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Abstract
Viruses are obligate intracellular pathogens that are dependent on cellular machineries for their replication. Recent techno-
logical breakthroughs have facilitated reliable identification of host factors required for viral infections and better charac-
terization of the virus–host interplay. While these studies have revealed cellular machineries that are uniquely required by 
individual viruses, accumulating data also indicate the presence of broadly required mechanisms. Among these overlapping 
cellular functions are components of intracellular membrane trafficking pathways. Here, we review recent discoveries focused 
on how viruses exploit intracellular membrane trafficking pathways to promote various stages of their life cycle, with an 
emphasis on cellular factors that are usurped by a broad range of viruses. We describe broadly required components of the 
endocytic and secretory pathways, the Endosomal Sorting Complexes Required for Transport pathway, and the autophagy 
pathway. Identification of such overlapping host functions offers new opportunities to develop broad-spectrum host-targeted 
antiviral strategies.

Keywords  Virus–host interactions · Intracellular membrane trafficking · Endocytic pathway · Secretory pathway · ESCRT 
machinery · Autophagy

Introduction

Viruses have developed strategies to exploit host-cell 
machineries and organelles to both promote viral replica-
tion and evade antiviral responses. Due to the small size of 
their genome and the resulting limited proteome function-
ality, RNA viruses, in particular, rely on cellular functions 
for every stage of their life cycle. Whereas some cellular 
functions are usurped by individual viruses or a few related 
viruses, others are more broadly exploited by unrelated viral 
families. The identification and characterization of host fac-
tors that promote replication of multiple viruses can contrib-
ute to better understanding cellular biology and virus–host 
interactions, and lead to the discovery of novel targets for 
broad-spectrum host-targeted antiviral approaches.

One area of investigation focuses on better understanding 
the interactions between viral proteins and cellular pathways 
involved in intracellular membrane trafficking. The life cycle 
of viruses is dependent on the transport of proteins, viral 
genome, nucleocapsids, and/or virions between intracel-
lular compartments. Viruses thus hijack the host intracel-
lular membrane trafficking machineries to enter their tar-
get cells, transport to sites of replication within the cytosol 
(most RNA viruses) or the nucleus (most DNA viruses), 
form genome replication factories, transport from replica-
tion to assembly sites, form assembly complexes, transport 
to envelopment sites, acquire their envelope (if enveloped or 
quasi-enveloped), egress from the cell, and/or spread directly 
to neighboring cells. The transport of viral cargo molecules 
between intracellular organelles is a complex process that 
requires orchestration of multiple host and viral factors that 
act to recruit the cargo, curve the donor membrane, cut the 
neck of the budding vesicle, sort the vesicle to the acceptor 
organelle, and regulate these activities. While still incom-
plete, the discovery and characterization of the virus–host 
determinants and molecular mechanisms underlying these 
processes has already revealed overlapping mechanisms 
relevant to multiple viruses and attractive targets for novel 
broad-spectrum antiviral approaches.
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This review highlights some of the recent technologies 
that have advanced the fields of virus–host interactions, in 
general, and those of intracellular membrane trafficking, 
in particular. In addition, it describes several intracellu-
lar membrane trafficking pathways that are more broadly 
hijacked by viruses to promote their replication.

Advanced technologies for the study 
of virus–host interactions and intracellular 
membrane trafficking

Recent transformative technological advances have substan-
tially improved our ability to understand the complex inter-
action networks between viruses and their host and reliably 
identify host factors that are critical for viral infection. An 
important breakthrough was achieved by the establishment 
of high-throughput loss-of-function genetic approaches, 
based on the knockdown or knockout of genes, and their 
application for screening for virus–host interactions. RNA 
interference (RNAi) screens using targeted siRNA libraries 
for silencing the expression of intracellular membrane traf-
ficking genes revealed a large number of host factors crucial 
for the entry and release of hepatitis C virus (HCV) and the 
assembly and release of retroviruses [1–3]. Genome-wide 
siRNA screens identified multiple host factors essential for 
replication of various viruses, including human immunodefi-
ciency virus (HIV-1), HCV, West Nile virus (WNV), dengue 
virus (DENV), and influenza A virus (IAV) [4–8]. More 
recent, unbiased, genome-wide technologies that facilitate 
the complete ablation of gene expression enable a reliable 
identification of crucial host factors for viral infection. Hap-
loid genetic screening, which relies on insertional mutagen-
esis of genes in cultured haploid cell lines, has been used to 
discover multiple essential host factors, such as receptors 
for Ebola virus (EBOV) and Lassa virus (LASV) (reviewed 
in [9]). Genome-scale CRISPR-Cas screens have also been 
recently used to identify host factors that are critical for the 
replication of a number of viruses, including Zika virus 
(ZIKV), WNV, DENV, HCV, and HIV-1 [9–12]. The rela-
tive ease of use and reproducibility of CRISPR-Cas make it 
a powerful virus–human functional genomics tool [9, 13].

At the transcriptome level, our laboratory was involved 
in developing a novel virus-inclusive single cell RNA-Seq 
(viscRNA-Seq) approach to probe the host transcriptome 
together with intracellular viral RNA at the single cell level 
[14]. Applying viscRNA-Seq to monitor DENV and ZIKV 
infections in cultured cells revealed extreme heterogeneity 
in the level of virus abundance and enabled the identifica-
tion of host factors required for infection with one or both 
viruses, including proteins involved in membrane traffick-
ing [14]. Proteome-wide approaches to systemically iden-
tify virus–host interactions have also been developed and 

utilized. For example, affinity tagging and purification mass 
spectrometry was used to map the landscape of virus–host 
interactions of a number of viruses, such as HIV-1 [15]. 
Quantitative and highly sensitive microfluidics-based prot-
eomic approaches as well as protein complementation assays 
[16–18] now allow measurements of weak and transient 
interactions, such as those between membrane trafficking 
proteins and cargo (Kds in the µM range) [16–20]. Protein 
complementation assays also enable detection and charac-
terization of interactions involving membrane proteins in 
the relevant mammalian cell model and appropriate sub-
cellular compartments [21, 22]. Beyond these genomic, 
transcriptomic, and proteomic advances, high-throughput 
assays, such as those for viral entry or replication, cou-
pled with multichannel enzymatic or fluorescent readouts 
to detect several pathogens at once, allow a better control 
of experimental settings while identifying broad-spectrum 
interactions.

In parallel, the development of novel imaging technolo-
gies has fundamentally improved our ability to monitor 
intracellular vesicle budding events and virus particle traf-
ficking. The unprecedented resolution provided by some of 
the advanced imaging technologies enables understanding 
of both the ultrastructure and function of intracellular orga-
nelles. Confocal microscopy, cryo-electron microscopy, and 
electron tomography enable dissection of the composition, 
three-dimensional architecture, and biogenesis of intracel-
lular membranes, and have been used to study membrane 
alterations induced by several RNA viruses including HCV, 
DENV and HIV-1 [23–25]. Live-cell imaging approaches 
enable tracking of individual virus particles in real time and 
studying their co-trafficking with various host factors. For 
example, live-cell imaging analysis of individual infectious 
HCV particles harboring a tetracysteine (TC) tag within the 
core (capsid) protein (TC-core) and stained with the biarsen-
ical dye FlAsH revealed cellular secretory pathway compo-
nents that HCV particles co-traffic with and contributed to 
understanding the mechanisms of cell-free and cell-to-cell 
HCV spread [2, 22, 26]. Live-cell fluorescence microscopy 
was also used to study the location, dynamics, and molecu-
lar mechanisms of alphaherpesvirus particle egress [27]. In 
this case, a method based on total internal reflection fluo-
rescence (TIRF) microscopy was used to selectively image 
fluorescent virus particles near the plasma membrane, taking 
advantage of a virus-encoded pH-sensitive probe to visualize 
the precise timing and location of particle exocytosis [27]. 
Live-cell imaging in single cells has recently enabled direct 
visualization of the transport of HIV-1 genomic RNA from 
the nucleus and characterization of host factors required for 
this process [28].

Collectively, these technological breakthroughs have 
advanced the fields of virus–host interactions and mem-
brane trafficking and have revealed both unique mechanisms 
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specific to individual viruses as well as overlapping mecha-
nisms required by related and/or unrelated viruses.

