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Abstract Thermodynamic models of gene regulation can predict transcriptional regulation in

bacteria, but in eukaryotes, chromatin accessibility and energy expenditure may call for a different

framework. Here, we systematically tested the predictive power of models of DNA accessibility

based on the Monod-Wyman-Changeux (MWC) model of allostery, which posits that chromatin

fluctuates between accessible and inaccessible states. We dissected the regulatory dynamics of

hunchback by the activator Bicoid and the pioneer-like transcription factor Zelda in living

Drosophila embryos and showed that no thermodynamic or non-equilibrium MWC model can

recapitulate hunchback transcription. Therefore, we explored a model where DNA accessibility is

not the result of thermal fluctuations but is catalyzed by Bicoid and Zelda, possibly through histone

acetylation, and found that this model can predict hunchback dynamics. Thus, our theory-

experiment dialogue uncovered potential molecular mechanisms of transcriptional regulatory

dynamics, a key step toward reaching a predictive understanding of developmental decision-

making.

Introduction
Over the last decade, hopeful analogies between genetic and electronic circuits have posed the

challenge of predicting the output gene expression of a DNA regulatory sequence in much the same

way that the output current of an electronic circuit can be predicted from its wiring diagram

(Endy, 2005). This challenge has been met with a plethora of theoretical works, including thermody-

namic models, which use equilibrium statistical mechanics to calculate the probability of finding tran-

scription factors bound to DNA and to relate this probability to the output rate of mRNA production

(Ackers et al., 1982; Buchler et al., 2003; Vilar and Leibler, 2003; Bolouri and Davidson, 2003;

Bintu et al., 2005a; Bintu et al., 2005b; Sherman and Cohen, 2012). Thermodynamic models of

bacterial transcription launched a dialogue between theory and experiments that has largely con-

firmed their predictive power for several operons (Ackers et al., 1982; Bakk et al., 2004;

Zeng et al., 2010; He et al., 2010; Garcia and Phillips, 2011; Brewster et al., 2012; Cui et al.,
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2013; Brewster et al., 2014; Sepúlveda et al., 2016; Razo-Mejia et al., 2018) with a few potential

exceptions (Garcia et al., 2012; Hammar et al., 2014).

Following these successes, thermodynamic models have been widely applied to eukaryotes to

describe transcriptional regulation in yeast (Segal et al., 2006; Gertz et al., 2009; Sharon et al.,

2012; Zeigler and Cohen, 2014), human cells (Giorgetti et al., 2010), and the fruit fly Drosophila

melanogaster (Jaeger et al., 2004a; Zinzen et al., 2006; Segal et al., 2008; Fakhouri et al., 2010;

Parker et al., 2011; Kanodia et al., 2012; White et al., 2012; Samee et al., 2015; Sayal et al.,

2016). However, two key differences between bacteria and eukaryotes cast doubt on the applicabil-

ity of thermodynamic models to predict transcriptional regulation in the latter. First, in eukaryotes,

DNA is tightly packed in nucleosomes and must become accessible in order for transcription factor

binding and transcription to occur (Polach and Widom, 1995; Levine, 2010; Schulze and Wallrath,

2007; Lam et al., 2008; Raveh-Sadka et al., 2009; Li et al., 2011; Fussner et al., 2011; Bai et al.,

2011; Li et al., 2014b; Hansen and O’Shea, 2015). Second, recent reports have speculated that,

unlike in bacteria, the equilibrium framework may be insufficient to account for the energy-expend-

ing steps involved in eukaryotic transcriptional regulation, such as histone modifications and nucleo-

some remodeling, calling for non-equilibrium models of transcriptional regulation (Kim and O’Shea,

2008; Estrada et al., 2016; Li et al., 2018; Park et al., 2019).

Recently, various theoretical models have incorporated chromatin accessibility and energy expen-

diture in theoretical descriptions of eukaryotic transcriptional regulation. First, models by

Mirny, 2010, Narula and Igoshin, 2010, and Marzen et al., 2013 accounted for chromatin occlud-

ing transcription-factor binding by extending thermodynamic models to incorporate the Monod-

Wyman-Changeux (MWC) model of allostery (Figure 1A; Monod et al., 1965). This thermodynamic

MWC model assumes that chromatin rapidly transitions between accessible and inaccessible states

via thermal fluctuations, and that the binding of transcription factors to accessible DNA shifts this

equilibrium toward the accessible state. Like all thermodynamic models, this model relies on the

eLife digest Cells in the brain, liver and skin, as well as many other organs, all contain the same

DNA, yet behave in very different ways. This is because before a gene can produce its

corresponding protein, it must first be transcribed into messenger RNA. As an organism grows, the

transcription of certain genes is switched on or off by regulatory molecules called transcription

factors, which guide cells towards a specific ‘fate’.

These molecules bind to specific locations within the regulatory regions of DNA, and for decades

biologist have tried to use the arrangement of these sites to predict which proteins a cell will make.

Theoretical models known as thermodynamic models have been able to successfully predict

transcription in bacteria. However, this has proved more challenging to do in eukaryotes, such as

yeast, fruit flies and humans.

One of the key differences is that DNA in eukaryotes is typically tightly wound into bundles called

nucleosomes, which must be disentangled in order for transcription factors to access the DNA.

Previous thermodynamic models have suggested that DNA in eukaryotes randomly switches

between being in a wound and unwound state. The models assume that once unwound, regulatory

proteins stabilize the DNA in this form, making it easier for other transcription factors to bind to the

DNA.

Now, Eck, Liu et al. have tested some of these models by studying the transcription of a gene

involved in the development of fruit flies. The experiments showed that no thermodynamic model

could accurately mimic how this gene is regulated in the embryos of fruit flies. This led Eck, Liu et al.

to identify a model that is better at predicting the activation pattern of this developmental gene. In

this model, instead of just ‘locking’ DNA into an unwound shape, transcription factors can also

actively speed up the unwinding of DNA.

This improved understanding builds towards the goal of predicting gene regulation, where DNA

sequences can be used to tell where and when cell decisions will be made. In the future, this could

allow the development of new types of therapies that can regulate transcription in different

diseases.
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‘occupancy hypothesis’ (Hammar et al., 2014; Garcia et al., 2012; Phillips et al., 2019): the proba-

bility pbound of finding RNA polymerase (RNAP) bound to the promoter, a quantity that can be easily

computed, is linearly related to the rate of mRNA production dmRNA
dt

, a quantity that can be experi-

mentally measured, such that

dmRNA

dt
¼ Rpbound: (1)

Here, R is the rate of mRNA production when the system is in an RNAP-bound state (see Appen-

dix section 1.1 for a more detailed overview). Additionally, in all thermodynamic models, the
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Figure 1. Three models of chromatin accessibility and transcriptional regulation. (A) Thermodynamic MWC model

where chromatin can be inaccessible or accessible to transcription factor binding. Each state is associated with a

statistical weight given by the Boltzmann distribution and with a rate of transcriptional initiation. D"chrom is the

energy cost associated with making the DNA accessible and w is an interaction energy between the activator and

RNAP. a ¼ ½activator�=Ka and p ¼ ½RNAP�=Kp with Ka and Kp being the dissociation constants of the activator and

RNAP, respectively. This model assumes the occupancy hypothesis, separation of time scales, and lack of energy

expenditure described in the text. (B) Non-equilibrium MWC model where no assumptions about separation of

time scales or energy expenditure are made. Transition rates that depend on the concentration of the activator or

RNAP are indicated by an arrow incorporating the respective protein. (C) Transcription-factor-driven chromatin

accessibility model where the activator catalyzes irreversible transitions of the DNA through m silent states before

it becomes accessible. Once this accessible state is reached, the system is in equilibrium.

Eck, Liu, et al. eLife 2020;9:e56429. DOI: https://doi.org/10.7554/eLife.56429 3 of 57

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.56429


transitions between states are assumed to be much faster than both the rate of transcriptional initia-

tion and changes in transcription factor concentrations. This separation of time scales, combined

with a lack of energy dissipation in the process of regulation, makes it possible to consider the states

to be in equilibrium such that the probability of each state can be computed using its Boltzmann

weight (Garcia et al., 2007).

