentially broadening and stabilizing resistance [117]. High-
throughput phenotyping accelerates the identification and validation of resistance traits,
while combining MAS with integrated pest management strategies could provide more
sustainable disease control [118]. Despite its challenges, MAS remains an indispensable
tool in rice breeding, though its long-term success will depend on strategic integration
with these advanced approaches and careful consideration of region-specific agricultural
challenges. While MAS has significantly enhanced breeding precision, several limitations
persist. Stacking multiple resistance genes remains technically complex due to epistatic
interactions and linkage drag, where undesirable traits may co-segregate with beneficial
alleles. Environmental interactions may also affect the expression of QTLs or resistance
genes, leading to genotype-by-environment variability in disease response. To overcome
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these hurdles, breeders are now integrating MAS with genomic selection (GS) and high-
throughput phenotyping platforms, which allow for the simultaneous selection of multiple
traits with greater predictive power. Furthermore, the use of tightly linked or gene-specific
markers, such as SNPs derived from resistance gene sequences, has improved selection
accuracy and reduced linkage drag. These advances make MAS more robust, particularly
in combination with other precision breeding tools.

5.2. CRISPR/Cas9: A Revolutionary Tool for Enhancing Disease Resistance in Rice

CRISPR/Cas9 technology has revolutionized rice breeding by enabling precise genome
editing to enhance disease resistance, particularly against bacterial blight [53]. The system
works by using a designed single-guide RNA (sgRNA) to direct the Cas9 nuclease to spe-
cific DNA sequences, creating double-strand breaks that are subsequently repaired through
either error-prone non-homologous end joining (NHEJ) or precise homology-directed repair
(HDR) (Figure 5) [119]. This approach has successfully generated rice plants with improved
resistance to both bacterial blight and rice blast diseases [120]. A groundbreaking appli-
cation involves editing the OsSWEET14 susceptibility gene, which Xoo exploits through
its transcription activator-like effectors (TALEs) [121]. Researchers used CRISPR/Cas9 to
disrupt effector-binding elements (EBEs) in the OsSWEET14 promoter of Super Basmati
rice, creating edited lines (SB-E1 to SB-E4) that showed significantly reduced lesion lengths
and enhanced resistance compared to wild-type plants [122]. This strategy demonstrates
how targeted editing of host susceptibility factors can confer resistance without introducing
foreign DNA, offering a sustainable solution for disease management [123]. In fungal dis-
ease control, deletion of the Bsr-d1 susceptibility gene enhanced blast resistance in Japonica
rice, with protective effects evident from the seedling stage. Multiplex editing has proven
particularly powerful, as shown by simultaneous modification of Pi21 and OsSULTR3;6
genes, which conferred dual resistance to blast and bacterial leaf spot while preserving yield
potential [124]. Researchers have also successfully targeted systemic defense pathways,
such as creating OsS5H mutants that exhibit broad-spectrum resistance through salicylic
acid-mediated defense activation [125].

CRISPR/Cas9’s precision allows for sophisticated modifications like promoter en-
gineering, exemplified by editing the xa23 gene promoter to incorporate multiple EBEs,
resulting in durable resistance to bacterial blight and streak [53]. Importantly, these genetic
improvements can be achieved without compromising plant growth or grain quality. The
integration of CRISPR technology with conventional breeding and other biotechnological
tools presents a comprehensive strategy for developing next-generation rice varieties that
combine high productivity with robust, durable disease resistance and a critical advance-
ment for global food security in an era of evolving pathogen threats. Despite the promise of
CRISPR/Cas9 in rice disease resistance breeding, the technique is not without limitations.
Off-target mutations, unintended edits in non-target regions, pose a risk of unwanted
phenotypic changes or compromised plant fitness. Breeders are actively mitigating these
concerns by employing high-fidelity Cas9 variants (e.g., SpCas9-HF1, eSpCas9) and guide
RNA design tools that increase target specificity. Additionally, delivery methods such as
ribonucleoprotein complexes (RNPs) reduce the risk of stable integration and transiently
expose the genome to editing components, further minimizing off-target effects. Beyond
technical issues, regulatory hurdles, especially in regions where genome-edited crops are
treated similarly to GMOs, remain a significant challenge. To address this, researchers
are focusing on non-transgenic genome editing approaches, such as using CRISPR to gen-
erate edits without integrating foreign DNA, which may ease regulatory acceptance in
some jurisdictions.
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Figure 5. Genome editing strategies for developing disease-resistant rice. The figure illustrates
key approaches, including (1) disruption of susceptibility genes (e.g., NHEJ, OsSWEET14) [32], (2)
homology-directed repair (HDR) for introducing resistance alleles (e.g., xa23) [126], (3) multiplex
editing of multiple targets (e.g., Pi21, OsSULTR3,6), and (4) generation of broad-spectrum resistance
through edited genes (e.g., OsS5H mutant), compared to wild-type plants. Edited lines show enhanced
resistance to pathogens [127].