Intracellular membrane trafficking pathways 
commonly required by viruses

The endocytic pathway

The majority of viruses hijack endocytic mechanisms to 
enter their target cells (reviewed in [29]). Viral entry starts 
with the attachment of viruses to attachment factors on the 
cell surface followed by binding to cellular receptors, which 
promotes virus endocytosis and triggers signaling pathways 
that enhance entry [29]. Clathrin-mediated endocytosis 

(CME), a major cellular ubiquitous route of receptor inter-
nalization, is a common endocytic route utilized by viruses, 
particularly of small and intermediate size [29] (Fig. 1). 
Virus entry via CME typically follows the route of viral 
receptors. Regardless of the specific receptor used, however, 
CME is dependent on the action of oligomeric clathrin and 
adaptor protein (AP) complexes that coordinate the recruit-
ment and assembly of clathrin into a polyhedral lattice at 
the plasma membrane as well as its coupling to endocytic 
cargo [30, 31]. For example, HCV, which enters its target 
(liver) cells via CME, is co-localized with various clathrin 
coat components (CLTB, CLTCL1, HIP1, and HIP1R) fol-
lowing its binding to several cellular receptors [1]. HCV is 
also co-localized with and its endocytosis is dependent on 
AP-2, a heterotetrameric complex that represents a major 

Fig. 1   Clathrin-mediated endocytosis in viral entry. Following attach-
ment, viruses bind to cellular receptors and activate signaling path-
ways involving receptor tyrosine kinases (depicted in the lavender 
box) to promote internalization of the receptor–virus complex via the 
route of the specific receptor. This process is dependent on clathrin, 
clathrin adaptors (shown in the green box), and actin and microtubule 

dynamics proteins (shown in yellow box), and is tightly regulated. 
Viral particles are then transported by clathrin-coated vesicles to vari-
ous endosomal compartments for uncoating of the viral genome and 
its penetration into the cytoplasm. Depicted are different endosomal 
compartments, specific host factors (blue panel), and examples of 
viruses utilizing them for penetration (maroon panel)
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component of clathrin-coated vesicles (CCV) derived from 
the plasma membrane destined for fusion with the early 
endosomes [32, 33]. AP2M1, the μ2 subunit of AP-2, rec-
ognizes tyrosine- or dileucine-based sorting signals, also 
known as internalization signals, within the cytoplasmic 
domains of transmembrane receptors [32, 34]. Although 
alternate clathrin adaptors can sustain endocytic uptake 
of certain receptors in the absence of AP-2, optimal coat 
assembly and trafficking typically requires AP-2 [33, 35]. 
Accordingly, the endocytosis of multiple viruses is depend-
ent on AP-2, either individually [36–39] or in combination 
with alternate endocytic adaptors, such as NUMB in the case 
of HCV [1, 40] or EPS15 and DAB2 in the case of EBOV 
[37]. Less commonly, CME of viruses is AP-2 independent, 
yet dependent solely on other alternate adaptors, such as 
EPN1 in the case of IAV [41]. It remains to be determined 
whether these differences in clathrin adaptor dependency 
between viruses reflect usage of distinct receptors or sort-
ing to distinct endosomal compartments [42]. The GTPase 
dynamin is also broadly required for the CME of RNA and 
DNA viruses, as indicated by studies examining the effect 
of its siRNA-mediated depletion, pharmacological inhibition 
by dynasore, and ectopic expression of a dominant-negative 
mutant on viral entry (reviewed in [43]). Dynamin appears 
to be involved both in the regulation of CCV generation and 
the scission of the endocytic vesicle neck [43].

The signaling pathways that regulate internalization of 
the receptor–virus complex are multifaceted, yet also appear 
to partially overlap amongst different viruses. Hijacking 
the signaling of receptor tyrosine kinases (RTKs), such as 
epidermal growth factor receptor (EGFR), a member of 
the ERBB family, is implicated in the life cycle of several 
viruses [44]. For example, binding of HCV particles to cells 
induces EGFR activation, and EGFR ligands enhance HCV 
entry, in part by increasing EGFR co-localization with the 
HCV co-receptor CD81 [45, 46]. EGFR signaling then 
promotes lateral traffic of CD81-bound HCV particles on 
the plasma membrane to tight junctions and enhances the 
formation of stable complexes between CD81 and another 
HCV co-receptor, namely claudin 1 (CLDN1) [45–48]. 
EGFR-mediated signaling also appears to be involved in the 
endocytosis of IAV [49] and entry and/or post-entry events 
of herpes simplex virus 1 (HSV-1) [50], adeno-associated 
virus serotype 6 (AAV6) [51], and possibly human cyto-
megalovirus (HCMV) [52] (albeit data with respect to the 
latter are conflicting [53]). EPHA2, another member of the 
ERBB family of RTKs, is required for the entry of certain 
viruses, including HCV, Kaposi’s sarcoma-associated her-
pesvirus (KSHV), and Epstein–Barr virus (EBV) [45, 54, 
55]. Finally, the RTK AXL is a known signaling receptor 
for multiple RNA viruses, including DENV, EBOV, and pos-
sibly ZIKV [56–61].

Some studies have shed light onto the signaling pathways 
that control CME of viruses downstream of these RTKs, but, 
overall, these mechanisms remain incompletely character-
ized. Signaling downstream of EGFR involves activation 
of the GTPase HRAS that functions as a key host signal 
transducer for EGFR-mediated HCV entry, and potentially 
for the entry of IAV and measles virus (MeV) [47]. Addi-
tional signals commonly activated by viruses induce actin 
cytoskeleton rearrangement that enables viral internaliza-
tion. HCV binding to CD81 activates the RHO GTPase fam-
ily members RAC1, RHOA, and CDC42, which are thought 
to modify cortical actin filaments and allow lateral mobility 
of HCV–CD81 complexes to sites of cell–cell contact [45, 
47, 48, 62, 63]. RHOA signaling also appears to be initi-
ated upon binding of HCMV and other herpes viruses to the 
ανβ3 integrin, resulting in local F-actin rearrangement that 
facilitates the passage of the virus through the actin cortex 
[64]. Activation of the phosphatidylinositol 3-kinase (PI3K)/
Akt pathway by IAV and herpes viruses, including EBV [49, 
65] and KSHV [66], similarly promotes actin remodeling. 
Proteins linking clathrin and actin (EPN1 and EPN3) and/
or those controlling actin polymerization (CFL1, CDC42, 
and ROCK2) are required for mediating the entry of multi-
ple other viruses including HCV, HIV-1, EBOV, respiratory 
syncytial virus (RSV), rotaviruses, and coronaviruses (CoV) 
[1, 67, 68]. Interestingly, CME of Borna disease virus (BDV, 
Bornaviridae family) is thought to be dependent on microtu-
bules but not actin dynamics [69]. Regulation of viral inter-
nalization by microtubules has also been implicated in the 
CME of other viruses including flaviviruses and infectious 
hematopoietic necrosis virus (IHNV, Rhabdoviridae family) 
[70, 71].

Further regulation of CME that is broadly exploited for 
viral entry is provided by the two cellular kinases AP2-
associated protein kinase 1 (AAK1) and cyclin G-associated 
kinase (GAK). AAK1 and GAK recruit clathrin and AP-2 
to the plasma membrane and phosphorylate a T156 residue 
within AP2M1, thereby stimulating its binding to cargo pro-
teins and enhancing cargo recruitment, vesicle assembly, and 
efficient internalization [72–78]. AAK1 and GAK regulate 
CME of cellular receptors also via the alternate sorting adap-
tors NUMB and EPN1, and are involved in CCVs uncoat-
ing and receptor recycling from early/sorting endosomes to 
the plasma membrane [77, 79]. Notably, both AAK1 and 
GAK are important regulators of EGFR internalization [77] 
and possibly EGFR signaling [80–86]. Our laboratory has 
demonstrated that these kinases regulate HCV entry at a 
postbinding step via the regulation of EGFR endocytosis and 
phosphorylation of both AP2M1 and NUMB [40]. AAK1 
and GAK also regulate the entry of DENV, the unrelated 
EBOV, and likely a large number of other viruses that utilize 
these clathrin adaptors for their entry [87].
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Following their internalization, the endocytic vesicles 
are sorted into endosomal compartments, where various 
triggers, such as acidification, induce membrane fusion 
and release of the viral genome into the cytoplasm. The 
precise endosomal compartment used as the site of virus 
penetration into the cytoplasm differs amongst various 
viruses (Fig. 1). HCV penetrates in the early endosomes, 
as indicated by its co-transport with RAB5A-positive 
endosomes, the inhibitory effect of dominant-negative 
mutants of early but not late endosomal markers on HCV 
entry, and the dependence of HCV entry on endosomal 
acidification [1, 88, 89]. The entry of DENV, WNV, Sem-
liki forest virus (SFV), vesicular stomatitis virus (VSV), 
and adenovirus (ADV) is also dependent on RAB5 and 
not the late endosomal marker RAB7 [90–92]. In contrast, 
IAV appears to require both the early and late endosomes 
for its entry [91]. Other viruses, such as human rhinovirus 
(HRV) serotype 2 and human papillomavirus 16 (HPV16) 
are thought to penetrate the cytoplasm in maturing/late 
endosomes [29]. Functional genomic screens revealed a 
number of endosomal functions that are critical for viral 
entry, some of which are required by several viruses. 
For example, ribonuclease K (RNASEK), a transmem-
brane protein that associates with the vacuolar ATPase 
(V-ATPase) that facilitates endosomal acidification is criti-
cal for the entry of multiple viruses including HRV, IAV, 
and DENV, by mediating both CME and non-CME [70, 
93]. EBOV and Marburg virus (MARV), which enter in 
part via CME [37], hijack a unique endo-lysosomal path-
way. This pathway involves the cholesterol transporter 
protein Niemann–Pick C1 (NPC1), the vacuole protein-
sorting complex (homotypic fusion and protein sorting, 
HOPS) that mediates fusion of endosomes and lysosomes, 
and several factors involved in biogenesis of endosomes 
(phosphoinositide kinase, FYVE-type zinc finger contain-
ing; PIKFYVE) and lysosomes (biogenesis of lysosomal 
organelles complex 1; BLOC1S1/S2), and in targeting of 
luminal cargo to the endocytic pathway (N-acetylglucosa-
mine-1-phosphate transferase alpha and beta subunits; 
GNPTAB) [94].