Despite the predictive power of thermodynamic models, eukaryotic transcription may not adhere

to the requirements imposed by the thermodynamic framework. Indeed, Narula and Igoshin, 2010,

Hammar et al., 2014, Estrada et al., 2016, Scholes et al., 2017, and Li et al., 2018 have proposed

theoretical treatments of transcriptional regulation that maintain the occupancy hypothesis, but

make no assumptions about separation of time scales or energy expenditure in the process of regu-

lation. When combined with the MWC mechanism of DNA allostery, these models result in a non-

equilibrium MWC model (Figure 1B). Here, no constraints are imposed on the relative values of the

transition rates between states and energy can be dissipated over time. To our knowledge, neither

the thermodynamic MWC model nor the non-equilibrium MWC model have been tested experimen-

tally in eukaryotic transcriptional regulation.

Here, we performed a systematic dissection of the predictive power of these MWC models of

DNA allostery in the embryonic development of the fruit fly Drosophila melanogaster in the context

of the step-like activation of the hunchback gene by the Bicoid activator and the pioneer-like tran-

scription factor Zelda (Driever et al., 1989; Nien et al., 2011; Xu et al., 2014). Specifically, we com-

pared the predictions from these MWC models against dynamical measurements of input Bicoid and

Zelda concentrations and output hunchback transcriptional activity. Using this approach, we discov-

ered that no thermodynamic or non-equilibrium MWC model featuring the regulation of hunchback

by Bicoid and Zelda could describe the transcriptional dynamics of this gene. Following recent

reports of the regulation of hunchback and snail (Desponds et al., 2016; Dufourt et al., 2018) and

inspired by discussions of non-equilibrium schemes of transcriptional regulation (Coulon et al.,

2013; Wong and Gunawardena, 2020), we proposed a model in which Bicoid and Zelda, rather

than passively biasing thermal fluctuations of chromatin toward the accessible state, actively assist

the overcoming of an energetic barrier to make chromatin accessible through the recruitment of

energy-consuming histone modifiers or chromatin remodelers. This model (Figure 1C) recapitulated

all of our experimental observations. This interplay between theory and experiment establishes a

clear path to identify the molecular steps that make DNA accessible, to systematically test our model

of transcription-factor-driven chromatin accessibility, and to make progress toward a predictive

understanding of transcriptional regulation in development.

Results

A thermodynamic MWC model of activation and chromatin accessibility
by Bicoid and Zelda
During the first 2 hr of embryonic development, the hunchback P2 minimal enhancer

(Margolis et al., 1995; Driever et al., 1989; Perry et al., 2012; Park et al., 2019) is believed to be

devoid of significant input signals other than activation by Bicoid and regulation of chromatin acces-

sibility by both Bicoid and Zelda (Perry et al., 2012; Xu et al., 2014; Hannon et al., 2017). As a

result, the early regulation of hunchback provides an ideal scaffold for a stringent test of simple the-

oretical models of eukaryotic transcriptional regulation.

Our implementation of the thermodynamic MWC model (Figure 1A) in the context of hunchback

states that in the inaccessible state, neither Bicoid nor Zelda can bind DNA. In the accessible state,

DNA is unwrapped and the binding sites become accessible to these transcription factors. Due to

the energetic cost of opening the chromatin (D"chrom), the accessible state is less likely to occur

than the inaccessible one. However, the binding of Bicoid or Zelda can shift the equilibrium toward

the accessible state (Adams and Workman, 1995; Miller and Widom, 2003; Mirny, 2010;

Narula and Igoshin, 2010; Marzen et al., 2013).

In our model, we assume that all binding sites for a given molecular species have the same bind-

ing affinity. Relaxing this assumption does not affect any of our conclusions (as we will see below in

Sections ’The thermodynamic MWC model fails to predict activation of hunchback in the absence of

Zelda’ and ’No thermodynamic model can recapitulate the activation of hunchback by Bicoid alone’).
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Bicoid upregulates transcription by recruiting RNAP through a protein-protein interaction character-

ized by the parameter !bp. We allow cooperative protein-protein interactions between Bicoid mole-

cules, described by !b. However, since to our knowledge there is no evidence of direct interaction

between Zelda and any other proteins, we assume no interaction between Zelda and Bicoid, or

between Zelda and RNAP.

In Figure 2A, we illustrate the simplified case of two Bicoid binding sites and one Zelda binding

site, plus the corresponding statistical weights of each state given by their Boltzmann factors. Note

that the actual model utilized throughout this work accounts for at least 6 Bicoid-binding sites and

10 Zelda-binding sites that have been identified within the hunchback P2 enhancer (Section ’Predict-

ing Zelda binding sites’; Driever and Nüsslein-Volhard, 1988; Driever and Nüsslein-Volhard,

1989; Park et al., 2019). This general model is described in detail in Appendix section 1.2.

The probability of finding RNAP bound to the promoter is calculated by dividing the sum of all

statistical weights featuring RNAP by the sum of the weights corresponding to all possible system

states. This leads to

pbound ¼
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Figure 2. Thermodynamic MWC model of transcriptional regulation by Bicoid and Zelda. (A) States and statistical

weights for a simplified version of the hunchback P2 enhancer. In this model, we assume that chromatin occluded

by nucleosomes is not accessible to transcription factors or RNAP. Parameters are defined in the text. (B) 3D input-

output function predicting the rate of RNAP loading (and of transcriptional initiation) as a function of Bicoid and

Zelda concentrations for a given set of model parameters.
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where b¼ ½Bicoid�=Kb, z¼ ½Zelda�=Kz, and p¼ ½RNAP�=Kp, with ½Bicoid�, ½Zelda�, and ½RNAP� being the

concentrations of Bicoid, Zelda, and RNAP, respectively, and Kb, Kz, and Kp their dissociation con-

stants (see Appendix sections 1.1 and 1.2 for a detailed derivation). Given a set of model parame-

ters, plugging pbound into Equation 1 predicts the rate of RNAP loading as a function of Bicoid and

Zelda concentrations as shown in Figure 2B. Note that in this work, we treat the rate of transcrip-

tional initiation and the rate of RNAP loading interchangeably.

Dynamical prediction and measurement of input-output functions in
development
In order to experimentally test the theoretical model in Figure 2, it is necessary to measure both the

inputs – the concentrations of Bicoid and Zelda – as well as the output rate of RNAP loading. Typi-

cally, when testing models of transcriptional regulation in bacteria and eukaryotes, input transcrip-

tion-factor concentrations are assumed to not be modulated in time: regulation is in steady state

(Ackers et al., 1982; Bakk et al., 2004; Segal et al., 2008; Garcia and Phillips, 2011; Sherman and

Cohen, 2012; Cui et al., 2013; Little et al., 2013; Raveh-Sadka et al., 2009; Sharon et al., 2012;

Zeigler and Cohen, 2014; Xu et al., 2015; Sepúlveda et al., 2016; Estrada et al., 2016; Razo-

Mejia et al., 2018; Zoller et al., 2018; Park et al., 2019). However, embryonic development is a

highly dynamic process in which the concentrations of transcription factors are constantly changing

due to their nuclear import and export dynamics, and due to protein production, diffusion, and deg-

radation (Edgar and Schubiger, 1986; Edgar et al., 1987; Jaeger et al., 2004b; Gregor et al.,

2007b). As a result, it is necessary to go beyond steady-state assumptions and to predict and mea-

sure how the instantaneous, time-varying concentrations of Bicoid and Zelda at each point in space

dictate hunchback output transcriptional dynamics.

In order to quantify the concentration dynamics of Bicoid, we utilized an established Bicoid-eGFP

line (Sections ’Fly Strains’, ’Sample preparation and data collection’ and ’Image analysis’; Figure 3A

and Appendix 1—figure 3A; Video 1; Gregor et al., 2007b; Liu et al., 2013). As expected, this
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Figure 3. Prediction and measurement of dynamical input-output functions. (A) Measurement of Bicoid

concentration dynamics in nuclear cycle 13. Color denotes different positions along the embryo and time is

defined with respect to anaphase. (B) Zelda concentration dynamics. These dynamics are uniform throughout the

embryo. (C) Trajectories defined by the input concentration dynamics of Bicoid and Zelda along the predicted

input-output surface. Each trajectory corresponds to the RNAP loading-rate dynamics experienced by nuclei at the

positions indicated in (A). (D) Predicted number of RNAP molecules actively transcribing the gene as a function of

time and position along the embryo, and calculation of the corresponding initial rate of RNAP loading and the

time of transcriptional onset, ton. (E, F) Predicted hunchback (E) initial rate of RNAP loading and (F) ton as a function

of position along the embryo for varying values of the Bicoid dissociation constant Kb. (A, B, error bars are

standard error of the mean nuclear fluorescence in an individual embryo, averaged across all nuclei at a given

position; D, the standard error of the mean predicted RNAP number in a single embryo, propagated from the

errors in A and B, is thinner than the curve itself; E, F, only mean predictions are shown so as to not obscure

differences between them; we imaged n=6 Bicoid-GFP and n=3 Zelda-GFP embryos.)
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line displayed the exponential Bicoid gradient

across the length of the embryo (Appendix sec-

tion 2.1; Appendix 1—figure 3B).We measured

mean Bicoid nuclear concentration dynamics

along the anterior-posterior axis of the embryo,

as exemplified for two positions in Figure 3A.

