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Abstract: Among Herpesviruses, Human Cytomegalovirus (HCMV or HHV-5) represents 

a major threat during congenital or neonatal infections, which may lead to encephalitis with 

serious neurological consequences. However, as opposed to other less prevalent pathogens, 

the mechanisms and genetic susceptibility factors for CMV encephalitis are poorly 

understood. This lack of information considerably reduces the prognostic and/or therapeutic 

possibilities. To easily monitor the effects of genetic defects on brain dissemination 

following CMV infection we used a recently developed in vivo mouse model based on the 

neonatal inoculation of a MCMV genetically engineered to express Luciferase. Here, we 

further validate this protocol for live imaging, and demonstrate increased lethality associated 

with viral infection and encephalitis in mutant mice lacking Dicer activity. Our data indicate 

that miRNAs are important players in the control of MCMV pathogenesis and suggest that 

miRNA-based endothelial functions and integrity are crucial for CMV encephalitis. 
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1. Introduction 

Human Cytomegalovirus (HCMV/HHV-5), a member of the β-herpesvirus family, is highly prevalent 

in the population and usually acquired during early life as an asymptomatic infection [1]. Like all 

herpesviruses, HCMV exhibits life-long persistence without viral replication in immunocompetent hosts. 

However, immunosuppression may lead to viral reactivation, as observed in transplant patients receiving 

drugs to prevent graft rejection [2]. In adults, HCMV has also been linked to glioblastomas [3]. 

Importantly, HCMV is also a prominent pathogen in newborns where the immune system is still 

immature [4–6]. Primary infection in the developing fetus or neonate can have severe consequences, 

such as microcephaly or cerebellar hypoplasia. Current estimates indicate that neonatal HCMV infection 

affects 0.5%–1% of all live births, of which 5%–10% will suffer from severe symptoms. As it stands, 

HCMV infection is the most common infectious cause of congenital birth defects and childhood disorders in 

developed countries. In addition, 10% of infected infants with subclinical viral infection will later develop 

sequellae leading to mental retardation, hearing loss, visual defects or seizure and epilepsy [7,8]. 

While a number of mutations responsible for the occurrence of neonatal Herpes Simplex 1  

(HSV-1/HHV-1) encephalitis have been identified in humans [9], no genetic loci have so far been 

identified for HCMV, even though indirect evidence indicates that IL-12 and Type I interferons may be 

important players [10]. This discrepancy is likely related to the species specificity of HCMV—Indeed, 

as opposed to HSV-1, which can be inoculated to mice via different routes [11], non-human cells and 

organisms cannot support HCMV replication. Therefore, investigations on cytomegalovirus pathogenesis 

can only be performed in various animal models (mouse, rat, guinea pig, rhesus monkey) infected by 

their respective genuinely host-specific CMVs. In this regard, the mouse/MCMV interaction proved to 

be one of the best host—Pathogen models because of the significant similarities in genome size and 

organization, tissue tropism and regulation of gene expression between the murine and human viruses. 

These features provided considerable help in the identification of genes involved in CMV pathogenesis 

during infections in adults [12–14] reviewed in [15]. It must be noted that analysis of congenital CMV 

infection in mice appears to be more complex than analyzing the human form as the organization of the 

placental layers differs between the two species, with mother-to-fetus viral transmission being impaired 

in mice. Inducement of brain infection in mouse neonates, which in turn leads to hearing impairment, 

has been obtained upon direct injection of MCMV in the placenta on day 12.5 of gestation [16]. Most 

investigators, however, favor intraperitoneal injection of newborn (4–20 h-old) mice to provide systemic 

viral dissemination, which potentially leads to brain infection via the hematogenous route. This infection 

model proves to be more relevant than intracranial injection, as it provides important insights into 

MCMV encephalitis, especially in evidencing viral replication in neuronal and glial cells located in 

inflammatory foci which have been infiltrated with mononuclear cells, for example macrophages [17]. 

Previous work also reported altered morphogenesis of the cerebellum together with reduced granular 

neuron proliferation and migration as well as induction of multiple Interferon-stimulated genes, and further 

implicated that control of MCMV replication in the central nervous system requires CD8+T cells [18]. 
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To gather more insight into genes and pathways involved in MCMV-dependent neonatal encephalitis 

we used our recently developed imaging technology based on the detection of a genetically-engineered 

MCMV expressing Luciferase (MCMV-Luc) to monitor and quantify viral replication in vivo [19]. 