Several other endocytic mechanisms are hijacked either 
individually or in concert with CME to promote entry of 
certain viruses. Macropinocytosis, an endocytic mecha-
nism involved in fluid uptake into cells, appears to play a 
potential role in the entry of viruses including filoviruses, 
poxviruses, adenovirus, HIV-1, IAV, and picornaviruses 
[29, 95]. A caveolae-dependent endocytosis mechanism 
is utilized by hepatitis B virus (HBV), enteroviruses, 
IAV and other unrelated viruses [96]. Finally, bypassing 
the endocytic route via direct fusion of the viral enve-
lope with the plasma membrane has been implicated 
in the entry of some viruses, such as alpha viruses and 

alphaherpesviruses [29, 97], yet the cellular machineries 
mediating this entry route are incompletely understood.

The secretory pathway

The secretory pathway consists of the endoplasmic reticulum 
(ER), the Golgi apparatus, and vesicles that traffic between 
these two structures or in post-trans-Golgi network (TGN) 
compartments prior to exiting the cell via exocytosis. 
COPII-coated vesicles sort in the anterograde route from 
the ER to the Golgi, whereas COPI-coated vesicles sort in 
the retrograde route from the cis-Golgi back to the ER and 
between Golgi cisternae [98] (Fig. 2). CCVs and vesicles 
whose coat protein(s) are yet to be identified sort in post-
Golgi pathways. As summarized below, viruses have been 
shown to hijack components of each of these sorting path-
ways to mediate various steps of their life cycle.

Anterograde (ER‑to‑Golgi) transport (Fig. 2)

Multiple RNA viruses remodel intracellular membranes 
derived from the secretory pathway to generate specialized 
sites for their RNA replication and/or assembly. This topic 
was thoroughly reviewed in [99–101] and will, therefore, be 
summarized only briefly here. HCV, for example, promotes 
the formation of a “membranous web” (MW), composed of 
single and double membrane vesicles [23, 102]. Since these 
vesicles co-localize with the viral RNA and the non-struc-
tural proteins, they are thought to represent the platforms 
upon which the virus replicates its genome [23, 102]. These 
membrane structures are derived primarily from the ER, 
but contain elements from endosomes, mitochondria, lipid 
droplets (LDs), and other compartments [23]. Similar double 
membrane vesicles are induced by the unrelated coronavi-
ruses [103] and arteriviruses [104]. The flaviviruses DENV 
and WNV also utilize ER-derived membranes to support 
their RNA replication, yet the morphology of these struc-
tures is different and resembles convoluted membranes [24]. 
Poliovirus (PV) induces the formation of single membrane 
vesicles that then evolve into double membrane vesicles, 
which are thought to be derived in part from anterograde 
membrane traffic vesicles, as they are co-localized with 
components that form the outer cage of COPII (SEC13 and 
SEC31) [105], and/or from cis-Golgi elements [105, 106]. 
Vaccinia virus (VV), which, unlike most DNA viruses, rep-
licates in the cytosol, is also thought to rearrange ER mem-
branes to enclose discrete cytoplasmic foci for its replication 
[107].

Among the subverted cellular proteins shown to be 
implicated in proper formation and/or maintenance of the 
HCV MW and the membranous structures induced by 
other RNA viruses is the lipid kinase phosphatidylinositol 
4-kinase III alpha (PI4KIIIα). PI4KIIIα increases the level 
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of intracellular phosphatidylinositol 4-phosphate (PI4P) 
[108–110], which has a highly negatively charged head 
group that causes membrane curvature [111]. In addition, 
PI4P recruits viral and/or host proteins, such as the lipid 

transfer proteins oxysterol-binding protein (OSBP) and 
four-phosphate adaptor protein 2 (FAPP2), both of which 
were shown to be essential for HCV replication and MW 
morphology [112–114]. PI4KIIIβ, another member of the 

Fig. 2   Anterograde and 
retrograde transport in viral 
infections. Schematic of 
COPII-mediated ER-to-Golgi 
(anterograde) and COPI-medi-
ated Golgi-to-ER (retrograde) 
vesicle transport and various 
proviral roles which they play 
in the life cycle of viruses (grey 
panels). Shown are examples of 
viruses (maroon panels) and the 
host factors which they usurp 
(blue panel). RuV, Rubella virus 
(Togaviridae); UUKV, Uuku-
niemi virus (Bunyaviridae)
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class III phosphatidylinositol 4-kinases, is a Golgi lipid 
kinase important for Golgi structure and function that is also 
broadly implicated in replication of RNA viruses, including 
some HCV genotype 1 (but not 2) isolates [2, 115], flavi-
viruses, and enteroviruses [99, 110]. Similar to PI4KIIIα, 
PI4KIIIβ generates uncoated PI4P lipid-enriched organelles, 
which are essential for the formation of viral RNA replica-
tion complexes [99, 116]. The activity of PI4KIIIβ in these 
viral infections is regulated by the ADP-Ribosylation Factor 
1 (ARF1) GTPase and its guanine nucleotide exchange fac-
tor GBF1 [99, 116].

Since the genomes of many RNA viruses, such as mem-
bers of the Flaviviridae family, encode an ER-targeted 
viral polyprotein that contains signal sequences and viral 
glycoproteins, these viruses hijack additional ER functions 
beyond the formation of replication sites. Recent CRISPR-
Cas and viscRNA-Seq screens revealed that flaviviral infec-
tions require several subunits of the translocon-associated 
protein (TRAP) complex (subunits SSR1, SSR2, and SSR3, 
RPL31, and TRAM1) and the SEC61 protein-conducting 
channel (subunits SEC61 and SEC63), which together medi-
ate protein translocation into the ER lumen [11, 12, 14]. 
HIV-1 and IAV are also thought to be dependent on SEC61-
mediated cotranslational translocation for the biosynthesis of 
their glycoproteins and effective replication [117]. Several 
components of the ER-associated signal peptidase com-
plex (SPCS) and the protease histocompatibility minor 13 
(HM13), which cleave the signal peptide after protein trans-
location into the ER, were also identified as critical for the 
life cycle of members of the Flaviviridae family [11, 12, 
14]. For example, SPCS1 is essential for cleavage of struc-
tural flaviviral proteins (prM and E) and secretion of flavivi-
ral particles as well as for HCV infection [12]. SPCS1 is not 
required for infections with several unrelated viruses (alpha-, 
bunya-, and rhabdo- viruses) [12], yet its requirement for 
the life cycle of other unrelated viral families remains to be 
elucidated. In addition, subunits of the oligosaccharyltrans-
ferase (OST) complex, which mediates N-linked glycosyla-
tion of some ER proteins, are required for DENV and other 
flaviviral infections, but not for HCV infection [11, 14, 118]. 
Whereas DENV RNA replication is dependent on the pres-
ence of both OST isoforms (STT3A and STT3B), ZIKV, 
yellow fever virus (YFV), and WNV exclusively depend on 
the STT3A OST complex [11]. STT3A has also been identi-
fied as an important factor for HIV-1 infection in proteomic 
and transcriptomic screens [5, 119]. Host proteins involved 
in other ER functions, such as ER-associated degradation 
and heat shock responses, are used by flaviviruses, as well 
[11, 12, 14].