As previously reported (Gregor et al., 2007b),

after anaphase and nuclear envelope formation,

the Bicoid nuclear concentration quickly

increases as a result of nuclear import. These

measurements were used as inputs into the the-

oretical model in Figure 2.

Zelda concentration dynamics were measured in a Zelda-sfGFP line (Sections ’Fly Strains’, ’Sample

preparation and data collection’, and ’Image analysis’; Figure 3B; Video 2; Hamm et al., 2017).

Consistent with previous results (Staudt et al., 2006; Liang et al., 2008; Dufourt et al., 2018), the

Zelda concentration was spatially uniform along the embryo (Appendix 1—figure 3). Contrasting

Figure 3A and B reveals that the overall concentration dynamics of both Bicoid and Zelda are quali-

tatively comparable. As a result of Zelda’s spatial uniformity, we used mean Zelda nuclear concentra-

tion dynamics averaged across all nuclei within the field of view to test our model (Appendix section

2.1; Figure 3B).

Given the high reproducibility of the concentration dynamics of Bicoid and Zelda (Appendix 1—

figure 3), we combined measurements from multiple embryos by synchronizing their anaphase in

order to create an ‘averaged embryo’ (Appendix section 2.1), an approach that has been repeatedly

used to describe protein and transcriptional dynamics in the early fly embryo (Garcia et al., 2013;

Bothma et al., 2014; Bothma et al., 2015; Berrocal et al., 2018; Lammers et al., 2020).

Our model assumes that hunchback output depends on the instantaneous concentration of input

transcription factors. As a result, at each position along the anterior-posterior axis of the embryo,

the combined Bicoid and Zelda concentration dynamics define a trajectory over time along the pre-

dicted input-output function surface (Figure 3C). The resulting trajectory predicts the rate of RNAP

loading as a function of time. However, instead of focusing on calculating RNAP loading rate, we

used it to compute the number of RNAP molecules actively transcribing hunchback at each point in

space and time, a more experimentally accessible quantity (Section ’The thermodynamic MWC

model fails to predict activation of hunchback in the absence of Zelda’). This quantity can be

obtained by accounting for the RNAP elongation rate and the cleavage of nascent RNA upon termi-

nation (Appendix section 2.2; Appendix 1—figure 4; Bothma et al., 2014; Lammers et al., 2020)

yielding the predictions shown in Figure 3D.

Instead of examining the full time-dependent nature of our data, we analyzed two main dynamical

features stemming from our prediction of the number of RNAP molecules actively transcribing

hunchback: the initial rate of RNAP loading and the transcriptional onset time, ton, defined by the

slope of the initial rise in the predicted number of RNAP molecules, and the time after anaphase at

which transcription starts as determined by the x-intercept of the linear fit to the initial rise, respec-

tively (Figure 3D).

Examples of the predictions generated by our theoretical model are shown in Figure 3E and F,

where we calculate the initial rate of RNAP loading and ton for different values of the Bicoid dissocia-

tion constant Kb. This framework for quantitatively investigating dynamic input-output functions in

living embryos is a necessary step toward testing

the predictions of theoretical models of tran-

scriptional regulation in development.

The thermodynamic MWC model
fails to predict activation of
hunchback in the absence of Zelda
In order to test the predictions of the thermody-

namic MWC model (Figure 3E and F), we used

the MS2 system (Bertrand et al., 1998;

Garcia et al., 2013; Lucas et al., 2013). Here,

Video 1. Measurement of eGFP-Bicoid. Movie of

eGFP-Bicoid fusion in an embryo in nuclear cycle 13.

Time is defined with respect to the previous anaphase.

https://elifesciences.org/articles/56429#video1

Video 2. Measurement of Zelda-sfGFP. Movie of

Zelda-sfGFP fusion in an embryo in nuclear cycle 13.

Time is defined with respect to the previous anaphase.

https://elifesciences.org/articles/56429#video2
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24 repeats of the MS2 loop are inserted in the 50 untranslated region of the hunchback P2 reporter

(Garcia et al., 2013), resulting in the fluorescent labeling of sites of nascent transcript formation

(Figure 4A; Video 3). This fluorescence is proportional to the number of RNAP molecules actively

transcribing the gene (Garcia et al., 2013). The experimental mean fluorescence as a function of

time measured in a narrow window (2.5% of the total embryo length, averaged across nuclei in the

window) along the length of the embryo (Figure 4B) is in qualitative agreement with the theoretical

prediction (Figure 3D).

To compare theory and experiment, we next obtained the initial RNAP loading rates (Figure 4C,

blue points) and ton (Figure 4D, blue points) from the experimental data (Appendix section 2.3;

Appendix 1—figure 5B). The step-like shape of the RNAP loading rate (Figure 4C, blue points)

agrees with previous measurements performed on this same reporter construct (Garcia et al.,
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Figure 4. The thermodynamic MWC model can explain hunchback transcriptional dynamics in wild-type, but not

zelda�, embryos. (A) The MS2 system measures the number of RNAP molecules actively transcribing the

hunchback reporter gene in live embryos. (B) Representative MS2 trace featuring the quantification of the initial

rate of RNAP loading and ton. (C) Initial RNAP loading rate and (D) ton for wild-type (blue points) and zelda� (red

points) embryos, compared with best fit to the thermodynamic MWC model (lines). The red and blue fit lines are

close enough to overlap substantially. (E) Fraction of transcriptionally active nuclei for wild-type (blue) and zelda�

(red) embryos. Active nuclei are defined as nuclei that exhibited an MS2 spot at any time during the nuclear cycle.

Purple shading indicates the spatial range over which at least 30% of nuclei in the zelda� background display

transcription. (B, error bars are standard error of the mean observed RNAP number, averaged across nuclei in a

single embryo; C, D solid lines indicate mean predictions of the model, shading represents standard error of the

mean; C, D, E, error bars in data points represent standard error of the mean over 11 wild-type embryos (blue) or

12 zelda� embryos (red)).
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2013). The plateaus at the extreme anterior and

posterior positions were used to constrain the

maximum and minimum theoretically allowed val-

ues in the model (Appendix section 1.3). With

these constraints in place, we attempted to

simultaneously fit the thermodynamic MWC

model to both the initial rate of RNAP loading

and ton. For a given set of model parameters, the

measurements of Bicoid and Zelda concentration

dynamics predicted a corresponding initial rate

of RNAP loading and ton (Figure 3E and F). The

model parameters were then iterated using stan-

dard curve-fitting techniques (Section ’Data anal-

ysis’) until the best fit to the experimental data

was achieved (Figure 4C and D, blue lines).

Although the model accounted for the initial

rate of RNAP loading (Figure 4C, blue line), it

produced transcriptional onset times that were

much lower than those that we experimentally

observed (Appendix 1—figure 6B, purple line).

We hypothesized that this disagreement was due to our model not accounting for mitotic repres-

sion, when the transcriptional machinery appears to be silent immediately after cell division

(Shermoen and O’Farrell, 1991; Gottesfeld and Forbes, 1997; Parsons and Spencer, 1997;

Garcia et al., 2013). Thus, we modified the thermodynamic MWC model to include a mitotic repres-

sion window term, implemented as a time window at the start of the nuclear cycle during which no

transcription could occur; the rate of mRNA production is thus given by

dmRNA

dt
¼

0 if t < tMitRep

Rpbound if t � tMitRep

�

; (3)

where R and pbound are as defined in Equations 1 and 2, respectively, and tMitRep is the mitotic repres-

sion time window over which no transcription can take place after anaphase (Appendix sections 1.2

and 3). After incorporating mitotic repression, the thermodynamic MWC model successfully fit both

the rates of RNAP loading and ton (Figure 4C and D, blue lines, Appendix 1—figure 6A and B, blue

lines).

