
IIM = idiopathic inflammatory myopathy; PM/Scl = polymyositis/scleroderma; pre-mRNA = precursor mRNA; Rrp = ribosomal RNA processing;
snRNA = small nuclear RNA; snoRNA = small nucleolar RNA; U snRNP = U small nuclear ribonucleoprotein.
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Introduction
Autoantibodies are the hallmark of many autoimmune dis-
orders, such as the connective-tissue diseases sclero-
derma, systemic lupus erythematosus, Sjögren’s
syndrome, idiopathic inflammatory myopathies (IIMs),
rheumatoid arthritis, and mixed connective-tissue disease.
Although their etiology and pathogenic role remain
unclear, many different autoantibody specificities have
been characterized. Some of these autoantibodies are
very useful as diagnostic markers and may also have a
prognostic value, as has been shown for anti-double-
stranded-DNA antibodies in systemic lupus erythematosus
and anti-cyclic-citrullinated-peptide antibodies in rheuma-
toid arthritis [1,2]. Other autoantibodies have proved to be
valuable tools to study cellular processes in which the
autoantigens are involved, such as the splicing of precur-
sor messenger RNAs (pre-mRNAs) mediated by the
autoantigenic U small nuclear ribonucleoprotein com-

plexes (U snRNPs) [3]. Similarly, autoantibodies directed
to a protein complex, known as the polymyositis–sclero-
derma (PM/Scl) complex, have contributed to the discov-
ery of a large RNA-processing complex, which is now
known as the human exosome.

Here we present an overview of recent studies that have
led to the current biochemical and functional understand-
ing of the PM/Scl complex.

Clinical characteristics of patients positive for
anti-PM/Scl autoantibodies
The anti-PM/Scl autoantibody, formerly known as anti-
PM-1 [4], may be detected in sera of patients with myosi-
tis, scleroderma, and PM/Scl overlap syndrome, although
some patients positive for anti-PM/Scl autoantibodies may
not have either of these conditions [5,6]. The patient
group positive for anti-PM/Scl antibodies is characterized
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by an elevated incidence of Raynaud’s phenomenon,
arthritis, pulmonary disease, and calcinosis [7,8]. In
general, patients positive for anti-PM/Scl antibodies
respond well to immunosuppressive therapy and have a
good prognosis [5,7,8]. In contrast to the findings in large
North American and European cohort studies, the PM/Scl
autoantibody was not detected in sera of Japanese
patients with inflammatory muscle disease, which sug-
gests that specific environmental or genetic factors are
involved in the induction of this autoantibody response
[9–12]. Indeed, an assessment of the HLA-DR genotypes
of anti-PM/Scl-positive patients revealed a 75–100% cor-
relation with HLA-DR3 [7,13,14].

The autoantigenic PM/Scl complex
The complex that is recognized by the anti-PM/Scl auto-
antibody has a sedimentation coefficient of 20S as deter-
mined by sucrose-gradient centrifugation and was
reported to consist of 11 to 16 proteins [15–17]. Proteins
identified in these studies had molecular masses ranging
from 110 to 20 kDa in SDS–PAGE [16,17]. Inconsistent
data were reported with respect to the phosphorylation of
some components [4,16,17].

Western blot analyses of patient sera positive for the anti-
PM/Scl autoantibody revealed that the major autoantigen is
the 110-kDa protein (PM/Scl-100), although some sera
also recognized the 80-kDa protein (PM/Scl-75) [16,17].
Two cDNA clones encoding possible splicing variants of
the PM/Scl-100 autoantigen have been isolated and char-
acterized [18,19]. The PM/Scl-100 autoantigen contains
several linear epitopes, but the major epitope is located in
the N-terminal region (amino acid residues 232–241) [20].
The other autoantigenic component of the PM/Scl
complex, PM/Scl-75, was shown to be a protein with a pre-
dicted molecular mass of 39kDa. Its very acidic C-terminal
tail probably accounts for the aberrant migration of this
protein in SDS–PAGE [21]. Recognition of the PM/Scl-75
autoantigen by autoantibodies is primarily dependent on
this C-terminal region (amino acid residues 196–355) [21].