Certain enveloped viruses acquire their envelope by 
budding into compartments of the early secretory path-
way. These include viruses from the Flaviviridae (likely 
ER) [120], Coronaviridae and Poxviridae [ER-Golgi 

intermediate compartment (ERGIC)] families [121, 122], 
and members of the Bunyaviridae and Togaviridae fami-
lies (Golgi) [123–125]. Following budding, these viruses 
are transported to the trans-Golgi network while utilizing 
components of the COPII complex itself and other proteins 
involved in vesicle transport. The transport of HCV parti-
cles from the ER to the Golgi, for example, is thought to 
be in COPII vesicles, since HCV uses the secretion-asso-
ciated RAS-related GTPase 1A (SAR1A) and other com-
ponents of ER-to-Golgi transport [2, 126, 127]. SAR1A is 
also implicated in very low-density lipoprotein (VLDL) 
secretion, pointing to overlaps between the maturation of 
HCV particles with that of VLDL secretion [128].

Similar mechanisms mediate the transport of viral 
and/or host proteins required for assembly of viruses that 
bud at the plasma membrane. For instance, to mediate 
its transport to the plasma membrane, the VP40 protein 
of the filoviruses EBOV and MARV is thought to inter-
act specifically with SEC24, a component of the inner 
shell of COPII vesicles, which functions in cargo bind-
ing [129]. The alphavirus chikungunya (CHIKV) appears 
to hijack the COPII components SEC23 and SEC24 and 
the COPII-associated small GTPases (SAR1A or SAR1B) 
[130]. Yet, the precise stage of the CHIKV life cycle 
mediated by these factors and the underlying mechanism 
remain unclear [130]. In addition, the glycoproteins of the 
unrelated arenaviruses (Junin, JUNV; LASV; Machupo, 
MACV; lymphocytic choriomeningitis, LCMV), hantavi-
ruses (Sin Nombre, SNV; Andes, ANDV), and filoviruses 
(EBOV, MARV) are thought to bind ERGIC-53, a cargo 
receptor required for glycoprotein trafficking within the 
early secretory pathway, to mediate their trafficking to 
budding sites [131]. ERGIC-53 is also incorporated into 
virions [131].

The life cycle of non-enveloped viruses is also depend-
ent on COPII vesicles for transport events, as exemplified 
by parvovirus. Parvovirus particles are engulfed by COPII-
coated vesicles and traffic from the ER to Golgi during viral 
release in a process that is thought to be dependent on the 
anterograde factors SEC13–SEC31, SEC23–SEC24, and 
SAR1A [132].

Trafficking of viral particles and viral glycoproteins via 
the ER-to-Golgi pathway is regulated by RAB1. RAB1B 
is involved in regulating ER-to-Golgi transport of HCV 
particles [133] and the envelope proteins of HIV-1 and 
VSV [5, 134]. Moreover, TBC1 domain family member 20 
(TBC1D20), a RAB1 GTPase-activating protein (GAP), 
interacts with the HCV non-structural 5A (NS5A) protein 
and is required for HCV infection [135, 136]. Overexpres-
sion of TBC1D20 disrupts Golgi morphology, blocks ER-
to-Golgi transport of the HIV-1 and VSV glycoproteins to 
assembly sites on the plasma membrane, and perturbs infec-
tivity [134, 135].
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Retrograde (Golgi‑to‑ER) transport (Fig. 2)

The 7-subunit COPI complex is recruited onto the Golgi 
membrane to form vesicles under the regulation of the 
GTPase ARF1. Recognition and recruitment of membrane 
cargo proteins to these vesicles are via the interactions 
between dibasic (KKXX) domains on their cytoplasmic tails 
and the γ subunit of COPI [137]. The vesicle membrane 
then undergoes curving via activity of COPI and/or ARF1 
and buds via the action of Brefeldin-A ADP-Ribosylated 
Substrate (BARS), which mediates the fission step [138]. 
ARF1 is activated by the three GTPase-activating proteins 
(GAPs) ARFGAP1, ARFGAP2, and ARFGAP3, and is 
deactivated by GBF1 (Golgi-specific brefeldin-A-resistant 
guanine nucleotide exchange factor 1).

Studies utilizing siRNA-mediated depletion of vari-
ous subunits of the COPI complex, ectopic expression of 
a dominant-negative mutant of ARF1, and/or treatment 
with the GBF1/ARF1 inactivating compound brefeldin-A 
(BFA) have revealed that COPI and ARF1 are required for 
infection with multiple RNA and DNA viruses, including 
HCV, CHIKV, VV, IAV, and the enteroviruses echovirus 
11, enterovirus 71 (EV71), and poliovirus (PV) [139]. In 
the case of coronaviruses, such as severe acute respiratory 
syndrome-coronavirus (SARS-CoV), a dibasic motif in a 
cytoplasmic region of the spike protein is homologous to 
dibasic motifs found within host cargo proteins and mediates 
direct binding to COPI [140]. Both GBF1 and ARFGAP1 
are required for effective HCV infection and the former also 
for CHIKV infection [130, 141, 142].

The ε subunit of COPI was recently found to be over-
expressed in DENV infected single cells in correlation with 
the intracellular viral abundance via viscRNA-Seq [14]. 
Transport of the capsid protein of DENV and its accumu-
lation on the early assembly sites on lipid droplets (LDs) 
via a non-canonical GBF1-ARF1/ARF4-COPI pathway is 
one proposed mechanism for the role of COPI in DENV 
infection [143]. In the case of coronaviruses, COPI has been 
implicated in directing the CoV S protein to the ERGIC near 
the viral assembly sites [140]. The precise role mediated 
by the COPI machinery in viral infections remains largely 
unknown otherwise.

The β subunit of COPI was reported to localize to mem-
branous replication complexes in cells infected by echovirus 
11 [144]. Moreover, RNA replication of various viruses has 
been shown to be susceptible to BFA and/or suppression 
of ARF1 expression [139]. Similarly, infections with DNA 
viruses, such as BK virus and simian virus 40 (SV40), were 
reported to use COPI to mediate viral trafficking based on 
their susceptibility to BFA treatment [145, 146]. Neverthe-
less, since, in addition to regulating COPI, ARF1 regulates 
actin and PI4-KIIIβ [115, 147], it is possible that ARF1’s 
role in these viral infections is mediated via activation of 

these other cellular factors rather than COPI. Indeed, high-
resolution confocal imaging in cells infected with enterovi-
ruses and flaviviruses did not detect COPI in viral replication 
complexes [99]. Moreover, decoupling GBF1/ARF1 activ-
ity from COPI recruitment to membranes, while favoring 
PI4-KIIIβ recruitment, mediated the formation of these viral 
replication complexes [99]. These findings emphasize that to 
establish a role for the COPI machinery in viral infections, it 
is critical to probe its functional relevance directly and avoid 
relying solely on susceptibility to BFA.

COPI coats are also found in vesicles involved in other 
trafficking processes including endocytosis, autophagy, and 
anterograde transport in the secretory pathway. This may 
explain the proposed role of COPI in other stages of the life 
cycle of certain viruses, such as the entry of VSV [148].

Post‑Golgi transport (Fig. 3)

The majority of viruses utilize the post-Golgi pathway for 
continued maturation of their envelope proteins and their 
transport to the plasma membrane. Enveloped RNA viruses 
that acquire their envelope primarily by budding via the 
plasma membrane, such as HIV-1, use this pathway primar-
ily for maturation and transport of their envelope proteins to 
assembly sites [149]. Enveloped RNA viruses that acquire 
their envelope by budding into ER and/or Golgi membranes 
typically hijack this pathway also for the transport of viral 
particles from the TGN to the plasma membrane, either 
directly and/or via recycling endosomes, and for exiting the 
cell via exocytosis, as exemplified by HCV [2]. Enveloped 
DNA viruses, such as alphaherpesviruses, are thought to 
utilize this pathway for trafficking viral membrane proteins 
to sites of secondary envelopment (thought to be in part on 
trans-Golgi membranes [150]), where the capsids also accu-
mulate after being transported from the nucleus. Upon their 
secondary envelopment, the virion transport vesicles are 
thought to traffic via the post-Golgi pathway to the plasma 
membrane [27].