Given this success, we next challenged the model to perform the simpler task of explaining Bicoid-

mediated regulation in the absence of Zelda. This scenario corresponds to setting the concentration of

Zelda to zero in the models in Appendix section 1.2 and Figure 2. In order to test this seemingly sim-

pler model, we repeated our measurements in embryos devoid of Zelda protein (Video 4). These

zelda� embryos were created by inducing clones of non-functional zelda mutant (zelda294) germ cells in

female adults (Sections ’Fly Strains’, ’Zelda germline clones’; Liang et al., 2008). All embryos from

these mothers lack maternally deposited Zelda; female embryos still have a functional copy of zelda

from their father, but this copy is not transcribed until after the maternal-to-zygotic transition, during

nuclear cycle 14 (Liang et al., 2008). We confirmed that the absence of Zelda did not have a substantial

effect on the spatiotemporal pattern of Bicoid (Appendix section 4;Xu et al., 2014).

While close to 100% of nuclei in wild-type embryos exhibited transcription along the length of

the embryo (Figure 4E, blue; Video 5), measurements in the zelda� background revealed that some

nuclei never displayed any transcription during the entire nuclear cycle (Video 6). Specifically, tran-

scription occurred only in the anterior part of the embryo, with transcription disappearing

completely in positions posterior to about 40% of the embryo length (Figure 4E, red). We confirmed

that no visible transcription spots were present in zelda� embryo posteriors by imaging in the poste-

riors of three zelda� embryos. These embryos are not included in our total embryo counts.

From those positions in the mutant embryos that did exhibit transcription in at least 30% of

observed nuclei, we extracted the initial rate of RNAP loading and ton as a function of position. Inter-

estingly, these RNAP loading rates were comparable to the corresponding rates in wild-type

embryos (Figure 4C, red points). However, unlike in the wild-type case (Figure 4D, blue points), ton

Video 3. Measurement of MS2 fluorescence in a wild-

type background. Movie of MS2 fluorescent spots in a

wild-type background embryo in nuclear cycle 13. Time

is defined with respect to the previous anaphase.

https://elifesciences.org/articles/56429#video3
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was not constant in the zelda� background. Instead, ton became increasingly delayed in more poste-

rior positions until transcription ceased posterior to 40% of the embryo length (Figure 4D, red

points). Together, these observations indicated that removing Zelda primarily results in a delay of

transcription with only negligible effects on the underlying rates of RNAP loading, consistent with

previous fixed-embryo experiments (Nien et al., 2011; Foo et al., 2014) and with recent live-

B

A
A

C 

position (% embryo length)

tr
a

n
s
c
ri
p

ti
o

n
a

l 
o

n
s
e

t

ti
m

e
 (

m
in

)
100

102

20 25 30 35 20 25 30 35 20 25 30 35
0

4

8

ω b

∆ε ch
ro

m ω bpK b

p
a

ra
m

e
te

r

v
a

lu
e

t M
itR

ep ω b

∆ε ch
ro

m ω bpK b

t M
itR

ep ω b

∆ε ch
ro

m ω bpK b

t M
itR

ep

tr
a

n
s
c
ri
p

ti
o

n
a

l 
o

n
s
e

t

ti
m

e
 (

m
in

)

8

position (% embryo length) position (% embryo length)
20 3020 30

wild-type (+zelda) mutant (–zelda)

4 4

0 0

8

average
transcriptional
onset delay

offset in
transcriptional

onset

thermodynamic MWC model

generalized thermodynamic model

wild-type data

zelda mutant data

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
average transcriptional onset delay (min)

0

1

2

3

4

5

6

7

8

9

10

o
ff
s
e

t 
in

 t
ra

n
s
c
ri
p

ti
o

n
a

l 
o

n
s
e

t 
(m

in
)

1 2 3

1

2

3

Figure 5. Failure of thermodynamic models to describe Bicoid-dependent activation of hunchback. (A)

Experimentally determined ton with offset and average delay. Horizontal dashed lines indicate the average ton

delay with respect to the offset in ton at 20% along the embryo for wild-type and zelda� data sets. (B) Exploration

of ton offset and average ton delay from the thermodynamic MWC model. Each choice of model parameters

predicts a distinct ton profile of along the embryo. (C) Predicted range of ton offset and average ton delay for the

three cases featured in B (green points), for all possible parameter choices of the thermodynamic MWC model

(green region), as well as for all thermodynamic models considering 12 Bicoid-binding sites (yellow region),

compared with experimental data (red and blue regions). (A, C, error bars/ellipses represent standard error of the

mean over 11 and 12 embryos for the wild-type and zelda� datasets, respectively; B, solid lines indicate mean

predictions of the model).
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Figure 6. Non-equilibrium MWC model of transcriptional regulation cannot predict the observed ton delay. (A)

Model that makes no assumptions about the relative transition rates between states or about energy expenditure.

Each transition rate i; j represents the rate of switching from state i to state j. See Appendix section 7.1 for details

on how the individual states are labeled. (B) Exploration of ton offset and average ton delay attainable by the non-

equilibrium MWC models as a function of the number of Bicoid-binding sites compared to the experimentally

obtained values corresponding to the wild-type and zelda� mutant backgrounds. While the non-equilibrium MWC

model can explain the wild-type data, the exploration reveals that it fails to explain the zelda� data, for up to five

Bicoid-binding sites. (B, ellipses represent standard error of the mean over 11 and 12 embryos for the wild-type

and zelda� datasets, respectively).
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imaging measurements in which Zelda binding

was reduced at specific enhancers

(Dufourt et al., 2018; Yamada et al., 2019). We

speculate that the loss of transcriptionally active

nuclei posterior to 40% of the embryo length is a

direct result of this delay in ton: by the time that

onset would occur in those nuclei, the processes

leading to the next mitosis have already started

and repressed transcriptional activity.

Next, we attempted to simultaneously fit the

model to the initial rates of RNAP loading and ton

in the zelda� mutant background. Although the

model recapitulated the observed initial RNAP

loading rates (Figure 4C, red line), we noticed a

discrepancy between the observed and fitted

transcriptional onset times of up to ~5 min

(Figure 4D, red). While the mutant data exhib-

ited a substantial delay in more posterior nuclei,

the model did not produce significant delays

(Figure 4D, red line). Further, our model could

not account for the lack of transcriptional activity posterior to 40% of the embryo length in the

zelda� mutant (Figure 4E, red).

These discrepancies suggest that the thermodynamic MWC model cannot fully describe the tran-

scriptional regulation of the hunchback promoter by Bicoid and Zelda. However, the attempted fits

in Figure 4C and D correspond to a particular set of model parameters and therefore do not

completely rule out the possibility that there exists some parameter set of the thermodynamic MWC

model capable of recapitulating the zelda� data.

In order to determine whether this model is at all capable of accounting for the zelda� transcrip-

tional behavior, we systematically explored how its parameters dictate its predictions. To character-

ize and visualize the limits of our model, we examined two relevant quantitative features of our data.

First, we defined the offset in the transcriptional onset time as the value of the onset time at the

position 20% along the embryo length, the most anterior position studied here (Figure 5A), namely

offset¼ tonðx¼ 20%Þ (4)

where x is the position along the embryo. Second, we measured the average transcriptional onset

delay along the anterior-posterior axis (Figure 5A). This quantity is defined as the area under the

curve of ton versus embryo position, from 20% to 37.5% along the embryo (the positions where the

zelda� embryos display transcription in at least 30% of nuclei), divided by the corresponding dis-

tance along the embryo

Video 4. Measurement of MS2 fluorescence in a zelda�

background. Movie of MS2 fluorescent spots in a

zelda� background embryo in nuclear cycle 13. Time is

defined with respect to the previous anaphase.

https://elifesciences.org/articles/56429#video4

Video 5. Transcriptionally active nuclei in a wild-type

background. Movie of MS2 fluorescent spots in a wild-

type background embryo in nuclear cycle 13, with

transcriptionally active nuclei labeled with an overlay.

Time is defined with respect to the previous anaphase.

https://elifesciences.org/articles/56429#video5

Video 6. Transcriptionally active nuclei in a zelda�

background. Movie of MS2 fluorescent spots in a

zelda� background embryo in nuclear cycle 13, with

transcriptionally active nuclei labeled with an overlay.