Immunolocalization studies showed that the PM/Scl
autoantigens are present in the nucleoplasm and, at higher
concentrations, in the nucleolus [16,17,22]. Like other
nuclear substructures, the nucleolus is not separated from
the nucleoplasm by a membrane, and its formation is pre-
sumably the result of local accumulation of numerous func-
tionally related factors [23,24]. The nucleolus is the site of
ribosome synthesis, which involves the transcription and
nucleolytic processing of precursor rRNAs, the nucleotide
modification of rRNAs, and the assembly of mature rRNAs
with approximately 80 ribosomal proteins into small and
large ribosomal subunits [23,24]. Electron microscopy
reveals that the PM/Scl autoantigens are predominantly
localized in the granular compartment of the nucleolus,
which is the site of ribosome assembly [17]. Inhibition of

rRNA transcription by actinomycin D resulted in the nucleo-
plasmic rather than nucleolar accumulation of the PM/Scl
autoantigens, a finding that also supports the idea that
PM/Scl autoantigens play a role in ribosome synthesis
[17].

Except for some similarity with members of the serine/thre-
onine protein kinase family [18], very limited functional
information could be deduced from the polypeptide
sequence of the PM/Scl autoantigens at the time of
cloning [18,19,21]. However, more recent sequence
analyses revealed that PM/Scl-100 and -75 are homolo-
gous to RNA-degrading enzymes of Escherichia coli,
namely the 3′→5′ exoribonucleases D and PH (RNase D
and RNase PH), respectively [25].

A multi-subunit complex of 3′→5′
exoribonucleases has been identified in yeast
In yeast (Saccharomyces cerevisiae), 11 proteins, 10 of
which are known or predicted to have 3′→5′ exoribonucle-
ase activity, were purified as a single complex that is
referred to as ‘the exosome’ [26,27]. Ten components are
essential for yeast viability (Rrp4p, Rrp40–46p, Mtr3p,
and Csl4p); one component, Rrp6p, is nonessential,
although deletion of the RRP6 gene leads to impaired
growth and temperature sensitivity [26,28]. As summa-
rized in Table 1, homologues for most of the components
have been identified in E. coli and humans. Notably, two
yeast exosome components, namely Rrp6p and Rrp45p,
are homologous to the PM/Scl-100 and PM/Scl-75
autoantigens, respectively (see also below).

To date, no structural data have been presented, although
two speculative models for the organization and activation
of the exosome subunits have recently been proposed
[29,30]. Several lines of evidence suggest that at least two
different exosomes exist [26]. First, the 10 essential com-
ponents were purified with apparent stoichiometry, while
approximately one-fifth as much Rrp6p was recovered.
Second, two complexes, only one of them containing the
Rrp6 protein, could be recovered from fractionated whole-
cell extracts. Third, no cytoplasmic Rrp6p could be
detected by immunolocalization, in contrast to the nuclear
and cytoplasmic presence of Rrp4p and Rrp43p [26,31].
Finally, functional studies, as described below, suggest the
existence of a cytoplasmic and nuclear exosome complex.
Together, these data indicate that the yeast exosome is
present in the nuclear and cytoplasmic compartments and
that these complexes differ by the presence or absence of
Rrp6p, the yeast homologue of PM/Scl-100.

Functions of the yeast exosome
The most important experimental approach to determining
the functions of the exosome encompassed RNA analyses
of yeast strains that were deficient for one or more compo-
nents of the exosome. Conditional mutants were created
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for the essential genes, whereas the nonessential RRP6
gene was disrupted. In general, the accumulation of a par-
ticular RNA in a mutant yeast strain suggests that this mol-
ecule is the substrate for the depleted component,
whereas a reduction indicates that the RNA is a product
generated by the depleted component. Such analyses
revealed that the yeast exosome is involved in the pro-
cessing and degradation of several RNA species.

