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Cerebral small-vessel disease (CSVD) has been found to have a strong

association with vascular cognitive impairment (VCI) and functional loss in

elderly patients. At present, the diagnosis of CSVD mainly relies on brain

neuroimaging markers, but they cannot fully reflect the overall picture

of the disease. Currently, some biomarkers were found to be related

to CSVD, but the underlying mechanisms remain unclear. We aimed to

systematically review and summarize studies on the progress of biomarkers

related to the pathogenesis of CSVD, which is mainly the relationship

between these indicators and neuroimaging markers of CSVD. Concerning

the pathophysiological mechanism of CSVD, the biomarkers of CSVD have

been described as several categories related to sporadic and genetic factors.

Monitoring of biomarkers might contribute to the early diagnosis and

progression prediction of CSVD, thus providing ideas for better diagnosis and

treatment of CSVD.
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hyperintensities, lacunes, enlarged perivascular spaces, cerebral microbleeds

Introduction

Cerebral small-vessel disease (CSVD) is a series of clinical, imaging, and pathological

syndromes resulting from the injury of cerebral microvessels, such as 2–5mm cerebral

parenchyma around small vessels and vascular structures in the subarachnoid space

(1). As a highly age-related disease, CSVD is not only closely related to vascular

cognitive impairment (VCI), but also a common risk factor for depression, neurological

impairment such as gait disorder, and stroke recurrence.

At present, the diagnosis of CSVD mainly depends on neuroimaging. The

neuroimaging features of CSVD include recent small subcortical infarcts, lacunes,

white matter hyperintensities (WMH), enlarged perivascular spaces (EPVS), cerebral

microbleeds (CMB), and brain atrophy (2). Studies have shown that subcortical WMH

and paraventricular WMH are present in 100 and 95%, respectively, of the elderly older

than 80 years. Moreover, advanced imaging modalities, such as 7-T MRI, additional

metrics, and amyloid PET provide new insights into the diagnosis and study of

CSVD (3–5).
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Despite the advances in neuroimaging and biological

detection in recent years, the pathogenesis of CSVD remains

unsolved. Blood–brain barrier (BBB) injury seems to be one

of the recognized pathogenesis of sporadic CSVD (6–8), and

with the discovery of genetic factors, CSVD is thought to

be divided into common sporadic and rare familial forms,

there are still amyloidal and non-amyloidal subtypes among

sporadic forms. The amyloidal form includes cerebral amyloid

angiopathy (CAA), which is considered a chronic degenerative

disease characterized bymultiplemicrobleeds (9), while the non-

amyloidal is often associated with common vascular risk factors,

such as hypertension. Concerning familial forms, cerebral

autosomal-dominant arteriopathy with subcortical infarcts and

leukoencephalopathy (CADASIL), for example, has been widely

recognized. Therefore, studies on the pathological mechanism of

CSVD mainly focus on sporadic and genetic types.

Based on the ongoing exploration of the pathogenesis of

CSVD, related biomarkers have attracted attention, especially

their role in the early stage of CSVD. Thus, we mainly reviewed

and discussed the biomarkers involved in the pathogenesis

of CSVD and their association with neuroimaging markers

(Figure 1).

Sporadic cerebral small-vessel
disease

Sporadic CSVD is divided into two main forms. One of

them, CAA, is a chronic degenerative disease and another one is

the non-amyloid form, which is often associated with common

vascular risk factors, such as old age, hypertension, diabetes, and

many other vascular risk factors.

Cerebral amyloid angiopathy

The main pathological changes of CAA are vascular

destruction, bleeding, and product deposition caused by the

deposition of β-amyloid protein on small arteries. Moreover,

amyloid infiltration of cerebrovascular may also lead to luminal

stenosis, hyaline of arterioles, intimal hyperplasia of stenosis,

fibrinoid degeneration, and fibrous obstruction, resulting in

focal cerebral ischemia, infarction, and softening.

Apolipoprotein E (APOE) genotype, especially APOE-ε4, a

genetic marker for sporadic CAA, has been used as a genetic

risk factor for CAA and Alzheimer disease (AD). APOE-ε4

was found to be associated with a high burden of EPVS in the

centrum semiovale (10). While the APOE-ε2 allele appears to

be more prevalent in patients with CAA-associated intracerebral

hemorrhage (11).