Using this protocol, which allows for live imaging—Thus reducing the number of mice necessary for 

experimental infections [20]—We addressed the mechanisms of viral dissemination in the brain upon 

peritoneal infection of newborns. We focused these studies on the processing of microRNAs (miRNAs), 

i.e., the 21–23 nucleotide non-coding RNAs which are—Among others—Major players in defense 

mechanisms [21]. Indeed, the recent discovery of virally-encoded miRNAs in the genome of large DNA 

viruses such as CMV [22–24] has considerably raised interest in these molecules in the context of  

virus–Host interactions. Therefore, we investigated the impact of a mutation in the Dicer gene, which is 

crucial for miRNA biogenesis [25], on the evolution of an intraperitoneal MCMV infection of newborn 

mice. In accordance with our previous observations in adults indicating that miRNAs are important 

players in antiviral defense [26], we here report increased mortality of Dicer-deficient neonates 

following viral inoculation. We also observed higher viral dissemination and replication in the brain of 

mutant pups compared to the wild-type, suggesting that miRNA biogenesis represents a previously 

unsuspected defense mechanism against Herpesvirus encephalitis. 

2. Results 

2.1. Impaired miRNA Biogenesis Induces Increased Lethality in MCMV-Infected Mouse Neonates 

To evaluate the role of miRNAs on MCMV pathogenesis in newborns we first infected wild-type and 

Dicer-deficient (Dicer d/d, [26,27]) 4–8 h-old pups with a highly pathogenic Smith strain of MCMV  

(i.e., isolated from the salivary glands of infected Balb/c females) and monitored their survival. As shown 

in Figure 1A, postnatal development of wild-type mice was severely affected by the intraperitoneal (i.p.) 

injection of a small amount (50 p.f.u—Forming units) of MCMV, with all pups dying by day 11  

post-inoculation. However, mortality was significantly (***, p = 0.0001) higher in mice carrying the 

Dicer d/d hypomorphic mutation. Virally-induced lethality is accompanied by decreased weight gain of 

both control and mutant pups compared to uninfected animals (Supplementary Figure S1A). To 

demonstrate that reduced Dicer expression is indeed responsible for this decreased viability upon viral 

infection in neonates we used a recombinant virus (MCMV-Cre), which allows for the expression of the 

Cre recombinase during the viral cycle. Injecting 4–8 h-old pups with this virus led to limited lethality 

in control wild-type mice (Dicer +/+), most likely reflecting a reduced pathogenicity of the MCMV-Cre 

amplified in cultured cells. However, infection of Dicer fl°x/fl°x newborns led to significantly (p = 0.0343) 

increased lethality (Figure 1B) which, interestingly, is also accompanied by lower weight gain in the 

infected animals (Supplementary Figure S1B). The late onset of lethality in Dicer-floxed mice (starting 

at day 15) probably reflects the delay in the reduction of Dicer expression, as this requires gene excision 

and significant decrease in transcript and protein abundance. These experiments indicate that normal  

Dicer-dependent miRNA biogenesis is a crucial feature driving MCMV resistance. Furthermore, increased 

lethality of infected Dicer fl°x/fl°x neonates suggests that the mechanism is cell-autonomous and restricted 

to MCMV infected cells as it cannot be compensated by normal Dicer expression in non-infected cells. 
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Figure 1. Increased lethality of Dicer-deficient newborns upon MCMV infection.  

(A). Control (Dicer +/+, N = 7) and mutant (Dicer d/d, N = 13) 4–8 h old neonates were infected 

by intraperitoneal injection of 50 p.f.u of MCMV (Smith strain, prepared in vivo). Survival of 

the pups was monitored every 12 h. (B). Dicer +/+ (N = 11) and Dicer flox/flox (N = 10) were infected 

with 500 p.f.u of a recombinant MCMV-Cre (prepared by amplification in NIH 3T3 cells). 

2.2. Increased Viral Replication in Dicer-Deficient Newborns 

To quantify viral replication in vivo we used a Luciferase-expressing MCMV (MCMV-Luc).  