The first function assigned to the exosome was its role in
rRNA processing. In the nucleolus, four RNA molecules
(5S, 5.8S, 18S, and 25S rRNA) and many proteins associ-
ate into ribosomes [32]. Three rRNAs (5.8S, 18S, and 25S
rRNA) are transcribed as a large, 35S precursor rRNA,
which is processed via a cascade of endo- and exonucle-
olytic cleavages into the mature rRNAs. Yeast strains that
were mutated in any of the exosome components showed
multiple defects in the maturation of this large precursor
RNA. One of these defects is indirect inhibition of early
endonucleolytic precursor rRNA cleavages [31,33,34].
Another is ineffective final 3′-end processing of the 5.8S
rRNA [26–28,33–36]. Third, a noncoding spacer RNA (the
5′ external transcribed spacer) and some aberrant rRNA
species that arise from the inhibited early endonucleolytic
precursor rRNA cleavages are stabilized [26,33,34,36].

The function of the exosome is not restricted to the matura-
tion of rRNA. The 3′ processing of small nuclear RNAs that
play a role in precursor messenger RNA splicing (the U1,
U2, U4, and U5 snRNAs) or in the processing and modifi-
cation of rRNA (small nucleolar RNAs; eg U3, U14, U18,
and U24 small nucleolar RNA [snoRNA]) is also hampered

in mutant exosome strains [36-38]. Moreover, the exosome
has been shown to compete with the splicing apparatus for
unspliced nuclear mRNAs in order to degrade these pre-
mRNAs [39,40]. The cytoplasmic exosome subfraction is
probably involved in the degradation of mature cytoplasmic
mRNAs, since mutations in the RRP4 and RRP41 genes
inhibited 3′→5′ mRNA decay [41].

The PM/Scl complex is the human exosome
Characterization of the yeast exosome has greatly
enhanced our current knowledge of the human PM/Scl
complex. At present, a number of studies have provided
evidence that this complex, as schematically represented
in Fig. 1, is the human counterpart of the yeast exosome,
thus consisting of multiple 3′→5′ exoribonucleases.

In one study, analysis of the composition of the yeast
exosome led to the identification of two components,
Rrp6p and Rrp45p, that are homologous to the human
PM/Scl-100 and PM/Scl-75 autoantigens, respectively
[26]. To date, 10 human homologues have been identified
for the yeast exosome components, as listed in Table 1
[18,19,21,26,35,42–45]. No homologues were found for
Rrp43p and Mtr3p, whereas two human proteins
(PM/Scl-75 and OIP2p) were the most homologous with
Rrp45p [26]. Since the PM/Scl complex was reported to
consist of 11 to 16 proteins, additional human compo-
nents may remain to be identified [16,17]. Conclusive data
for a physical association with the PM/Scl autoantigens
have been provided for hRrp4p, hRrp40p, hRrp41p, and
hRrp46p by co-immunoprecipitation and cosedimentation
experiments [26,45].

Table 1

Evolutionary relationship between exosome components

Yeast Escherichia coli Human Comments

Rrp4p S1 RNA-binding domain hRrp4p Interaction with PM/Scl autoantigens; hRrp4p is a 
functional homologue of the yeast component

Rrp40p S1 RNA-binding domain hRrp40p Interaction with PM/Scl autoantigens

Rrp41p/Ski6p RNase PH hRrp41p Interaction with PM/Scl autoantigens; hRrp41p is a 
functional homologue of the yeast component

Rrp42p RNase PH hRrp42p Partial human cDNA clone (D29958)

Rrp43p RNase PH No clear homologue

Rrp44p/Dis3p RNase R hRrp44p/hDis3p hRrp44p is a functional homologue of the yeast component

Rrp45p RNase PH PM/Scl-75 Interaction with hRrp4p

OIP2p Partial human cDNA clone

Rrp46p RNase PH hRrp46p Interaction with PM/Scl autoantigens

Rrp6p RNase D PM/Scl-100 Interaction with hRrp4p, only present in nucleus

Mtr3p RNase PH No clear homologue

Csl4p/Ski4p S1 RNA-binding domain hCsl4p hCsl4p is a functional homologue of the yeast component