Similar to endocytosis, intracellular membrane traffick-
ing in the secretory pathway relies to a large extent on the 
interactions between adaptor protein (AP) complexes and 
tyrosine- or dileucine-based motifs within the transmem-
brane cargo [32]. Specifically, the AP-1A, AP-1B, and AP-4 
complexes all facilitate sorting in post-Golgi compartments 
(vs. the AP-2 complex that sorts in the endocytic pathway) 
[151, 152]. Nevertheless, these secretory adaptors function 
in physically and functionally distinct membrane domains. 
AP-1A typically mediates sorting from TGN to recycling 
endosomes; AP-1B from TGN to the basolateral membrane, 
whereas AP-4 is thought to facilitate exiting from the TGN 
and sorting in both the endosomal and basolateral pathways 
[32, 153–157].
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Our laboratory has recently reported that HCV dif-
ferentially hijacks these AP complexes to facilitate traf-
ficking of virus particles during the release of cell-free 
virus and the direct spread of virus into neighboring cells 
(cell-to-cell spread) [22]. Two dileucine-based motifs in 
the C-terminus of the HCV non-structural 2 (NS2) pro-
tein mediate binding to AP-1A, AP-1B, and AP-4, and 
virus release [22]. Furthermore, while these three com-
plexes are required for HCV release and cell-free infec-
tivity, AP-1B and AP-4, but not AP-1A, are involved 
in mediating cell-to-cell spread [22]. Live-cell imaging 
revealed that, whereas AP-1A, AP-1B, and AP-2 co-traffic 
with HCV particles over short distances, two patterns of 
movement characterize HCV particles that co-traffic with 
AP-4: a slow, short-range, and a fast, long-range pattern 
[22]. The short-range moving population that co-traffics 
with AP-1A, AP-1B, and AP-4 is consistent with particles 
associated with apolipoprotein E (ApoE) and the v-snare 
vesicle-associated membrane protein 1 (VAMP1) vesicles 
[2], likely representing traffic from the TGN to recycling 
endosomes. The AP-4-associated long-range movement is 
in a post-Golgi compartment and is thought to represent 

basolateral sorting [22]. These data suggest that AP-1A, 
AP-1B, and AP-4 mediate viral traffic in distinct pathways, 
in line with their differential roles in cellular cargo trans-
port. Whereas AP-4 has not been previously implicated in 
a viral infection, AP-1A is required for late stages of the 
life cycle of DENV [87, 158]) and the retroviruses HIV-1 
and murine leukemia virus (MLV) [39, 159]. In addition, 
a tyrosine-based motif in the HIV-1 Env glycoprotein is 
thought to be essential for mediating cell-to-cell spread 
[160], suggesting a possible requirement for APs in cell-
to-cell spread of other viruses beyond HCV.

Other clathrin-associated adaptors beyond AP-1A and 
AP-1B, namely the monomeric GGA1, 2, and 3 (Golgi-
localized, gamma adaptin ear-containing, and ARF-binding) 
proteins, which mediate vesicular transport between the 
TGN and endosomes, play roles in viral infections. In the 
case of HCV, GGA3 appears to be required for viral assem-
bly, whereas GGA2 for viral release [161]. In contrast, in the 
context of HIV-1 and equine infectious anemia virus (EIAV) 
infections, GGA2 and 3 inhibit infectious virus production 
presumably by impairing the association of Gag with the 
plasma membrane [162–164].

Fig. 3   Post-Golgi transport 
in the life cycle of multiple 
viruses. Schematic of vesicles 
carrying virus particles or 
proteins sorting in post-Golgi 
pathways from the TGN directly 
to the plasma membrane or via 
recycling endosomes. Depicted 
are host factors implicated in 
promoting the release of cell-
free virus or direct cell–cell 
spread, including coat, adaptor 
(blue boxes), actin and microtu-
bule dynamics (green box), and 
regulatory proteins. Examples 
of viruses that hijack these path-
ways to transport their proteins 
or viral particles are listed
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Clathrin itself is involved in mediating viral assembly 
and/or release. siRNA-mediated depletion of clathrin or its 
pharmacological inhibition with Pitstop 2 was reported to 
reduce HCV release and alter the endosomal distribution of 
the core protein [165]. Clathrin is also thought to be essential 
for assembly of multiple retroviruses, likely by mediating 
the trafficking of the HIV-1 Env protein, or cellular factors 
required for Env maturation [166]. Importantly, clathrin is 
incorporated into retroviral particles [166]. The large antigen 
of hepatitis delta virus (HDAg-L) interacts with the clathrin 
heavy chain and this interaction is thought to be essential 
for virus assembly [167]. Other vesicle coats beyond clath-
rin are involved in intracellular co-trafficking of viruses in 
post-Golgi compartments, as exemplified by AP-4-harboring 
vesicles. Nevertheless, in contrast to the clathrin-associated 
adaptor (AP-1A, AP-1B, AP-2, and GGA1-3) vesicles, the 
coat protein of vesicles harboring the AP-4 complex has not 
been identified [152]. Interestingly, this complex mediates 
clathrin-independent cargo transport [168], providing a pos-
sible explanation for the different phenotype observed upon 
its depletion.

Assembly of infectious intracellular HCV virions occurs 
on the surface of ER-associated lipid droplets and is thought 
to be dependent on factors required for VLDL assembly, 
such as diacylglycerol O-acyltransferase 1 (DGAT1) [169], 
apolipoprotein B-100 (ApoB) [170], and ApoE [171]. It is, 
therefore, thought that HCV particles are associated with or 
internalized in VLDL structures and are secreted as lipoviro-
particles [170, 172–175]. Indeed, live-cell imaging revealed 
that the majority of moving TC-core puncta co-traffic with 
ApoE (but not ApoB) in the cell periphery [2]. This require-
ment, however, appears thus far to be HCV specific.

Like trafficking of secretory vesicles, the transport of 
viral proteins or viral particles during viral assembly/release 
requires intact microtubules and actin dynamics proteins 
[149, 176]. Retroviruses and other viruses that bud at the 
plasma membrane use microtubules to facilitate assembly at 
specific regions on the plasma membrane and polarized bud-
ding [176]. It has been proposed that the HIV-1 Gag protein 
is transported to the plasma membrane along microtubules 
based on its co-localization with suppressor of cytokine 
signaling 1 (SOCS1), a cellular protein that promotes both 
microtubule stabilization and virus production [177, 178], 
albeit further evidence for microtubule dependence of 
Gag trafficking is currently lacking. Microtubules in cells 
infected by the retrovirus human T-cell leukemia virus type 
1 (HTLV-1) are polarized to the cell–cell junction, with the 
viral genome and Gag localizing to this contact site [177]. 
The M protein of Sendai virus (Paramyxoviridae family) 
was shown to control microtubule organization and polar-
ized budding [179]. To achieve such polarity, viruses, such 
as IAV, induce the formation of acetylated microtubules, 
which have preferential affinity for outward kinesin motors 

that promote release [176, 180]. In addition to promot-
ing acetylation, viruses stabilize microtubules to enhance 
their release [176]. The HSV-1 protein US3, for example, 
stabilizes microtubules by activating cytoplasmic linker-
associated proteins (CLASPs), cellular specialized plus-end 
tracking proteins (+TIPs) that function in both microtubule 
nucleation at the Golgi apparatus and microtubule capture 
at the cell periphery, thereby facilitating viral spread [181].

Beyond microtubules, multiple actin cytoskeleton-
associated host factors, including Wiskott–Aldrich Syn-
drome protein (WAS), WAS Protein Family Member 1 
(WASF1), ARF6, Actin Related Protein 2/3 Complex 
Subunit 1B (ARPC1B), Rho-Associated Coiled-Coil Con-
taining Protein Kinase 1 (ROCK1), LIM Domain Kinase 
1 (LIMK1), Diaphanous-Related Formin 1 (DIAPH1), and 
the ezrin–radixin–moesin (ERM) protein ezrin (EZR), have 
been shown to be required for the assembly, release, and 
cell–cell spread of the retroviruses HIV-1 and Mason–Pfizer 
monkey virus (M-PMV) via RNAi-based studies [3, 182]. 
Parvovirus release is dependent on two other members of 
the ERM family, namely radixin (RDX) and moesin (MSN), 
which regulate binding of filamentous actin to the mem-
branes, microtubule stability, and actin-microtubule cross 
talk [132, 183]. Cryo-electron tomography revealed filamen-
tous actin associated with HIV-1 at the viral-budding sites 
[25]. In the case of HCV release, RHOA, GRK-interacting 
protein 1 (GIT1), and WAS, play a potential role in the bio-
genesis and fusion of transport vesicles [2]. Members of the 
Src and c-Abl (cellular Abelson tyrosine kinase) families of 
non-RTKs are implicated in the budding and/or release of 
poxviruses [184] and EBOV [185], in part via the regulation 
of actin motility.

Other regulatory mechanisms have been implicated in 
controlling viral release via post-Golgi pathways. Among 
the required proteins for HCV release are cytohesin3 
(CYTH3), a regulator of Golgi structure and function, and 
protein kinase D1 (PRKD1), which regulates vesicle bud-
ding from the TGN [2]. The ARF3 GTPase, which localizes 
to the TGN upon its activation and modulates vesicle bud-
ding and sorting, is also required for HCV release, in part via 
the activation of PI4KIIIβ [2]. In addition to its role in viral 
RNA replication, PI4KIIIβ thus plays a role in the release of 
HCV (J6/JFH1) via a post-TGN compartment [2, 22].