Non-amyloidal cerebral small-vessel
disease

Non-amyloidal CSVD is less specific and usually refers to

hypertensive CSVD, although it may be associated with a variety

of vascular risk factors, such as diabetes. The pathological

changes are mainly atherosclerosis, arteriolosclerosis, and

lipohyalinosis. The exact pathogenesis remains unclear.

Increased BBB permeability and endothelial dysfunction are

important pathological features of sporadic CSVD. Therefore,

related circulatory biomarkers may play a crucial role in the

diagnosis and treatment of CSVD.

Biomarkers of BBB and endothelial
dysfunction

The BBB, which consists of endothelium, pericytes,

basement membrane, and astrocytes, plays a complex and

crucial role in maintaining material transport and fluid balance.

In this process, at the cellular level, the endothelium is crucially

important. In addition, damaged endothelial cells have been

found to inhibit oligodendrocyte precursor cell maturation,

which then affects the production of oligodendrocytes,

leading to myelination impairment (12, 13). Dysfunction of

endothelial and BBB function is usually due to chronic ischemia,

inflammation, oxidative stress-induced lipid peroxidation,

matrix metalloproteinase (MMP) activation, and DNA damage,

and is reflected in an increase in related metabolites in blood

or cerebrospinal fluid (CSF) (14). There has been a lot of

evidence that these biomarkers are associated with CSVD

neuroimaging markers.

White matter hyperintensities

Inflammatory biomarkers

C-reactive protein (CRP) has previously been associated

with neurodegenerative diseases and poor cognitive outcomes

in normal aging (15). In recent years, CRP has been found

to be related to WMH severity and brain atrophy, and higher

CRP levels were significantly associated with greater cognitive

impairment (16–19). And in a study of 130 patients with

CSVD, IL-1α and IL-6 was found a significant association

with recurrent stroke and other vascular events, and there

was a correlation between IL-6 and deep WMH (19, 20).

Moreover, as an early marker of inflammation, procalcitonin

(PCT) has previously been considered a prognostic biomarker

for cardiovascular diseases (21). In recent years, Li et al. found

that higher levels of PCT were closely associated with WMH

(22), suggesting a monitoring role of PCT for CSVD. For

vascular inflammation/endothelial dysfunction, homocysteine

(HCY) has been proposed to be a risk factor, most widely

investigated in conjunction with imaging burden, including
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FIGURE 1

Hypothesis about the pathogenesis of cerebral small-vessel disease (CSVD). BBB, blood–brain barrier; CSVD, cerebral small-vessel disease; CBF,

cerebral blood flow.
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WMH in patients with CSVD (23–26). Also, studies on VCAM-

1 and von Willebrand factor (vWF) revealed their prominent

associations with WMH (27–30).

Coagulation markers

It is well-known that prothrombotic status is associated with

vascular risk events, and the role of coagulation biomarkers in

CSVD has been increasingly discovered. A strong correlation

between higher levels of thrombomodulin (TM) and WMH was

found especially in the patients with microalbuminuria (31).

Similarly, it was reported that higher thrombin–antithrombin

values and D-dimer were associated with the presence of WMH

in the previous studies (20). Moreover, vWF, synthesized by

endothelial cells, was found to be related to periventricular

WMH andWMH burden (32).

BBB integrity-related metabolites

Endothelial-derived exosomes (EDE) play a significant

role in maintaining endothelial function and inflammatory

regulation (33). It has been reported that plasma levels of

EDE cargo proteins GLUT1, LAT1, P-GP, and NOSTRIN

were significantly higher in patients with WMH, especially

AD patients with WMH (34). EDE may be suggested as a

biomarker associated with cerebral endothelial pathogenesis,

which contributes to BBB dysfunction and degenerative changes,

such as CSVD. Matrix metalloproteinases (MMPs) are involved

in sustaining neuronal remodeling, BBB integrity, and have

been found to be related to higher WMH grades and vascular

dementia (35, 36). Among MMPs, detectable plasma matrix

metalloproteinase-9 (MMP-9) is associated with the severity of

CSVD andWMH (37, 38). In addition, high-density lipoprotein

and triglyceride (TG) levels were found to be risk factors for

new lacunes in a 3-year follow-up study (39). There were also

studies that suggested that increasing triglycerides levels were

associated with largerWMHvolume, and increasing low-density

lipoprotein (LDL) cholesterol tended to be associated with a

decreased frequency and severity of MRI markers of CSVD (40).

Moreover, lipoprotein-associated phospholipase A2 (LP-PLA2)

was reported to be an independent risk factor associated with

WMH and cognitive impairment in CSVD (41).