4–8 h-old wild-type (Dicer +/+) and mutant (Dicer d/d) neonates were inoculated i.p. with 500 p.f.u of this 

weakly pathogenic virus, after which viral amplification was monitored by way of Luciferin injection 

and subsequent quantification of light emission. In vivo imaging and data collection were performed on 

anesthetized pups at days 7, 9, 12, and 14 as described [19]. As seen in Figure 2A, while all pups of 

various Dicer genotypes (+/+; d/+ or d/d) exhibit similar Luciferase expression at day 4, imaging of the 

same animals at later time points reveals regular decrease of light emission in those carrying wild-type 

and heterozygous Dicer alleles. One Dicer +/d neonate died likely as a result of anesthesia. Remarkably 

however, the two Dicer d/d homozygous mutants identified in the litter used in this experiment exhibited 

sustained viral replication until day 14. A semi-quantitative representation of the light emitted by each 

animal is shown in Figure 2B, which clearly illustrates continuous viral gene expression in Dicer d/d 

neonates from day 7 to day 14. This indicates that while efficient viral clearance is observed in control 

animals, such mechanisms are lacking in pups with low Dicer expression. Similar data were obtained in 

2 additional independent experiments in which the neonates were infected 12 h (Supplementary  

Figure S2A) or 24 h after birth (Supplementary Figure S2B). A compilation of the luminescence 

quantified for the different animals in these 3 experiments confirms increased viral replication in Dicer d/d 

neonates (Supplementary Figure S2C). 
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Figure 2. In vivo imaging reveals increased MCMV replication in infected Dicer-deficient 

neonates. (A). Snapshot images showing the luminescence emitted by MCMV-Luc-infected 

animals 7, 9, 12 and 14 days after infection. The genotype of the animals is indicated.  

(B). time-course analysis of luminescence (expressed in Log photons/sec or p/s) quantified 

for each animal presented in A. Wild-type control (Dicer +/+, animal n° 2 in yellow), 

heterozygotes (Dicer +/d, animals 3, 4 and 6 in red) and mutants (Dicer d/d, animals 1 and 5 

in blue). 

2.3. Preferential Viral Dissemination in the Brain of Dicer-Deficient Newborns 

Live imaging of MCMV replication with high levels in large organs such as the lungs, spleen or liver 

may mask more discrete activity domains. We therefore masked the luminescence originating from the 

abdomen (using thick, dark cardboard) in order to detect a potential luminescent signal from the head 

alone, allowing the monitoring of possible viral replication in the brain. Increasing the length of the 

detection period enabled us to detect photons emitted in a discrete area at the ear level (Figure 3, red 

arrow). Interestingly, such a signal was visible only in Dicer d/d animals. To identify whether the brain 

is the source of this luminescence we euthanized the animals and recorded the light emitted from the 

dissected brains. As shown in Figure 4, strong signals are clearly visible in brains from Dicer d/d mutants, 

whereas a control brain shows negligible light emission. Quantification of these signals confirmed a 

marked (one Log) difference in signal intensity. Comparable results were obtained upon qPCR 

quantification of the viral genome (following the procedure described in [26]) in dissected brains 

harvested from a pool of MCMV-infected neonates (representing different experiments) at day 12.  

As shown in Suppl. Figure 3, increased (although not significant) viral replication can be observed in 

Dicer d/d mice. Surprisingly, one control neonate exhibited high viral titer in the brain, which can be the 

consequence of fortuitous hemorrhage during virus intraperitoneal injection and subsequent 

dissemination. Furthermore, the dissected brains were also used in RT-qPCR quantification (data not 

shown) to determine that Dicer expression is significantly reduced in mutants, which is similarly 

observed in other tissues [26,27]. 
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Figure 3. Preferential viral dissemination in the head of Dicer d/d mutants following MCMV 

neonatal infection. The abdomen of the animals was covered with dark cardboard to hide 

luminescence emitted from the lungs, spleen, liver or kidneys in order to increase the 

exposure time and to detect photons originating from the head region only. Data were 

obtained at days 7, 9, 12, and 14 following MCMV-Luc injection. Genotypes are indicated. 

To unambiguously demonstrate the presence of the virus in the brain and to locate its replication sites 

we performed Immunohistochemistry (IHC) staining on frozen brain sections from MCMV-inoculated 

Dicer +/+ and Dicer d/d neonates. By using an antibody directed against the E1 protein (CROMA 103 Ab) 

we evidenced MCMV infection in the posterior brain region (bregma-3.08) in Dicer d/d mutants, which 

corresponds to the luminescent sites (Figure 5A,E). No staining was observed in the corresponding area 

of control brains (i.e., from infected wild-type mice). Interestingly, mutant brains stained strongly not 

only in foci as illustrated for the retrosplenial cortex (compare Figure 5B–F and C–G), but also in the 

alveus of the hippocampus or in individual, dispersed cells in the granular layers of the hippocampus 

(compare Figure 5B–F and D–H). Although Nissl often co-localized with E1 protein in our experiment 

(Figure 5G,H), in good agreement with a previous report [28] showing that neurons are the primary 

target of MCMV infection in the brain, we cannot exclude that other cell types were also infected. We 

particularly observed frequent staining in elongated, epithelial-like cells in blood vessels of Dicer d/d 

brains (arrow in Figure 5H). Further immunofluorescence analyses revealed that the MCMV E1 protein 

was localized in nuclei (as detected by DAPI staining) in both the cortex (Figure 6A–C) and the 

hippocampus (Figure 6D–F). 
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Figure 4. Increased brain infection in Dicer d/d mutants. (A). Snapshot image illustrating 

luminescence from the dissected brains harvested in a representative control neonate  

(Dicer +/+) and two Dicer d/d mutants. (B). Luminescence (expressed in photons/sec or p/s) 

was quantified and plotted for each brain. 