Silencing of the recycling endosome component RAB11A 
results in the accumulation of the HCV capsid protein (core) 
at the Golgi, suggesting that HCV virions egress through the 
secretory pathway from the TGN to recycling endosomes 
and from there to the plasma membrane [2]. Such regula-
tion of post-Golgi traffic via RAB11 and/or its effectors 
plays important roles in the life cycles of additional viruses. 
RAB11 family interacting protein 1C (RAB11-FIP1C) regu-
lates HIV-1 assembly at the plasma membrane by mediating 
the transport and incorporation of the viral Env protein into 
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forming particles [186]. RAB11-FIP2 regulates the budding 
of RSV from the apical membrane [187, 188]. The ribo-
nucleoproteins of IAV co-traffic with RAB11 via recycling 
endosomes prior to their budding via the plasma membrane 
[189]. RAB11A as well as RAB6A and RAB8A, two addi-
tional regulators of the plasma membrane-directed secretory 
pathway, are present on the secretory vesicles that transport 
the alphaherpesvirus pseudorabies virus [27]. Several other 
RAB GTPases involved in sorting in post-Golgi compart-
ments, including RAB3D, RAB8B, and RAB13, are also 
required for the regulation of HCV trafficking via the secre-
tory pathway during viral release [2, 161].

Further regulation of virus secretion via TGN transport 
is mediated by AAK1 and GAK. In addition to phosphoryl-
ating the endocytic adaptor AP-2, these kinases phospho-
rylate the clathrin-associated AP-1A (and likely AP-1B) 
complexe(s) and recruit them to the TGN [77]. AAK1 and 
GAK thus control clathrin-mediated cell-free virus release 
and cell–cell spread, independently of their effect on HCV 
entry and assembly, and are required by multiple unrelated 
RNA viruses [22, 87].

Further mechanistic understanding of viral trafficking in 
distinct post-Golgi pathways and better understanding of 
how viral particles are differentially directed to cell mem-
brane sites for cell-to-cell vs. cell-free spread at distinct bud-
ding sites are required. Improved polarized cell models that 
support authentic apical and basolateral sorting events are 
needed to help address these gaps in knowledge.

The Endosomal Sorting Complexes Required 
for Transport (ESCRT) pathway for lysosomal 
degradation (Fig. 4)

The ESCRT pathway is a key mediator of biogenesis of 
multivesicular bodies (MVBs), which deliver cargo des-
tined for degradation to the lysosome [190]. Via its mobil-
ity to other cellular membranes, this machinery mediates 
additional cellular processes, such as cytokinetic abscis-
sion and exosome secretion [190]. The ESCRT machinery 
is composed of five protein complexes (ESCRT-0, -I,-II, 
-III, and VPS/VTA1) and associated proteins. These com-
plexes act sequentially to recruit and cluster cargo proteins 
(ESCRT-0), curve membranes (ESCRT-I and II), catalyze 
vesicle fission (ESCRT-III and VPS/VTA1), and disas-
semble the ESCRT-III complex (VPS/VTA1) [191].

To acquire their envelope, RNA viruses bud either at 
the plasma membrane and/or intracellularly. This budding 
topology (away from cytoplasm, unlike endocytic vesicles) 
is equivalent to that of ESCRT-mediated vesicle budding 
into MVBs. Indeed, the ESCRT machinery is implicated 
in the envelopment of multiple RNA viruses that bud at 
the plasma membrane, including retroviruses, filoviruses, 
arenaviruses, and rhabdoviruses [191, 192]. The ESCRT 
machinery is also involved in mediating the less common, 
intracellular budding, characteristic of some RNA viruses 
such as Flaviviridae, as exemplified by HCV [21].

Fig. 4   Roles of the ESCRT 
machinery in viral infections. 
The ESCRT machinery is 
subverted by multiple DNA 
and RNA viruses to mediate 
vesicle budding events (away 
from cytoplasm) in distinct cel-
lular compartments at various 
stages of the life cycle. The 
single asterisk (*) indicates 
a lack of a late domain. The 
paired asterisks (**) highlight 
the fact that foamy viruses are 
exceptional members of the Ret-
roviridae that bud at the ER/
TGN in addition to the plasma 
membrane. Nucleocapsids are 
indicated by red circles; replica-
tion complexes are indicated by 
dark blue semicircles
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Beyond viral budding, the ESCRT machinery is subverted 
to mediate the non-lytic release of the “non-enveloped” 
RNA viruses hepatitis A virus (HAV, a picornavirus) and the 
unrelated bluetongue virus (BTV, a reovirus) [193–195]. In 
the case of HAV, the capsid protein directly binds to ALIX, 
an accessory ESCRT protein [193, 195]. This unconven-
tional secretion mechanism explains how HAV establishes 
infection without causing a visible cytopathic effect. HCV 
uses ESCRT components, such as ALIX, for its release, pos-
sibly via ALIX’s role in trafficking to recycling endosomes 
[21, 196]. The ESCRT machinery is also required for the 
assembly of replication complexes of the two plant viruses, 
tomato bushy stunt virus (TBSV, a tombusvirus) and brome 
mosaic virus (BMV, a bromovirus) in the peroxisome lumen 
or ER, respectively [197, 198]. DNA viruses, such as herpes 
viruses, subvert ESCRT components to mediate their nuclear 
egress and secondary envelopment [199]. Finally, HBV sub-
verts this machinery to facilitate intracellular budding and/
or release [200]. The mobility of the ESCRT machinery ena-
bles its recruitment to a wide range of cellular membrane 
structures.

K63-linked polyubiquitination is the main recognition 
signal of host cargo proteins by ESCRT components for sort-
ing into the endosomal pathway [191, 201, 202]. These inter-
actions are mediated by ubiquitin-binding domains, such as 
the ubiquitin-interacting motif (UIM), within the ESCRT-0 
complex subunits, HRS (hepatocyte growth factor-regulated 
tyrosine kinase substrate), and signal transducing adaptor 
molecule 1/2 (STAM1/2).

Viruses typically recruit the ESCRT machinery via late 
domains, conserved motifs within viral structural proteins. 
Among the characterized late domains are the P(T/S)AP, 
YPXL, and PPXY signals, which bind TSG101 (ESCRT-I), 
ALIX (an accessory protein), or NEDD4 family proteins 
(E3 ligases), respectively [192]. Some viral proteins contain 
two late domains, such as Ebola VP40 that harbors both 
a PPXY and PTAP motif, thereby gaining entry into the 
ESCRT machinery via more than one complex [203].

Ubiquitin cooperates with these late domains to facilitate 
ESCRT-mediated budding of some viruses, such as HIV-1 
and other retroviruses [202]. Our laboratory reported that 
HCV, a virus that lacks defined late domains, recruits the 
ESCRT-0 complex component HRS to mediate its intracel-
lular envelopment via K-63 polyubiquitination of the viral 
NS2 protein [21]. Thus, as exemplified by HCV, ubiquitin 
can functionally replace a late domain. Additional mecha-
nisms may also play a role in ESCRT recruitment. For exam-
ple, the BMV 1a protein lacks characterized late domains 
[198], and its cellular ESCRT interactor CHMP4 has no 
ubiquitin-interacting domains. It is certainly possible that 
other distinct, yet to be characterized, late domains exist in 
certain viral proteins, such as BMV 1a. Identification of such 
novel domains has a potential to shed further light on the 

specific roles the ESCRT machinery mediates in cell biology 
and viral infections. Better understanding how ubiquitina-
tion regulates viral replication, envelopment, and release is 
another important area of future investigation, which may 
lead to the identification of druggable targets in the form of 
E3 ligases and/or deubiquitinases.

Autophagy pathway (Fig. 5)

The autophagy machinery mediates autodigestive and qual-
ity control functions by engulfing damaged cytoplasmic 
organelles and macromolecules, and delivering them to lys-
osomes for degradation and recycling, thereby maintaining 
cell homeostasis and survival [204]. Autophagosomes con-
sist of cellular cytoplasm surrounded by two lipid bilayers 
[205, 206] and contain LC3-II, a lipidated, membrane-bound 
protein formed from the LC3 (microtubule-associated pro-
tein light chain 3) protein via a series of enzymatic reactions 
[207–210]. The canonical biosynthesis of the autophago-
some is mediated by a set of protein complexes that include 
autophagy-related (ATG) proteins, which are sequentially 
recruited to the phagophore, an initial C-shaped mem-
brane template. These protein complexes mediate initiation 
(ULK1 and ULK2 complexes), nucleation (PI3KC3–BEC-
LIN1–ATG14L complex and WIPI1/WIPI2), elongation 
and closure of the phagophore (ATG12–ATG5–ATG16L 
and LC3–II conjugation systems), and recycling (ATG9) 
[204]. Autophagosomes then mature via docking and fusion 
with endosomal compartments and/or with lysosomes. Non-
canonical routes to autophagosome formation and fate, 
which bypass some of these steps, have also been reported. 
Notably, beyond its degradative role, autophagy has been 
implicated in the unconventional secretion of a subset of 
membrane and soluble proteins that lack the signal peptide 
that facilitates secretion via the conventional secretory path-
way [204, 211]. Rather than being sorted for degradation, 
autophagosomes harboring such proteins fuse their outer 
membrane with the plasma membrane, thereby releasing 
their inner vesicle filled with cytosol to the extracellular 
milieu [204, 211].