CSF and serum albumin

Elevated CSF and serum albumin that reflect albumin

extravasation and BBB leakage have been found in patients with

vascular dementia (42). Increased albumin CSF/serum ratio, a

marker of BBB breakdown, has also been reported in patients

with vascular dementia and WMH on neuroimaging (43).

Lacunes

A higher level of HCY has been proposed to be a risk

factor most widely investigated in conjunction with the imaging

burden of progression of lacunes in patients with CSVD (23–

26). Li et al. also found that higher levels of PCT were closely

associated with silent lacunar infarctions (22). However, no

relationship was found between lacunes and CRP (24, 44). TM

and fibrinogen were significantly associated with the risk of

lacunes (31, 45). In addition, as the natural inhibitor of the

exogenous coagulation pathway and the marker of endothelial

activation, elevated factor pathway inhibitor (TFPI) were

found in lacunar stroke patients than in controls, supporting

the hypothesis that endothelial dysfunction is involved in

the pathogenesis of lacunar stroke (46). Finally, high-density

lipoprotein and triglyceride (TG) levels were found to be risk

factors for new lacunes in a 3-year follow-up study (39).

Enlarged perivascular spaces

High levels of CRP and PCT have been reported to be

associated with EPVS (22, 47, 48), and plasma HCY level

was correlated with EPVS in basal ganglia (49). There is

also a significant association between neutrophil count and

EPVS in basal ganglia in a community-based study (50),

neutrophil-to-lymphocyte ratio (NLR), and EPVS in a patient

study (51). Furthermore, serum cortisol levels were found to

be independent predictors of moderate-to-severe EPVS and

cognitive dysfunction (52).

Cerebral microbleeds

Elevated levels of CRP and interleukin-6 were associated

with an increased CMB burden in the stroke cohorts and

more pronounced in APOE-ε4 carriers (53). Besides, higher

HCY levels may result in the accumulation of amyloid protein

because HCY impedes the clearance of amyloid protein through

the glymphatic pathway (54), which may be the cause of its

association with lobar CMB. Evidence of the studies on vascular

endothelial growth factor (VEGF) also provides support for

vascular inflammatory involvement in CMB formation in AD

and stroke patients (55, 56).

Genetic cerebral small-vessel
disease

The discovery of genetic factors revealed a considerable

impact of them on CSVD although CSVD is more often

a sporadic disease. The estimated heritability for WMH as

a biomarker of CSVD ranged between 50 and 80% (57).

There are several hereditary forms of CSVD that have been

identified, including CADASIL, cerebral autosomal recessive

arteriopathy with subcortical infarcts and leukoencephalopathy

(CARASIL), cathepsin A-related arteriopathy with strokes

and leukoencephalopathy (CARASAL), hereditary diffuse

leukoencephalopathy with spheroids (HDLS), COL4A1/2-

related disorders, and Fabry disease. The numbers and in-depth

investigations on the genetic loci are growing in recent years
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to achieve the improved diagnosis and treatment of these rare

single-gene disorders, as well as sporadic CSVD (58).

Cerebral autosomal-dominant arteriopathy with subcortical

infarcts and leukoencephalopathy is the most common

hereditary CSVD, which is caused by a mutation of cysteine-

altering in the NOTCH3 gene on chromosome 19, mainly due

to mutations in the NOTCH3 extracellular domain (NOTCH3
ECD). The NOTCH3 gene encodes the key molecular of

transmembrane receptor protein during notch signaling and

embryonal development (59), and NOTCH3 plays an essential

role in the development of the vascular system in adults. There

were also several reports that have described non-cysteine-

related mutations and a single-particle in vitro aggregation

assay might evaluate the clinical significance of the non-cysteine

variants, but it was still a debatable point (60).

The next known rare hereditary CSVD is CARASIL, which

pathogenic gene is HTRA1, located on chromosome 10q

(10q25.3-q26.2). Themutation could result in the loss of HTRA1

protease activity, leading to the upregulation of TGF-β family

signaling (61), resulting in the degeneration of smooth muscle

cells in the cerebral small vessels.

There are several other rare hereditary forms of CSVD

as follows: colony-stimulating factor 1 receptor [CSF1R,

MIM∗164770] mutations cause HDLS (62); CTSAmutations are

the cause of CARASAL through the degradation of endothelin-1

and downregulation of oligodendrocyte (13); and Fabry disease

is caused by the genetic mutations in the alpha-galactosidase-A

gene (GLA-gene), located on the long arm of the X-chromosome

(Xq22.1) (63). There is still COL4A1/2-related CSVD.