 

Figure 5. Immunohistochemistry reveal specific localization of MCMV in the brain of 

infected Dicer d/d neonates. (A) and (E). Snapshot images showing luminescence emitted by 

a control (Dicer +/+) and a mutant (Dicer d/d) brains respectively. Examples of 

immunohistochemical detection of E1 protein in Dicer +/+ (B–D) and Dicer d/d brains (F–H) 

include macroscopic images (B), (F) and magnifications of selected regions of retrosplinal 

cortex (Cx; (C), (G)) and hippocampus (H; (D), (H)) at Bregma–3.08 mm. 

Immunolocalization of MCMV using the CROMA 103 primary antibody and peroxidase-

labeled secondary antibody was depicted in brown and cresyl violet neuronal detection in 

blue. Epithelial staining in blood vessels is indicated by the arrow. 
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Figure 6. Nuclear detection of E1 protein in Dicer d/d mouse brain. Examples of 

immunofluorescent detection of E1 protein in the cortex ((A)–(D); Bregma—3.08mm) and 

hippocampus ((E)–(H); Bregma—2.3 mm) of Dicer d/d brain using CROMA 103 antibody. 

Magnifications of boxed regions illustrate E1 expression (B), (F), DAPI staining of the 

nuclear DNA (C), (G) and their colocalisation (D), (H). 

3. Discussion 

Neonatal infections by Cytomegalovirus induce major defects in multiple organs potentially causing 

premature death. Among the most severe complications that can occur are those associated with 

neurological dysfunctions (e.g., deafness or mental retardation). Due to their high prevalence  

CMV-related diseases in children represent a heavy burden; however the molecular mechanisms 

involved in CMV neuropathogenesis are less investigated than those caused by other herpesviruses.  

Data obtained by genetic analyses in children suffering Herpes Simplex 1 (HSV1) encephalitis provided 

clues on the physiopathology associated with this viral infection, leading to the identification of several 

genes involved in innate antiviral responses. Among these genes, those encoding for Tlr3 [29] or  

Unc-93B [30] could also be involved in the defense against other Herpesviruses such as CMV, even 

though this assumption has not been formally demonstrated. Additionally, mutations in these genes are 

extremely rare in the population and account for only a small fraction of neonatal HSV-1 diseases of 

genetic origin. Therefore, we used a preclinical approach and developed an in vivo imaging tool to screen 

for genetic (or pharmacological) factors in mice which affect MCMV dissemination to the nervous 

system, with the aim of identifying novel genes and pathways involved in CMV-related neurological 

abnormalities. In this report we describe increased lethality following intraperitoneal injection of 

MCMV in newborn mice where miRNA biogenesis was altered as a consequence of a hypomorphic 

mutation of the Dicer gene. Interestingly, we also observed a higher viral gene expression (as revealed 

by luciferase detection in the case of MCMV-Luc or E1 protein upon IHC experiments), reflecting [31] 

augmented virus titers in the brain of Dicer-deficient neonates. A precise localization of viral replication 

sites by IHC staining confirmed the viral infection of neurons localized in different cortical regions, 

including the entorhinal cortex and the hippocampus—Two areas tightly associated with cognitive 

functions [32]. While our work cannot directly link the increased death rate of the animals to the presence 

of MCMV in their brains we do however provide strong evidence for a major role of miRNAs in 

resistance to the infection. miRNAs are now considered as major regulators of gene expression and their 

role in antiviral immunity has been assessed in mammals [33–35], with our own work providing 
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important insights into their role in the innate defense against viruses in adult mice [26,27]. However, 

the role of miRNAs in Herpesvirus infections is by nature difficult to investigate as they function both 

in the host immune defense as well as possible pathogenic factors encoded by the viral genomes. 