Autophagy has been implicated in the life cycle of mul-
tiple viruses (Reviewed in [212]). In line with its role in 
degradation, autophagy functions as a component of the 
innate immune response, directly destroying many intracel-
lular pathogens. However, certain viruses depend on this 
cellular pathway, or its components, to facilitate their own 
propagation. Here, we focus on some of the proviral roles of 
autophagy in promoting viral replication, particularly in the 
formation of membrane platforms for viral replication and 
in virus assembly/envelopment and/or release.

PV infection induces membranous vesicles that serve as 
the membrane scaffolds for RNA replication. These vesi-
cles display several hallmarks of cellular autophagosomes: 
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double membrane morphology, cytoplasmic contents, and 
the presence of LC3-II and LAMP-1 [213–217]. Expression 
of the PV 2BC and 3A proteins results in the lipidation of 
LC3 and induces the formation of these autophagosome-
like vesicles [213]. These properties were also described 
in the context of infections with other picornaviruses, such 
as HRV, coxsackie virus B3 (CVB3), and EV71 [214, 218, 
219]. Notably, whereas autophagy proteins contribute to 
the heterogeneity of viral replication sites induced by these 
viruses, they are dispensable for their biogenesis. Beyond 
picornaviruses, members of the Flaviviridae family, such 
as HCV and DENV, as well as the unrelated coronaviruses 
also utilize components of the cellular autophagy pathway 
to promote their replication [103, 220–228]. The molecular 
mechanisms by which the autophagy machinery supports the 
RNA replication of many of these viruses, however, remain 
to be elucidated, with some reports indicating roles beyond 
the formation of membranous replication factories, such as 
regulation of lipid metabolism, in the case of DENV [220, 
226].

Autophagy has also been implicated in the assembly and/
or maturation of several RNA and DNA viruses. For exam-
ple, binding of the HIV-1 Gag-derived proteins to LC3-II is 
thought to mediate productive processing of the Gag subunit 
p24 [229]. Moreover, the Gag-derived matrix (MA) pro-
tein p17 (a component of HIV-1 particles) is co-localized 
and co-fractionated with membrane compartments repre-
senting assembly sites that stain positive for LC3 and are 
in close proximity to the plasma membrane [229]. DENV 
maturation is also dependent on intact autophagy. Treatment 
with the selective autophagy inhibitor spautin-1 suppresses 
intra- and extracellular DENV infectivity and results in the 
formation of defective extracellular viral particles [230]. 
Pharmacological inhibition of autophagy with a less selec-
tive inhibitor, 3-methyladenine (3-MA), or siRNA-mediated 
suppression of BECLIN1 and ATG5 inhibit production of 
intra- and extracellular infectious HBV particles [231]. Since 
the major HBV envelope protein (HBsAg) binds to and is 
co-localized with LC3-I and LC3-II during HBV infection 
or upon its ectopic expression, it is possible that autophagy 

Fig. 5   Roles of autophagy in 
promoting viral infections. 
Schematic of the canonical 
autophagy pathway and various 
proviral roles which it plays in 
the life cycles of viruses. Shown 
are specific proteins implicated 
in promoting viral infections 
(blue panel) and examples of 
viruses that hijack autophagy 
or its compartments (maroon 
panel)



3706	 M. Robinson et al.

1 3

mediates HBV envelopment [231]. In the case of IAV, the 
autophagy pathway has been shown to be essential for viral 
envelopment and formation of morphologically normal and 
stable viral progeny [232]. These activities are thought to 
be dependent on an interaction between the M2 ion-channel 
IAV protein with LC3, which promotes LC3 redistribution to 
the plasma membrane in virus-infected cells [232]. Provid-
ing a source of membranes and/or facilitating the transport 
of viral particles to envelopment sites are potential mecha-
nisms by which autophagy factors are involved in mediating 
viral envelopment, yet the precise roles remain unclear.

At later steps of the life cycle of certain viruses, 
autophagy is required for the release of cell-free virus and 
cell-to-cell viral spread. Pharmacological inhibition or 
knockdown of ATG7 and BECLIN1 inhibit the basal HIV-1 
yields released from macrophages, and this autophagy-
induced virus-yield enhancing effect is mediated by HIV-1 
Nef [229]. Similarly, siRNA-mediated depletion of BEC-
LIN1 or ATG7 inhibits the release of infectious HCV parti-
cles and results in the accumulation of intracellular viral par-
ticles [233, 234]. Interestingly, membrane fusion triggered 
by the glycoprotein of multiple viruses from the Paramyxo-
viridae family [canine distemper virus (CDV), MeV, Nipah 
(NiV), Hendra (HeV), and mumps (MuV) viruses] induces 
autophagy and facilitates efficient cell–cell fusion and viral 
spread to uninfected neighboring cells [235].

Non-enveloped viruses, such as members of the Picor-
naviridae family, subvert the autophagy-based unconven-
tional secretion for non-lytic release of virus particles. This 
autophagosome-mediated exit without lysis pathway was 
first demonstrated to play a role in the life cycle of PV [216]. 
The double-membraned topology of the PV-induced vesi-
cles [214, 215, 217] makes the release of virions trapped 
in the cytosolic lumen topologically feasible. Indeed, 
transmission electron microscopy demonstrated that these 
double-membraned autophagosome-like organelles contain 
the PV capsids [236]. Moreover, disrupting autophagy by 
siRNA-mediated depletion of ATG12, LC3, or BECLIN1 
reduces PV release, whereas stimulation of autophagy via 
treatment with tat-BECLIN1 peptide increases viral release 
[214, 236]. Notably, the mobility of PV-induced vesicles and 
the amounts of extracellular virus increase upon reduction 
of vesicle tethering, either via nocodazole treatment or via 
infection with a mutant virus that is defective in its interac-
tion with the host cytoskeleton and secretory pathway [237]. 
Collectively, these data support a model, whereby virus 
entrapped within the cytoplasmic lumen of double-mem-
braned vesicles is released into the extracellular milieu via 
fusion with the plasma membrane rather than being fused 
with lysosomes. Indeed, inhibition of lysosomal enzymes 
does not further increase LC3-II levels in PV-infected cells. 
In addition, assembled capsids/LC3-II co-labeled structures 
do not contain lysosomal enzymes or syntaxin 17, a SNARE 

protein typically localized to autophagosomes and required 
for fusion with lysosomes [236]. Further support for this 
model is provided by the identification of multiple extracel-
lular phosphatidylserine (PS) lipid-enriched vesicles that 
are non-lytically released from cells, and contain multiple 
PV particles via super-resolution imaging and transmission 
electron microscopy [236]. Interestingly, this clustered pack-
aging of viral particles within vesicles enables multiple viral 
RNA genomes to be collectively transferred into single cells, 
thereby increasing infection efficiency relative to single viral 
genomes or an equivalent number of free virus particles 
[236]. This spread mechanism may provide an opportunity 
for cooperation and complementation among viral quasispe-
cies, with implications for virus evolution [236].

Mature particles of HRV and CVB3 are also released in 
extracellular PS- and LC3-enriched vesicles [236, 238], sup-
porting that this autophagy-mediated spread mode is gener-
alizable to other enteroviral picornaviruses. In the case of 
CVB3, it was also reported that the virus inhibits the fusion 
of autophagosomes with lysosomes and/or late endosomes 
by targeting the SNARE protein synaptosome-associated 
protein 29 (SNAP29) and adaptor protein pleckstrin homol-
ogy and RUN domain-containing M1 (PLEKHM1) that 
regulate autophagosome fusion [239], proposing a mecha-
nism by which the virus blocks the autophagic degradative 
flux to favor its secretion. Particles of HAV, hepatitis E, and 
BTV have also been observed surrounded by membranes 
[193, 240, 241]. Nevertheless, the precise secretion mecha-
nism of these “non-enveloped” viruses has to be defined 
individually, as other unconventional secretion mecha-
nisms beyond autophagy-based have been reported [242]. 
As described above, in the case of non-lytic release of HAV 
and BTV, an ESCRT-mediated, exosome-like mechanism 
involving budding into MVBs has been identified [193–195]. 
Whereas LC3 and other autophagosome markers have not 
been detected in quasi-enveloped HAV preparations to date, 
it remains to be determined whether these other unconven-
tional secretion mechanisms are entirely independent of 
autophagy [193, 195]. Further studies are also required to 
better understand the precise mechanism of autophagy-
mediated non-lytic virus release. The increasing knowledge 
of the roles autophagy plays in unconventional secretion of 
diverse cellular cargo proteins and the underlying mecha-
nisms will continue to promote these efforts [211, 243].