6. Development and Impact of Disease-Resistant Rice Varieties
Disease-resistant rice varieties represent a strategic breakthrough in combating major

rice pathogens through the targeted incorporation of resistance genes that strengthen the
plant’s innate defense mechanisms. These genetically enhanced cultivars have substantially
decreased dependence on chemical pesticides while promoting sustainable crop production
and boosting yield stability [128]. By integrating specific resistance traits, these varieties
maintain consistent productivity even under significant disease pressure, establishing
themselves as indispensable components of modern rice cultivation systems.

Several high-performing varieties exemplify this approach through their effective man-
agement of devastating diseases like bacterial blight and rice blast [129]. These cultivars,
often developed through meticulous breeding programs, showcase how genetic resistance
can be practically deployed to prevent disease outbreaks and minimize yield losses. Their
success stems from incorporating well-characterized resistance genes that trigger robust
immune responses upon pathogen recognition. The effectiveness of these varieties is
evident in their widespread adoption across different rice-growing regions, where they
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have demonstrated reliable performance against evolving pathogen populations. Table 3
summarizes key disease-resistant rice varieties along with their incorporated resistance
genes, highlighting their specific roles in controlling major rice diseases. These examples
underscore the critical need for ongoing research and breeding innovation to develop new
resistant varieties capable of countering emerging pathogen strains while maintaining
optimal agronomic performance. The continued development and deployment of such
varieties remain essential for ensuring global rice security in the face of persistent and
evolving disease threats.

Table 3. Prominent disease-resistant rice cultivars and their role in controlling plant diseases.

Resistant Genes Variety Disease References

Pi-1, Pi-2, Pi-33 C101A51 Rice blast [130]
Pi-2, Pi-54 Puta Basmati 1509 Rice blast [131]

Pi9 IRBL9-W Rice blast [30]
Xa23, Pi9 Super 1000 Bacterial blight, rice blast [132]

Xa21 IR72 Bacterial blight [133]
Xa21, Xa23 Minghui 63 Bacterial blight [134]

X4, X5, X13, X21 IR36 Bacterial blight [89]
Xa21, xa13, Xa5 Samba Mahsuri Bacterial blight [135]

Xa21 IRBB21 Bacterial blight [136]

7. Environmental Impact of Disease-Resistant Rice Varieties
The development of disease-resistant rice varieties represents a critical advancement

in sustainable agriculture, offering a powerful solution to reduce pesticide dependence
while addressing major threats to global rice production like bacterial leaf blight and
rice blast [104]. These genetically enhanced cultivars provide multiple environmental
benefits, primarily through dramatically decreased pesticide application. This reduction
lowers farming costs while preventing chemical runoff that contaminates waterways and
soils, thereby protecting aquatic ecosystems and maintaining soil health [28,137]. Beyond
pollution control, disease-resistant varieties actively promote biodiversity conservation
in rice-growing regions. By minimizing broad-spectrum pesticide use, they safeguard
beneficial insects, soil microbes, and aquatic organisms that form the foundation of healthy
agroecosystems [138]. This preserved biodiversity enhances natural pest control, improves
soil fertility, and increases ecosystem resilience to climate variability, all crucial factors for
sustainable rice production [139,140].