Time is defined with respect to the previous anaphase.

https://elifesciences.org/articles/56429#video6

Eck, Liu, et al. eLife 2020;9:e56429. DOI: https://doi.org/10.7554/eLife.56429 12 of 57

Research article Physics of Living Systems

https://elifesciences.org/articles/56429#video4
https://elifesciences.org/articles/56429#video5
https://elifesciences.org/articles/56429#video6
https://doi.org/10.7554/eLife.56429


honset delayi ¼
1

37:5%� 20%

Z
37:5%

20%

tonðxÞ� tonðx¼ 20%ð ÞÞdx; (5)

where the offset in the onset time was used to define the zero of this integral (Appendix section

5.1). While the offset in ton is similar for both wild-type and zelda� backgrounds (approximately 4

min), the average ton delay corresponding to the wild-type data is close to 0 min, and is different

from the value of about 0.7 min obtained from measurements in the zelda� background within

experimental error (Figure 5C, ellipses).

Based on Estrada et al., 2016 and as detailed in Appendix section 5.1, we used an algorithm to

efficiently sample the parameter space of the thermodynamic MWC model (dissociation constants

Kb and Kz, protein-protein interaction terms !b and !bp, energy to make the DNA accessible

D"chrom, and length of the mitotic repression window tMitRep), and to calculate the corresponding ton

offset and average ton delay for each parameter set. Figure 5B features three specific realizations of

this parameter search; for each combination of parameters considered, the predicted ton is calcu-

lated and the corresponding ton offset and average ton delay computed. Although the wild-type data

overlap with the thermodynamic MWC model region, the range of the ton offset and average ton

delay predicted by the model (Figure 5C, green) did not overlap with that of the zelda� data. We

concluded that our thermodynamic MWC model is not sufficient to explain the regulation of hunch-

back by Bicoid and Zelda.

No thermodynamic model can recapitulate the activation of hunchback
by Bicoid alone
Since the failure of the thermodynamic MWC model to predict the zelda� data does not necessarily

rule out the existence of another thermodynamic model that can account for our experimental meas-

urements, we considered other possible thermodynamic models. Conveniently, an arbitrary thermo-

dynamic model featuring nb Bicoid binding sites can be generalized using the mathematical

expression

dmRNA

dt
¼

ð
Pnb

i¼0
P1;iR½Bicoid�

iÞ

pinaccþ
P

1

r¼0

Pnb
i¼0

Pr;i½Bicoid�
i
; (6)

where pinacc and Pr;i are arbitrary weights describing the states in our generalized thermodynamic

model, R is a rate constant that relates promoter occupancy to transcription rate, and the r and i

summations refer to the numbers of RNAP and Bicoid molecules bound to the enhancer, respec-

tively (Appendix section 6.1; Bintu et al., 2005a; Estrada et al., 2016; Scholes et al., 2017). Note,

that this generalized thermodynamic model also included the possibility of Bicoid binding to the

inaccessible chromatin state (Appendix section 6.3).

Although this generalized thermodynamic model contains many more parameters than the ther-

modynamic MWC model previously considered, we could still systematically explore reasonable val-

ues of these parameters and the resulting ton offsets and average ton delays (Appendix section 6.2).

For added generality, and to account for recent reports suggesting the presence of more than six

Bicoid-binding sites in the hunchback minimal enhancer (Park et al., 2019), we expanded this model

to include up to 12 Bicoid-binding sites.

The generalized thermodynamic model also failed to explain the zelda� data (Appendix section

6.2; Figure 5C, yellow). Note that the region of parameter space occupied by the generalized ther-

modynamic model does not entirely include that of the thermodynamic MWC model due to differen-

ces in the constraints of parameter values used in the parameter exploration, as described in

Appendix sections 1.3 and 6.2. Nevertheless, our results strongly suggest that no thermodynamic

model of Bicoid-activated hunchback transcription can predict transcriptional onset in the absence

of Zelda, casting doubt on the general applicability of these models to transcriptional regulation in

development.

Qualitatively, the reason for the failure of thermodynamic models to predict hunchback transcrip-

tional is revealed by comparing Bicoid and Zelda concentration dynamics to those of the MS2 output

signal (Appendix 1—figure 10). The thermodynamic models investigated in this work have assumed

that the system responds instantaneously to any changes in input transcription factor concentration.
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As a result, since Bicoid and Zelda are imported into the nucleus by around 3 min into the nuclear

cycle (Figure 3A and B), these models always predict that transcription will ensue at approximately

that time. Thus, thermodynamic models cannot accommodate delays in the ton such as those

revealed by the zelda� data (see Appendix section 6.4 for a more detailed explanation). Rather than

further complicating our thermodynamic models with additional molecular players to attempt to

describe the data, we instead decided to examine the broader purview of non-equilibrium models

to attempt to reach an agreement between theory and experiment.

A non-equilibrium MWC model also fails to describe the zelda� data
Thermodynamic models based on equilibrium statistical mechanics can be seen as limiting cases of

more general kinetic models that lie out of equilibrium (Appendix section 6.5; Figure 1B). Following

recent reports (Estrada et al., 2016; Li et al., 2018; Park et al., 2019) that the theoretical descrip-

tion of transcriptional regulation in eukaryotes may call for models rooted in non-equilibrium pro-

cesses – where the assumptions of separation of time scales and no energy expenditure may break

down – we extended our earlier models to produce a non-equilibrium MWC model (Appendix sec-

tions 6.5 and 7.1; Kim and O’Shea, 2008; Narula and Igoshin, 2010). This model, shown for the

case of two Bicoid binding sites in Figure 6A, accounts for the dynamics of the MWC mechanism by

positing transition rates between the inaccessible and accessible chromatin states, but makes no

assumptions about the relative magnitudes of these rates, or about the rates of Bicoid and RNAP

binding and unbinding.

Since this model can operate out of steady state, we calculate the probabilities of each state as a

function of time by solving the system of coupled ordinary differential equations (ODEs) associated

with the system shown in Figure 6A. Consistent with prior measurements (Blythe and Wieschaus,

2016), we assume that chromatin is inaccessible at the start of the nuclear cycle. Over time, the sys-

tem evolves such that the probability of it occupying each state becomes nonzero, making it possi-

ble to calculate the fraction of time RNAP is bound to the promoter and, through the occupancy

hypothesis, the rate of RNAP loading. Mitotic repression is still incorporated using the term tMitRep.

For times t<tMitRep, the system can evolve in time but the ensuing transcription rate is fixed at zero.

We systematically varied the magnitudes of the transition rates and solved the system of ODEs in

order to calculate the corresponding ton offset and average ton delay. Due to the combinatorial

increase of free parameters as more Bicoid-binding sites are included in the model, we could only

explore the parameter space for models containing up to five Bicoid-binding sites (Appendix section

7.2; Figure 6B and Appendix 1—figure 9). Regardless, none of the non-equilibrium MWC models

with up to five Bicoid-binding sites came close to reaching the mutant ton offset and average ton

delay (Figure 6B). Additionally, an alternative version of this non-equilibrium MWC model where the

system could not evolve in time until after the mitotic repression window had elapsed yielded similar

conclusions (see Appendix section 7.3 for details). We conjecture that the observed behavior

extends to the biologically relevant case of six or more binding sites. Thus, we conclude that the

more comprehensive non-equilibrium MWC model still cannot account for the experimental data,

motivating an additional reexamination of our assumptions.

Transcription-factor-driven chromatin accessibility can capture all
aspects of the data
Since even non-equilibrium MWC models incorporating energy expenditure and non-steady behav-

ior could not explain the zelda� data, we further revised the assumptions of our model in an effort

to quantitatively predict the regulation of ton along the embryo. In accordance with the MWC model

of allostery, all of our theoretical treatments so far have posited that the DNA is an allosteric mole-

cule that transitions between open and closed states as a result of thermal fluctuations (Narula and

Igoshin, 2010; Mirny, 2010; Marzen et al., 2013; Phillips et al., 2013).