Therefore, studying MCMV infection in Dicer-deficient neonates, which are characterized by the 

relative immaturity of their immune system [18], provides for an interesting opportunity to understand 

the relative importance of both host and virally-encoded immune miRNAs. It can be concluded from our 

data that their role as pathogenic factors (whose decrease would be expected to lower MCMV 

aggressiveness) is dominated by that of host miRNAs (which likely exert protective functions). Several 

hypotheses can be drawn to account for the increased susceptibility of Dicer d/d neonates to MCMV 

infection and the virus’s preferential brain localization:  

(i) A global innate immune alteration could be the consequence of low miRNA biogenesis, thereby 

provoking uncontrolled viral replication. During these conditions, high viral load in the brain would 

simply reflect increased viral titers in organs such as the lungs, the kidneys or the spleen. In other words, 

high viral loads in the periphery would automatically drive a CNS infection. We do not favor this 

possibility because, as seen in Figure 2A, mouse number 2 (Dicer +/+) exhibits very high luciferase levels 

in the abdomen (similar to those observed for Dicer d/d animals) and yet brain infection was not observed. 

Alternatively, we support a model in which. 

(ii) miRNA expressed by endothelial cells play a major role in the process of viral dissemination in 

the brain. This is supported by the fact that MCMV replicates in these cells, contributing to viral 

dissemination [36]. Furthermore, miRNAs are important actors of endothelial cell functions [37].  

Taking into account these observations, we speculate that endothelium perturbations in the blood-brain 

barrier represent a major issue, leading to MCMV leakage into the brain of Dicer d/d neonates.  

Because endothelium dysfunction can be either intrinsic to the Dicer d/d mutants or a consequence of 

MCMV infection future experiments aiming at exploring the integrity of the blood-brain barrier will be 

of high interest. 

4. Materials and Methods 

4.1. Mice and Ethics Statement 

Animals were maintained under pathogen-free conditions in the animal care facility of the  

Institut d’Immunologie et d’Hématologie. Handling of mice and experimental procedures were 

conducted in accordance with the French Law for the Protection of Laboratory Animals. The procedure 

was approved by the service véterinaire de la Préfecture du Bas-Rhin (France) under the authorization 

number A-67-345. Dicerd/d mice were described in [26,27]. Dicer fl°x/fl°x animals were described in [38]. 

4.2. Viruses 

The MCMV Smith strain was amplified in vivo by three consecutive propagations in 3 week-old 

BALB/c females infected with 1 × 104 plaque-forming units (p.f.u). Two weeks after intraperitoneal 

injection, salivary glands were harvested and homogenized in DMEM. Viral titers were quantified by plaque 

assay as previously described [39]. MCMV-Luc and MCMV-Cre (both provided by Lars Dölken, University 
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of Cambridge, Cambridge, UK) were amplified in cultured NIH 3T3 cells and quantified by plaque assay in 

the same cells as described [39]. The insertion site of the Luc and Cre genes is reported in [40]. 

4.3. In Vivo Imaging 

Infection of neonates and data acquisition of luminescence on an IVIS-50 (Caliper) were carried out 

as described [19]. Snapshot images and luminescence quantification (expressed in photons/sec—p/s) 

was performed with the dedicated software Living Image. 

4.4. Immunohistochemistry Staining 

Brains dissected from 14 days-old neonates were fixed overnight at +4 °C in 4% paraformaldehyde 

(PFA), washed in PBS and dehydrated by consecutive incubations in 70%, 95% and absolute ethanol 

followed by histosol. 7 µm thick coronal sections were prepared from paraffin embedded brains and 

collected on Superfrost Plus® slides. For immunohistochemistry paraffin was removed and sections 

rehydrated in a series of baths including histosol followed by absolute, 95%, 70%, and 50% ethanol 

solutions, with subsequent termination by PBS incubation. Epitope retrieval was carried out by heating 

in citrate buffer (0.01 M, pH 6) with a microwave oven for 10 min, while endogenous peroxidase was 

inactivated by incubation in H2O2 1% in PBS, with non-specific sites saturated by incubation in Fetal 

Calf Serum (FCS) 7%. Primary antibody (CROMA 103; diluted 1/100; gift from Stipan Jonjic, School 

of Medicine, University of Rijeka, Croatia) was used to detect viral E1 protein and the signal was 

revealed using an ABC kit (Vector Laboratories, AbCys SA, France) according to the manufacturer’s 

protocol. Immunofluorescence experiments were performed using secondary antibody coupled with 

Alexa488 and DAPI for detection of nuclear DNA. Cresyl violet was used in counterstaining. 

4.5. Statistical Analysis 

GraphPad Prism 5.04 was used to perform statistical analysis of survival curves using Log-rank 

(Mantel-Cox) Test. Mann-Whitney (non parametric) test was used to compare two unmatched groups. 
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