Furthermore, genome-wide association studies (GWAS)

found several possible genetic factors that might be related to

WMH, such as NEURL1, PDCD11, and SH3PXD2A. Mutations

in TREX1, FOXC1, and PITX2 were also related to dysfunction

of the vascular system, and usually present with WMH on MRI,

lacunar infractions, and EPVS (64). Hence, the genetic factors

play a vital role in terms of revealing the molecular mechanism

of CSVD and may also bring new ideas for the prevention and

treatment of CSVD.

Besides, as mentioned above, APOE-ε4 allele is associated

with increased amyloid β-protein (Aβ) deposition and may lead

to the formation and progression of WMH, especially in the

frontal lobe. There is not only an increased risk of developing

AD but also the prevalence of CAA in APOE-ε4 carries (65).

Besides, Luo et al. found significantly more frontal WMH

burden and basal ganglia EPVS at baseline and greater cognitive

progression in APOE-ε4 carriers (66).

Cerebral small-vessel disease
associated diseases

Some of the biomarkers of CSVD are also risk

factors for other diseases, including cerebral and

non-cerebral diseases. Cerebral diseases are mainly

neurodegenerative diseases, and non-cerebral diseases

mainly include chronic kidney disease and retinal disease.

They are directly or indirectly related to the pathogenesis

of CSVD.

Relationship between cerebral
small-vessel disease and
neurodegenerative diseases

White matter hyperintensities

As the significant component of the neuronal cytoskeleton,

neurofilament (NfL) provides structural support for axons

(67). Thus, higher serum and CSF NfL levels could be

a more direct biomarker to reflect neuronal damage and

neurodegeneration diseases (68), such as AD (69). CSF NfL

light polypeptide was thought to be involved in increasedWMH

volume in dementia-free, AD, subcortical ischemic disease,

and mild cognitive impairment (MCI) patients (70, 71). As

the extraction of CSF is invasive, plasma NfL is more often

used to evaluate the neuroaxonal damage, and serum NfL is

associated with baseline WMH volume in patients with CSVD

(72, 73).

CSF and plasma Aβ levels are usually used as the biomarkers

of AD, and the toxic effects of Aβ on blood vessel walls are also

causing concern. There have been several studies investigated

the association between Aβ and WMH (74) in which Gurol

et al. reported an association between WMH and plasma Aβ40

and Aβ42 (75), while Kester et al. found a negative correlation

between CSF Aβ42 and WMH in a normal population (76),

indicating Aβ a potential risk factor for CSVD. Similarly, some

studies also found the relationship betweenWMH and CSF total

tau (t-tau) and phosphorylated tau (p-tau) (76–78).

Lacunes

Serum NfL is found to be associated with the baseline

presence of lacunes in CSVD patients (72, 73). In CSVD patients

with higher levels of Aβ1-42, CRP was strongly associated with

lacunes (47).

Enlarged perivascular spaces

Higher levels of P-Tau, T-Tau, and neurogranin in Aβ-

positive individuals were significantly associated with EPVS in

centrum semiovale (79). And CRP was strongly associated with

EPVS in CSVD patients with higher Aβ1-42 (47).

Cerebral microbleeds

The previous studies have found that the CMB is related

to low CSF Aβ42, but there were also studies found that there
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was no correlation between CSF Aβ42 and deep CMB (80,

81). It’s worth noting that Kester et al. found that CMB was

related to CSF Aβ42 only in the presence of APOE ε4 in AD

and normal elderly (76). And there is a significant association

between CMB and tau pathology that is lower tau and p-

tau 181 in APOE ε4 non-carriers, but not in carriers (76, 82,

83).