In the MWC models considered here, the presence of Zelda and Bicoid does not affect the micro-

scopic rates of DNA opening and closing; rather, their binding to open DNA shifts the equilibrium of

the DNA conformation toward the accessible state. However, recent biochemical work has sug-

gested that Zelda and Bicoid play a more direct role in making chromatin accessible. Specifically,

Zelda has been implicated in the acetylation of chromatin, a histone modification that renders nucle-

osomes unstable and increases DNA accessibility (Li et al., 2014a; Li and Eisen, 2018). Further,
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Bicoid has been shown to interact with the co-activator dCBP, which possesses histone acetyltrans-

ferase activity (Fu et al., 2004). Additionally, recent studies by Desponds et al., 2016 in hunchback

and by Dufourt et al., 2018 in snail have proposed the existence of multiple transcriptionally silent

steps that the promoter needs to transition through before transcriptional onset. These steps could

correspond to, for example, the recruitment of histone modifiers, nucleosome remodelers, and the

transcriptional machinery (Li et al., 2014a; Park et al., 2019), or to the step-wise unraveling of dis-

crete histone-DNA contacts (Culkin et al., 2017). Further, Dufourt et al., 2018 proposed that Zelda

plays a role in modulating the number of these steps and their transition rates.

We therefore proposed a model of transcription-factor-driven chromatin accessibility in which, in

order for the DNA to become accessible and transcription to ensue, the system slowly and irrevers-

ibly transitions through m transcriptionally silent states (Appendix section 8.1; Figure 7A). We

assume that the transitions between these states are all governed by the same rate constant p.

Finally, in a stark deviation from the MWC framework, we posit that these transitions can be cata-

lyzed by the presence of Bicoid and Zelda such that

p¼ cb½Bicoid�þ cz½Zelda�: (7)

Here, p describes the rate (in units of inverse time) of each irreversible step, expressed as a sum

of rates that depend separately on the concentrations of Bicoid and Zelda, and cb and cz are rate

constants that scale the relative contribution of each transcription factor to the overall rate (see

Appendix section 8.2 for a more detailed discussion of this choice). We emphasize that this is only

one potential model, and there may exist several other non-equilibrium models capable of describ-

ing our data.

In this model of transcription-factor-driven chromatin accessibility, once the DNA becomes irre-

versibly accessible after transitioning through the m non-productive states, we assume that, for the

rest of the nuclear cycle, the system equilibrates rapidly such that the probability of it occupying any

of its possible states is still described by equilibrium statistical mechanics. Like in our previous mod-

els, transcription only occurs in the RNAP-bound states, obeying the occupancy hypothesis. Further,

our model assumes that if the transcriptional onset time of a given nucleus exceeds that of the next

mitosis, this nucleus will not engage in transcription. Thus, this transcription-factor-driven model is

an extension of the non-equilibrium MWC model with two crucial differences: (i) we allow for multi-

ple inaccessible states preceding the transcriptionally active state, and (ii) the transitions between

these states are actively driven by Bicoid or Zelda.

Unlike the thermodynamic and non-equilibrium MWC models, this model of transcription-factor-

driven chromatin accessibility quantitatively recapitulated the observation that posterior nuclei in

zelda� embryos do not engage in transcription as well as the initial rate of RNAP loading, and ton for

both the wild-type and zelda� mutant data (Figure 7B and C). Additionally, we found that a mini-

mum of m ¼ 3 steps was required to sufficiently explain the data (Appendix section 8.3; Appen-

dix 1—figure 14). Interestingly, unlike all previously considered models, the model of transcription-

factor-driven chromatin accessibility did not require mitotic repression to explain ton (Appendix sec-

tions 3 and 8.1). Instead, the timing of transcriptional output arose directly from the model’s initial

irreversible transitions (Appendix 1—figure 14), obviating the need for an arbitrary suppression win-

dow in the beginning of the nuclear cycle. The only substantive disagreement between our theoreti-

cal model and the experimental data was that the model predicted that no nuclei should transcribe

posterior to 60% of the embryo length, whereas no transcription posterior to 40% was experimen-

tally observed in the embryo (Figure 7B and C). Finally, note that this model encompasses a much

larger region of parameter space than the thermodynamic and non-equilibrium MWC models and,

as expected from the agreement between model and experiment described above, contained both

the wild-type and zelda� data points within its domain (Figure 7D).

Discussion
For four decades, thermodynamic models rooted in equilibrium statistical mechanics have consti-

tuted the null theoretical model for calculating how the number, placement and affinity of transcrip-

tion factor binding sites on regulatory DNA dictates gene expression (Bintu et al.,

2005a; Bintu et al., 2005b). Further, the MWC mechanism of allostery has been proposed as an
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Figure 7. A model of transcription-factor-driven chromatin accessibility is sufficient to recapitulate hunchback

transcriptional dynamics. (A) Overview of the proposed model, with three (m ¼ 3) effectively irreversible Zelda and/

or Bicoid-mediated intermediate transitions from the inaccessible to the accessible state. (B, C) Experimentally

fitted (B) initial RNAP loading rates and (C) ton for wild-type and zelda� embryos using a single set of parameters

and assuming six Bicoid binding sites. (D) The domain of ton offset and average ton delay covered by this

transcription-factor-driven chromatin accessibility model (brown) is much larger than those of the generalized

Figure 7 continued on next page
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extra layer that allows thermodynamic and more general non-equilibrium models to account for the

regulation of chromatin accessibility (Mirny, 2010; Narula and Igoshin, 2010; Marzen et al., 2013).

In this investigation, we tested thermodynamic and non-equilibrium MWC models of chromatin

accessibility and transcriptional regulation in the context of hunchback activation in the early embryo

of the fruit fly D. melanogaster (Driever et al., 1989; Nien et al., 2011; Xu et al., 2014). While chro-

matin state (accessibility, post-translational modifications) is highly likely to influence transcriptional

dynamics of associated promoters, specifically measuring the influence of chromatin state on tran-

scriptional dynamics is challenging because of the sequential relationship between changes in chro-

matin state and transcriptional regulation. However, the hunchback P2 minimal enhancer provides a

unique opportunity to dissect the relative contribution of chromatin regulation on transcriptional

dynamics because, in the early embryo, chromatin accessibility at hunchback is granted by both

Bicoid and Zelda (Hannon et al., 2017). The degree of hunchback transcriptional activity, however,

is regulated directly by Bicoid (Driever and Nüsslein-Volhard, 1989; Driever et al., 1989;

Struhl et al., 1989). Therefore, while genetic elimination of Zelda function interferes with acquisition

of full chromatin accessibility, the hunchback locus retains a measurable degree of accessibility and

transcriptional activity stemming from Bicoid function, allowing for a quantitative determination of

the contribution of Zelda-dependent chromatin accessibility on the transcriptional dynamics of the

locus.

With these attributes in mind, we constructed a thermodynamic MWC model which, given a set

of parameters, predicted an output rate of hunchback transcription as a function of the input Bicoid

and Zelda concentrations (Figure 2B). In order to test this model, it was necessary to acknowledge

that development is not in steady-state, and that both Bicoid and Zelda concentrations change dra-

matically in space and time (Figure 3A and B). As a result, we went beyond widespread steady-state

descriptions of development and introduced a novel approach that incorporated transient dynamics

of input transcription-factor concentrations in order to predict the instantaneous output transcrip-

tional dynamics of hunchback (Figure 3C). Given input dynamics quantified with fluorescent protein

fusions to Bicoid and Zelda, we both predicted output transcriptional activity and measured it with

an MS2 reporter (Figures 3D and 4B).

This approach revealed that the thermodynamic MWC model sufficiently predicts the timing of

the onset of transcription and the subsequent initial rate of RNAP loading as a function of Bicoid

and Zelda concentration. However, when confronted with the much simpler case of Bicoid-only regu-

lation in a zelda mutant, the thermodynamic MWC model failed to account for the observations that

only a fraction of nuclei along the embryo engaged in transcription, and that the transcriptional

onset time of those nuclei that do transcribe was significantly delayed with respect to the wild-type

setting (Figure 4D and E). Our systematic exploration of all thermodynamic models (over a reason-

able parameter range) showed that that no thermodynamic model featuring regulation by Bicoid

alone could quantitatively recapitulate the measurements performed in the zelda mutant back-

ground (Figure 5C, yellow).

This disagreement could be resolved by invoking an unknown transcription factor that regulates

the hunchback reporter in addition to Bicoid. However, at the early stages of development analyzed

here, such a factor would need to be both maternally provided and patterned in a spatial gradient

to produce the observed position-dependent transcriptional onset times. To our knowledge, none

of the known maternal genes regulate the expression of this hunchback reporter in such a fashion

(Chen et al., 2012; Perry et al., 2012; Xu et al., 2014). We conclude that the MWC thermodynamic

model cannot accurately predict hunchback transcriptional dynamics.