Adapted from [26].
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The size of the yeast exosome, its nuclear localization with
nucleolar enrichment, and its role in rRNA processing cor-
respond well to the properties that were previously sug-
gested for the PM/Scl complex [16,17,22,46]. Indeed,
more detailed characterization of the novel human compo-
nents confirmed that some of the properties found for the
yeast exosome also apply for the PM/Scl complex, or the
human exosome. First, the human exosome was shown to
exhibit 3′→5′ exoribonuclease activity. Four human homo-
logues (hRrp4p, hRrp41p, hRrp44p/hDis3p, and hCsl4p)
were able to suppress the growth defects of yeast strains
that were caused by mutations in the corresponding yeast
genes, indicating that these proteins are functionally con-
served [35,42,43,45]. In addition, complexes that were
precipitated from HeLa-cell extract using either rabbit anti-
sera specific for hRrp40p and hRrp46p or a serum from a
patient positive for anti-PM/Scl autoantibodies exhibit
3′→5′ exoribonuclease activity in vitro [45].

As in yeast, at least two forms of the human exosome,
which can be distinguished by the presence or absence of
PM/Scl-100 (the homologue of Rrp6p), are likely to exist.
This conclusion is mainly supported by studies that deter-
mined the subcellular distribution of hRrp4p, hRrp40p,
hRrp41p, hRrp46p, and the PM/Scl autoantigens by
HeLa-cell fractionation [26,45]. As in the yeast exosome,
the analyzed components, except PM/Scl-100, were
clearly detected in both cytoplasmic and nuclear extracts.
PM/Scl-100, in contrast, was mainly present in the salt-
extractable nuclear fraction, which is in accord with the
previous observations made with patients’ autoimmune
sera that predominantly recognize this antigen [16–19].
On the basis of the subcellular distribution, it may be
speculated that both nuclear and cytoplasmic functions of
the exosome have been conserved during evolution.

Autoantibodies directed against components
of the human exosome
Approximately 5–8% of the sera from myositis patients, 3%
of those from scleroderma patients, and 24% of those from
patients with PM/Scl overlap syndrome contain the anti-
PM/Scl autoantibody [5,9,46,47]. The autoantibodies that
characterize this specificity are predominantly directed
against the PM/Scl-100 antigen, whereas approximately
50–60% of the sera positive for anti-PM/Scl contain
autoantibodies directed against the PM/Scl-75 antigen as
well [9,16,17,48]. Novel components of the human
exosome (hRrp4p, hRrp40p, hRrp41p, hRrp42p, hRrp46p,
and hCsl4p) are also targeted by autoantibodies and some
are preferentially recognized [45]. In anti-PM/Scl-positive
IIM sera, the prevalences of the anti-hRrp4p autoantibody
and the anti-PM/Scl-75 autoantibody are similar (approxi-
mately 54%), but are not correlated [45]. These results
further support the hypothesis that the autoimmune
response may initially be directed against the PM/Scl-100
antigen, whereas intermolecular epitope spreading may be
responsible for the autoantibody response directed against
the other, associated antigens. To date, the mechanism
that triggers the initial autoantibody response is not known,
but it could involve defective apoptosis (reviewed in [49]).

Concluding remarks
Taken together, the data reviewed here indicate that the
human PM/Scl complex closely resembles the yeast
exosome in both composition and function and therefore
may be referred to as ‘the human exosome’. However,
further studies are needed to support the functional
homology between the yeast and human complexes.

As the physiological role and composition of the human
exosome become clear, one challenge will be to establish
how and why this intracellular complex is targeted by
autoantibodies in patients with IIM. All the components of
the human exosome analyzed so far are recognized by
autoantibodies present in IIM sera, although PM/Scl-100
remains the most important target. The identification and
characterization of novel components of the PM/Scl
complex offers the possibility of investigating the autoanti-
body response in more detail.
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