However, these benefits must be balanced against potential ecological risks, particu-
larly concerning gene flow to wild rice populations. Uncontrolled transfer of resistance
genes through cross-pollination could alter the genetic diversity of wild relatives, poten-
tially compromising their natural adaptive capacity to environmental stresses [141]. Such
genetic contamination might disrupt ecological balances and reduce the genetic reservoirs
needed for future crop improvement [142]. To maximize benefits while minimizing risks,
strategic implementation is essential. This includes maintaining buffer zones around resis-
tant varieties, continuous monitoring of wild populations, and developing containment
strategies for engineered genes. When properly managed, disease-resistant rice varieties
serve as a cornerstone of sustainable intensification, simultaneously boosting food security
and environmental protection [143]. Their responsible deployment demonstrates how
agricultural innovation can align with ecological preservation to meet the dual challenges
of productivity and sustainability in rice farming systems.
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8. The Future of Disease-Resistant Rice: Challenges and Opportunities
As global rice demand rises, developing disease-resistant varieties is essential to safe-

guarding food security. The field faces both transformative opportunities and complex
challenges that demand innovation and cross-disciplinary collaboration. Cutting-edge
gene editing tools like CRISPR/Cas9 have revolutionized rice breeding, enabling precise
modifications to disrupt susceptibility genes or introduce robust resistance traits. Yet,
hurdles remain; improving editing efficiency, minimizing off-target effects, and navigat-
ing regulatory landscapes must be addressed to fully realize this technology’s potential.
Climate change adds urgency to these efforts, as shifting temperatures and weather pat-
terns alter pathogen dynamics and geographic ranges. Future rice varieties must combine
disease resistance with resilience to abiotic stresses like drought, salinity, and extreme
heat. This requires integrated breeding strategies that simultaneously target biotic and
abiotic pressures, ensuring adaptability in a changing environment. Pathogen evolution
remains a persistent threat, necessitating durable solutions. Approaches like gene pyra-
miding (stacking multiple R genes), harnessing QTLs for stable partial resistance, and
mining wild rice germplasm for novel resistance sources will be critical. These strategies
can extend the longevity of resistance traits while reducing reliance on chemical controls.
Breakthroughs in multiomics technologies (genomics, transcriptomics, proteomics, and
metabolomics) promise to deepen our understanding of rice–pathogen interactions. By
uncovering new resistance mechanisms and precise molecular targets, these tools can
accelerate the development of precision-bred varieties with enhanced defenses.

However, technological advances must align with sustainable agricultural practices.
Reducing pesticide dependence through resistant varieties should complement integrated
pest management (IPM) systems, ensuring ecological balance. Equally important is ad-
dressing societal and regulatory concerns, fostering transparency, engaging stakeholders,
and establishing science-based policies will be key to deploying these innovations globally.
The path forward hinges on balancing innovation with responsibility. By uniting advanced
breeding tools, climate-smart strategies, and ecological stewardship, next-generation rice
varieties can deliver both high yields and long-term sustainability, securing food systems
for future generations.

9. Conclusions
The field of disease-resistant rice development has undergone transformative progress

through genetic and molecular breakthroughs. The gene-for-gene model has served as a
cornerstone for deciphering plant–pathogen interactions, guiding the identification and
utilization of critical resistance genes like the Xa series against bacterial blight and Pi genes
against rice blast. These discoveries have revolutionized breeding methodologies, enabling
precision strategies such as marker-assisted selection and gene pyramiding to create robust,
high-performing rice varieties. Emerging technologies, particularly CRISPR-based genome
editing, have further expanded the toolkit for enhancing disease resistance. By enabling
targeted modifications of susceptibility genes or regulatory elements, these approaches
allow for the development of resistant cultivars without compromising yield or quality.
Coupled with growing insights into plant immune mechanisms, from pathogen recognition
to defense signaling cascades, these innovations are making resistance breeding more
efficient and effective. However, the rapid evolution of pathogens threatens to overcome
single-gene resistance, while the polygenic nature of quantitative resistance complicates
breeding efforts. Additionally, integrating disease resistance with other vital traits, such
as drought tolerance or grain quality, remains a delicate balancing act. Climate change
exacerbates these challenges by altering pathogen distributions and infection dynamics,
demanding more adaptable varieties. Moving forward, a multi-disciplinary, integrated
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approach will be essential. Combining traditional breeding with cutting-edge molecular
tools, genomic selection, and high-throughput phenotyping can accelerate the development
of durable, broad-spectrum resistance. Equally critical is the adoption of sustainable agri-
cultural practices, such as diversified cropping systems and integrated pest management,
to prolong resistance efficacy. Success will hinge on strengthened collaboration among
breeders, pathologists, molecular biologists, and agronomists to address these complex,
interconnected challenges. By leveraging advances in science while maintaining ecolog-
ical and agronomic balance, the global community can ensure rice remains a resilient,
productive staple crop in the face of evolving threats to food security.
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