Intracellular membrane trafficking factors as targets 
for broad‑spectrum antiviral therapy

Beyond contributing to better understanding virus–host 
interactions, the identification of host functions broadly 
required by viruses could lead to the discovery of targets for 
novel host-targeted broad-spectrum antiviral strategies. Such 
antiviral strategies offer an attractive solution to overcome 
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some of the limitations associated with the current direct-
acting antiviral paradigm. Currently approved antiviral drugs 
that target viral functions typically provide a narrow spec-
trum of coverage. Given the high average cost (over two bil-
lion dollars) and long timeline (8–12 years) to develop a new 
drug [244], the scalability of targeting viruses individually 
is limited. In addition, resistance typically emerges rapidly 
when the conventional direct-acting antivirals are used as 
monotherapy [245]. Overall, this approach does not meet 
the urgent need for new strategies to combat hundreds of 
human disease-causing viruses and newly emerging viruses.

The host-targeted antiviral approach could reduce the 
time and cost associated with the early stages of drug devel-
opment per approved indication, and reduce the clinical 
risks in the more advanced phases. Off-label use of approved 
broad-spectrum antivirals against new viral indications can 
facilitate readiness for future outbreaks of emerging patho-
gens. A broad-spectrum therapeutic could also be admin-
istered before a viral threat has been accurately diagnosed, 
increasing likelihood of protection. Targeting host functions 
may also increase the genetic barrier to the emergence of 
resistance. Finally, there is often an opportunity to repurpose 
approved drugs that target host functions required by several 
viruses, thereby further reducing time and cost involved in 
drug development.

Cellular enzymes represent intuitive druggable targets. 
Indeed, several cellular kinases that are required for the 
regulation of intracellular viral trafficking have been pro-
posed as potential antiviral targets, and a few have been suc-
cessfully targeted pharmacologically. EGFR is one example 
of a cellular kinase, whose pharmacological inhibition has 
shown promise. Erlotinib and gefitinib, two approved anti-
cancer drugs targeting EGFR, and lapatinib, an anticancer 
drug targeting EGFR and ERBB2 (another member of the 
ERBB kinase family), demonstrated in vitro activity against 
a number of viruses including HCV [40, 45, 46], HCMV 
[246], and poxvirus [247]. Notably, erlotinib and gefitinib 
inhibited HCV and HCMV infections in a mouse and guinea 
pig model, respectively [45, 246].

Targeting AAK1 and GAK, which regulate intracellular 
viral trafficking by controlling clathrin-associated AP com-
plexes, has also shown promise as a broad-spectrum anti-
viral strategy. Our laboratory recognized that the already 
approved anticancer drugs sunitinib and erlotinib potently 
inhibit AAK1 and GAK, respectively. These drugs dem-
onstrated activity against viruses from six viral families, 
including DENV and EBOV in cultured cells [20, 40, 87]. In 
addition, sunitinib/erlotinib combinations protected against 
morbidity and mortality in murine models of dengue and 
Ebola infection [87]. Inhibition of AAK1- and GAK-regu-
lated AP-mediated intracellular viral trafficking was shown 
to be an important mechanism by which sunitinib and erlo-
tinib inhibit viral infection in vitro and in vivo [87]. The 

safety and efficacy of sunitinib/erlotinib combinations will 
be evaluated in dengue patients in the near future and poten-
tially in patients with EBOV disease in future outbreaks 
(ClinicalTrials.gov NCT02380625).

Pharmacological targeting of the Src and Abl family 
tyrosine kinases, which are implicated in the regulation of 
actin motility during the release and/or cell–cell spread of 
VV [184] and EBOV [185], has also been studied. Imatinib 
and/or nilotinib approved anticancer c-Abl inhibitors lacking 
anti-Src activity, and inhibited replication of EBOV [185], 
DENV [248], middle east respiratory syndrome-coronavirus 
(MERS-CoV), and/or SARS-CoV [249] in cultured cells. 
In a murine model of VV, imatinib effectively reduced viral 
load, viral spread, and mortality [184]. While dasatinib, an 
inhibitor of both Abl and Src also inhibited the replication of 
several viruses in vitro, the molecular target(s) and mecha-
nism of antiviral action remain to be determined [249–251].

E3 ligases represent another group of attractive drug-
gable cellular targets for pharmacological inhibition. Bet-
ter understanding the regulation of ESCRT-mediated viral 
envelopment via ubiquitination, for instance, may lead to the 
discovery of proviral E3 ligases. The use of bortezomib, a 
proteasome inhibitor, for the treatment of cancer illustrates 
this potential [252]. While still in their infancy, selective 
inhibitors of E3 ligases have also shown promise as poten-
tial anticancer drugs [253]. Such compounds are likely to 
achieve a high level of substrate specificity, thereby reducing 
toxicity [253]. Selective targeting of E3 ligases could thus 
represent an attractive antiviral strategy.

Translating genetic determinants of infection into host-
directed antiviral strategies is, however, quite challenging. 
Identification of a cellular enzyme, that is critical for the 
life cycle of a virus, does not indicate that the function 
hijacked by the virus is necessarily the enzymatic activity. 
For example, the small molecule NGI-1 demonstrates potent 
antiviral activity against flavivirus infections via inhibition 
of the OST complex [254]. Nevertheless, the anti-ZIKV 
effect of NGI-1 is independent of the N-glycosylation and 
oxidoreductase functions of the OST complex [254]. Iden-
tifying N-glycosylation or oxidoreductase inhibitors via 
high-throughput screens would not have yielded an antiviral 
compound in this case. The identification and pharmaco-
logical targeting of druggable non-enzymatic proviral host 
functions is even more challenging. Yet, since protein–pro-
tein interactions are currently emerging as a promising new 
class of drug targets, the utility of this approach for treat-
ing viral infections warrants exploration [255]. Whereas 
targeting virus–host protein–protein interactions may not 
provide broad-spectrum solutions, targeting interactions 
between cellular proteins required for multiple viruses may 
hold promise. Since cellular proteins function in a com-
plex network of interactions, it is often also challenging to 
understand the precise mechanism of antiviral action of a 
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compound. Moreover, the antiviral effect observed in vitro 
often cannot be reproduced in vivo. Toxicity is another chal-
lenge when targeting host functions. Nevertheless, it may 
be feasible to identify a therapeutic window where the drug 
level is sufficient to inhibit viral replication with minimal 
cellular toxicity. Functional redundancy in the targeted cel-
lular machineries and short duration required for treating 
acute viral infections should help to limit toxicity.

Overall, while still in their infancy, these examples pro-
vide a proof-of-concept for the translational potential of 
discovering host targets required for viral infections and the 
feasibility of the host-targeted broad-spectrum approach.

Future perspectives

Important insights into virus interactions with host intra-
cellular membrane trafficking pathways have been provided 
over the last decade via the establishment of novel trans-
formative omics technologies and advanced imaging tools. 
Nevertheless, our understanding of the virus–host interplay 
is far from complete and many important questions remain 
unanswered. For example, it remains incompletely charac-
terized which host factors mediate the membrane alterations 
required for the formation of viral replication factories of 
RNA viruses and how they coordinate with viral proteins to 
facilitate this process. Further utilization of cryo-electron 
tomography modalities, as recently described for the study 
of RNA replication compartments of the non-human flock 
house nodavirus [256], may help to address these ques-
tions. Also incompletely characterized are the mechanisms 
by which RNA viral particles are differentially directed to 
specific cell membrane sites for cell-to-cell vs. cell-free 
spread. Although certain host factors appear to maintain at 
least some of their distinct sorting properties in non-polar-
ized cell culture models, to address this question, it will be 
important to utilize more biologically relevant polarized cell 
models that support authentic apical and basolateral sorting 
events. Three-dimensional polarized cellular systems, as the 
one recently developed for studying HCV entry in polar-
ized hepatoma organoids [257], may help to address this gap 
in knowledge. Improved bioinformatics approaches, large-
scale data analysis tools and comparative omics approaches 
are also required to facilitate a more effective delivery of 
broadly required host targets with high confidence. Further 
mechanistic studies are required to better understand the 
precise roles of the discovered, broadly required host fac-
tors in viral infections and their mode of interactions with 
viruses. These efforts will continue to provide insight into 
the workings and regulation of cellular transport machinery 
in cell biology and viral infections, and will advance the 
discovery of druggable host targets and the development of 
host-targeted antiviral approaches.
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