To explore non-equilibrium models, we retained the MWC mechanism of chromatin accessibility,

but did not demand that the accessible and inaccessible states be in thermal equilibrium. Further,

we allowed for the process of Bicoid and RNAP binding, as well as their interactions, to consume

energy. For up to five Bicoid-binding sites, no set of model parameters could quantitatively account

for the transcriptional onset features in the zelda mutant background (Figure 6B). While we were

Figure 7 continued

thermodynamic model (yellow) and the non-equilibrium MWC models (green), and easily encompasses both

experimental datasets (ellipses). (B-D, error bars/ellipses represent standard error of the mean over 11 and 12

embryos for the wild-type and zelda� datasets, respectively).
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unable to investigate models with more than five Bicoid-binding sites due to computational com-

plexity (Estrada et al., 2016), the substantial distance in parameter space between the mutant data

and the investigated models (Figure 6B) suggested that a successful model with more than five

Bicoid-binding sites would probably operate near the limits of its explanatory power, similar to the

conclusions from studies that explored hunchback regulation under the steady-state assumption

(Park et al., 2019). Thus, despite the simplicity and success of the MWC model in predicting the

effects of protein allostery in a wide range of biological contexts (Keymer et al., 2006; Swem et al.,

2008; Martins and Swain, 2011; Marzen et al., 2013; Rapp and Yifrach, 2017; Razo-Mejia et al.,

2018; Chure et al., 2019; Rapp and Yifrach, 2019), the observed transcriptional onset times could

not be described by any previously proposed thermodynamic MWC mechanism of chromatin acces-

sibility, or even by a more generic non-equilibrium MWC model in which energy is continuously dissi-

pated (Tu, 2008; Kim and O’Shea, 2008; Narula and Igoshin, 2010; Estrada et al., 2016;

Wang et al., 2017).

Since Zelda is associated with histone acetylation, which is correlated with increased chromatin

accessibility (Li et al., 2014a; Li and Eisen, 2018), and Bicoid interacts with the co-activator dCBP,

which has histone acetyltransferase activity (Fu et al., 2004; Fu and Ma, 2005; Park et al., 2019),

we suspect that both Bicoid and Zelda actively drive DNA accessibility. A molecular pathway shared

by Bicoid and Zelda to render chromatin accessible is consistent with our results, and with recent

genome-wide experiments showing that Bicoid can rescue the function of Zelda-dependent

enhancers at high enough concentrations (Hannon et al., 2017). Thus, the binding of Bicoid and

Zelda, rather than just biasing the equilibrium toward the open chromatin state as in the MWC

mechanism, may trigger a set of molecular events that locks DNA into an accessible state. In addi-

tion, the promoters of hunchback (Desponds et al., 2016) and snail (Dufourt et al., 2018) may tran-

sition through a set of intermediate, non-productive states before transcription begins.

We therefore explored a model in which Bicoid and Zelda catalyze the transition of chromatin

into the accessible state via a series of slow, effectively irreversible steps. These steps may be inter-

preted as energy barriers that are overcome through the action of Bicoid and Zelda, consistent with

the coupling of these transcription factors to histone modifiers, nucleosome remodelers (Fu et al.,

2004; Li et al., 2014a; Li and Eisen, 2018; Park et al., 2019), and with the step-wise breaking of

discrete histone-DNA contacts to unwrap nucleosomal DNA (Culkin et al., 2017). In this model,

once accessible, the chromatin remains in that state and the subsequent activation of hunchback by

Bicoid is described by a thermodynamic model.

Crucially, this transcription-factor-driven chromatin accessibility model successfully replicated all

of our experimental observations. A minimum of three transcriptionally silent states were necessary

to explain our data (Figure 7D and Appendix 1—figure 14C). Interestingly, recent work dissecting

the transcriptional onset time distribution of snail also suggested the existence of three such inter-

mediate steps in the context of that gene (Dufourt et al., 2018). Given that, as in hunchback, the

removal and addition of Zelda modulates the timing of transcriptional onset of sog and snail

(Dufourt et al., 2018; Yamada et al., 2019), we speculate that transcription-factor-driven chromatin

accessibility may also be at play in these pathways. Thus, taken in consideration with similar works

examining the dynamics of transcription onset (Desponds et al., 2016; Dufourt et al., 2018;

Fritzsch et al., 2018; Li et al., 2018), our results strongly suggest that chromatin state does not fluc-

tuate thermodynamically, but rather progresses through a series of stepwise, transcription-factor-

driven transitions into a final RNAP-accessible configuration (Coulon et al., 2013).

Intriguingly, accounting for these intermediate states also obviated the need for the ad hoc impo-

sition of a mitotic repression window (Appendix sections 3 and 8.1), which was required in the ther-

modynamic MWC model (Appendix 1—figure 6). Our results thus suggest a mechanistic

interpretation of the phenomenon of mitotic repression after anaphase, where the promoter must

traverse through intermediary transcriptionally silent states before transcriptional onset can occur.

These clues into the molecular mechanisms of action of Bicoid, Zelda, and their associated modifi-

cations to the chromatin landscape pertain to a time scale of a few minutes, a temporal scale that is

inaccessible with widespread genome-wide and fixed-tissue approaches. Here, we revealed the reg-

ulatory action of Bicoid and Zelda by utilizing the dynamic information provided by live imaging to

analyze the transient nature of the transcriptional onset time, highlighting the need for descriptions

of development that go beyond steady state and acknowledge the highly dynamic changes in tran-

scription-factor concentrations that drive developmental programs.
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While we showed that one model incorporating transcription-factor-driven chromatin accessibility

could recapitulate hunchback transcriptional regulation by Bicoid and Zelda, and is consistent with

molecular evidence on the modes of action of these transcription factors, other models may have

comparable explanatory power. In the future, a systematic exploration of different classes of models

and their unique predictions will identify measurements that determine which specific model is the

most appropriate description of transcriptional regulation in development and how it is imple-

mented at the molecular level. While all the analyses in this work relied on mean levels of input con-

centrations and output transcription levels, detailed studies of single-cell features of transcriptional

dynamics such as the distribution of transcriptional onset times (Narula and Igoshin, 2010;

Dufourt et al., 2018; Fritzsch et al., 2018) could shed light on these chromatin-regulating mecha-

nisms. Simultaneous measurement of local transcription-factor concentrations at sites of transcription

and of transcriptional initiation with high spatiotemporal resolution, such as afforded by lattice light-

sheet microscopy (Mir et al., 2018), could provide further information about chromatin accessibility

dynamics. Finally, different theoretical models may make distinct predictions about the effect of

modulating the number, placement, and affinity of Bicoid and Zelda sites (and even of nucleosomes)

in the hunchback enhancer. These models could be tested with future experiments that implement

these modulations in reporter constructs.

In sum, here we engaged in a theory-experiment dialogue to respond to the theoretical chal-

lenges of proposing a passive MWC mechanism for chromatin accessibility in eukaryotes

(Mirny, 2010; Narula and Igoshin, 2010; Marzen et al., 2013); we also questioned the suitability of

thermodynamic models in the context of development (Estrada et al., 2016). At least regarding the

activation of hunchback, and likely similar developmental genes such as snail and sog

(Dufourt et al., 2018; Yamada et al., 2019), we speculate that Bicoid and Zelda actively drive chro-

matin accessibility, possibly through histone acetylation. Once chromatin becomes accessible, ther-

modynamic models can predict hunchback transcription without the need to invoke energy

expenditure and non-equilibrium models. Regardless of whether we have identified the only possible

model of chromatin accessibility and regulation, we have demonstrated that this dialogue between

theoretical models and the experimental testing of their predictions at high spatiotemporal resolu-

tion is a powerful tool for biological discovery. The new insights afforded by this dialogue will

undoubtedly refine theoretical descriptions of transcriptional regulation as a further step toward a

predictive understanding of cellular decision-making in development.

Materials and methods

Predicting Zelda-binding sites
Zelda-binding sites in the hunchback promoter were identified as heptamers scoring three or higher

using a Zelda alignment matrix (Harrison et al., 2011) and the Advanced PASTER entry form online

(http://stormo.wustl.edu/consensus/cgi-bin/Server/Interface/patser.cgi) (Hertz et al., 1990;

Hertz and Stormo, 1999). PATSER was run with setting ‘Seq. Alphabet and Normalization’ as ‘a:t 3

g:c 2’ to provide the approximate background frequencies as annotated in the Berkeley Drosophila

Genome Project (BDGP)/Celera Release 1. Reverse complementary sequences were also scored.