Relationship between cerebral
small-vessel disease and non-cerebral
diseases

Some extracranial diseases have also been found to

have vascular lesions similar to those in CSVD, such as

arteriosclerosis and endothelial dysfunction. The most common

is chronic kidney disease (CKD). It has been reported that

patients with CKD are more likely to develop CSVD and

more severe WMH, but the pathological mechanism of CKD-

related CSVD remains unclear and might be related to uremic

toxins and chronic inflammation (84–86). As the main feature

of CKD, albuminuria has been proposed as an independent

biomarker for systemic endothelial dysfunction (87). There is

also evidence suggesting an association between albuminuria

and WMH burden (88), and another indicator of kidney

function, lower GFR, could also reflect the advanced stage

of microvascular disease (89). In addition, hyperphosphatemia

was found to be significantly associated with vascular risk

events (90, 91). In recent years, Chung et al. reported that

higher circulatory phosphate levels were associated with severe

WMH and downregulating tight junction proteins in human

brain microvascular endothelial cells (92), suggesting that

hyperphosphatemia might be a novel risk factor for CSVD

and might be involved in BBB impairment. As the early

marker of kidney disease, albuminuria has been proposed as

an independent biomarker for systemic endothelial dysfunction

(87). It’s pretty clear that worse kidney function, associated

with peripheral systemic microvascular disease, has been the

biomarker that could be useful in the evaluation of brain

microvascular damage.

On the other hand, the vascular network of the retina

is physiologically similar to the corresponding cerebral

neurovascular units (93). Therefore, non-invasive evaluation

of retinal neurons and blood vessels may provide new

biomarkers for the diagnosis and evaluation of CSVD (94, 95).

Optical coherence tomography (OCT) showed a significant

correlation between the Wall to Lumen Ratio (WLR) and

WMH (96), and OCT angiography (OCTA) showed that

retinal hypoperfusion was related to MRI markers, such

as WMH and lacunes in CSVD patients (97), suggesting

the potential value that these parameters as biomarkers for

early CSVD.

Other biomarkers

Renin–angiotensin–aldosterone System: The renin–

angiotensin–aldosterone system previously has been studied as

a potential marker in CSVD because it works in the regulation

of vascular smooth muscle constriction and hypertension (98).

And angiotensin-II, the key molecular related to hypertension,

is found to be involved in BBB damage in CSVD (99–101).

Specifically, increased angiotensin-converting enzyme (ACE)

levels have been found in the patients with greater progression

of deep WMH volume but less progression of cortical atrophy,

suggesting a complex role of ACE in the brain (102).

Plasma Brain Natriuretic Peptide (BNP) and NT-proBNP:

BNP and NT-proBNP are considered the diagnostic markers of

cardiovascular diseases and have been linked to cerebrovascular

diseases in recent years (103). Increased levels of plasma BNP

are associated with WMHs and lacunar infarcts, but there was a

negative correlation between BNP and CMB (104), thus it could

be a useful biomarker for identifying ischemic CSVD in patients

with hypertension. In addition, Vilar-Bergua et al. also found a

higher level of NT-proBNP was independently associated with

silent brain infarcts, CMB, EPVS, and WMHs volumes (103).

The possible mechanism is that BNP reduces local blood flow

and blood pressure, thereby reducing cerebral blood flow and

causing ischemic injury.

Conclusion

Despite the severe disease burden of CSVD, its pathologic

mechanisms are not fully understood by clinicians. The basis

for diagnosis and treatment of CSVD is mainly derived from

neuroimaging, such as diffusion tensor imaging, imaging of

the BBB, cerebrovascular reactivity, and cerebral blood flow,

which partly reflect the pathological mechanisms of sporadic

CSVD, such as BBB damage, reduced blood flow, and increased

intracranial vascular pulsation (4, 105). And the advancement of

molecular genetic tests improves diagnostic accuracy in patients

with potential CSVD. Therefore, most studies focus on the

sporadic and genetic types of CSVD.

Study on biomarkers of CSVD has become a promising

field in disease diagnosis and monitoring. Numerous studies

have suggested that APOE genotype is associated with

amyloid angiopathy in sporadic CSVD, and biomarkers

suggesting BBB damage, such as inflammatory factors and

coagulation factors, are closely related to non-amyloidosis

subtypes, especially their close association with neuroimaging

markers. In addition, molecular testing helps us to improve

the detection rate of hereditary CSVD. Moreover, there

are also some diseases with pathological changes similar

to CSVD, such as neurodegenerative diseases and renal

diseases. These known biomarkers reflect the involvement

of several interrelated pathways including but not limited
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to endothelial and BBB dysfunction and genetic factors,

showing the strong association between the possible biomarkers

and CSVD. But their predictive or discriminative ability

regarding diagnosis remains to be established perfectly during

clinical research.

In summary, although the diagnosis of CSVD is still mainly

relied on neuroimaging, the study of biomarkers, especially their

association with neuroimaging markers, can help us better early

identification, prediction, and evaluation of the development of

CSVD, and may find new therapeutic targets.
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