Fly strains
Bicoid nuclear concentration was imaged in embryos from line yw;his2av-mrfp1;bicoidE1,egfp-bicoid

(Gregor et al., 2007b). Similarly, Zelda nuclear concentration was determined by imaging embryos

from line sfgfp-zelda;+;his-irfp. The sfgfp-zelda transgene was obtained from Hamm et al., 2017

and the his-iRFP transgene is courtesy of Kenneth Irvine and Yuanwang Pan.

Transcription from the hunchback promoter was measured by imaging embryos resulting from

crossing female virgins yw;HistoneRFP;MCP-NoNLS(2) with male yw;P2P-MS2-LacZ/cyo;+

(Garcia et al., 2013).

In order to image transcription in embryos lacking maternally deposited Zelda protein, we

crossed mother flies whose germline was w,his2av-mrfp1,zelda(294),FRT19A;+;MCP-egfp(4F)/+

obtained through germline clones (see below) with fathers carrying the yw;P2P-MS2-LacZ/cyo;+

reporter. The zelda294 transgene is courtesy of Christine Rushlow (Liang et al., 2008). The MCP-egfp
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(4F) transgene expresses approximately double the amount of MCP than the MCP-egfp(2)

(Garcia et al., 2013), ensuring similar levels of MCP in the embryo in all experiments.

Imaging Bicoid nuclear concentration in embryos lacking maternally deposited Zelda protein was

accomplished by replacing the MCP-egfp(4F) transgene described in the previous paragraph with

the bicoidE1,egfp-bicoid transgene used for imaging nuclear Bicoid in a wild-type background. We

crossed mother flies whose germline was w,his2av-mrfp1,zelda(294),FRT19A;+;bicoidE1,egfp-bicoid/

+ obtained through germline clones (see below) with yw fathers.

Zelda germline clones
In order to generate mother flies containing a germline homozygous null for zelda, we first crossed

virgin females of w,his2av-mrfp1,zelda(294),FRT19A/FM7,y,B;+;MCP-egfp(4F)/TM3,ser (or w,his2av-

mrfp1,zelda(294),FRT19A;+;bicoidE1,egfp-bicoid/+ to image nuclear Bicoid) with males of ovoD,hs-

FLP,FRT19A;+;+ (Liang et al., 2008). The resulting heterozygotic offspring were heat-shocked in

order to create maternal germline clones as described in Liang et al., 2008. The resulting female vir-

gins were crossed with male yw;P2P-MS2-LacZ/cyo;+ (Garcia et al., 2013) to image transcription or

male yw to image nuclear Bicoid concentration.

Male offspring are null for zygotic zelda. Female offspring are heterozygotic for functional zelda,

but zygotic zelda is not transcribed until nuclear cycle 14 (Liang et al., 2008), which occurs after the

analysis in this work. All embryos lacking maternally deposited Zelda showed aberrant morphology

in nuclear size and shape (data not shown), as previously reported (Liang et al., 2008; Staudt et al.,

2006).

Sample preparation and data collection
Sample preparation followed procedures described in Bothma et al., 2014, Garcia and Gregor,

2018, and Lammers et al., 2020.

Embryos were collected and mounted in halocarbon oil 27 between a semipermeable membrane

(Lumox film, Starstedt, Germany) and a coverslip. Data collection was performed using a Leica SP8

scanning confocal microscope (Leica Microsystems, Biberach, Germany). Imaging settings for the

MS2 experiments were the same as in Lammers et al., 2020, except the Hybrid Detector (HyD) for

the His-RFP signal used a spectral window of 556–715 nm. The settings for the Bicoid-GFP measure-

ments were the same, except for the following. The power setting for the 488 nm line was 10 mW.

The confocal stack was only 10 slices in this case, rather than 21, resulting in a spacing of 1.11 mm

between planes. The images were acquired at a time resolution of 30 s, using an image resolution of

512 � 128 pixels.

The settings for the Zelda-sfGFP measurements were the same as the Bicoid-GFP measurements,

except different laser lines were used for the different fluorophores. The sf-GFP excitation line was

set at 485 nm, using a power setting of 10 mW. The His-iRFP excitation line was set at 670 nm. The

HyD for the His-iRFP signal was set at a 680–800 nm spectral window. All specimens were imaged

over the duration of nuclear cycle 13.

Image analysis
Images were analyzed using custom-written software following the protocol in Garcia et al., 2013.

Briefly, this procedure involved segmenting individual nuclei using the histone signal as a nulear

mask, segmenting each transcription spot based on its fluorescence, and calculating the intensity of

each MCP-GFP transcriptional spot inside a nucleus as a function of time.

Additionally, the nuclear protein fluorescences of the Bicoid-GFP and Zelda-sfGFP fly lines were

calculated as follows. Using the histone-labeled nuclear mask for each individual nucleus, the fluores-

cence signal within the mask was extracted in xyz, as well as through time. For each timepoint, the

xy signal was averaged to give an average nuclear fluorescence as a function of z and time. This sig-

nal was then maximum projected in z, resulting in an average nuclear concentration as a function of

time, per single nucleus. These single nucleus concentrations were then averaged over anterior-pos-

terior position to create the protein concentrations reported in the main text.
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Data analysis
All fits in the main text were performed by minimizing the least-squares error between the data and

the model predictions. Unless stated otherwise, error bars reflect standard error of the mean over

multiple embryo measurements. See Appendix section 2.1 for more details on how this was carried

out for model predictions.
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Appendix 1

1. Equilibrium models of transcription
1.1 An overview of equilibrium thermodynamics models of transcription

In this section, we give a brief overview of the theoretical concepts behind equilibrium thermody-

namics models of transcription. For a more detailed overview, we refer the reader to Bintu et al.,

2005b and Bintu et al., 2005a. These models invoke statistical mechanics in order to to calculate

bulk properties of a system by enumerating the probability of each possible microstate of the sys-

tem. The probability of a given microstate is proportional to its Boltzmann weight e�b", where " is

the energy of the microstate and b ¼ ðkBTÞ
�1 with kB being the Boltzmann constant and T the abso-

lute temperature of the system (Garcia et al., 2007).

Specific examples of these microstates in the context of simple activation are featured in Appen-

dix 1—figure 1. As reviewed in Garcia et al., 2007, the Boltzmann weight of each of these micro-

states can also be written in a thermodynamic language that accounts for the concentration of the

molecular species, their dissociation constant to DNA, and a cooperativity term w that accounts for

the protein-protein interactions between the activator and RNAP. To calculate the probability of

finding RNAP bound to the promoter pbound, we divide the sum of the weights of the RNAP-bound

states by the sum of all possible states

pbound ¼

½P�
Kp
þ! ½P�

Kp

½A�
Ka

1þ ½P�
Kp
þ ½A�

Ka
þ! ½P�

Kp

½A�
Ka

: (1)

Here, ½P� and ½A� are the concentrations of RNAP and activator, respectively. Kp and Ka are their

corresponding dissociation constants, and ! indicates an interaction between activator and RNAP:

!>1 corresponds to cooperativity, whereas 0<!<1 corresponds to anti-cooperativity.

STATE RATE

1 0

R

0

R

[P]

Kp

[A]

Ka

[P]

Kp

[A]

Ka

WEIGHT

Appendix 1—figure 1. Equilibrium thermodynamic model of simple activation. A promoter region

with one binding site for an activator molecule has four possible microstates, each with its

corresponding statistical weight and rate of RNAP loading.

Using pbound, we write the subsequent rate of mRNA production by assuming the occupancy

hypothesis, which states that

dmRNA

dt
¼ Rpbound; (2)

where R is an underlying rate of transcriptional initiation (usually interpreted as the rate of loading

RNAP from the promoter-bound state). In the case of simple activation illustrated in Appendix 1—

figure 1, the overall transcriptional initiation rate is then given by

dmRNA

dt
¼ R

½P�
Kp
þ! ½P�

Kp

½A�
Ka

1þ ½P�
Kp
þ ½A�

Ka
þ! ½P�

Kp

½A�
Ka

: (3)

From Appendix Equation 1, one can derive the Hill equation that is frequently used to model bio-

physical binding. In the limit of high cooperativity, ! ½P�
Kp
� 1 and ! ½A�

Ka
� 1 such that
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pbound ¼

!
½P�

Kp

½A�

Ka

1þ!
½P�

Kp

½A�

Ka

: (4)

If we then define a new binding constant K 0
a ¼

KaKp

!½P� , we get the familiar Hill equation of order 1

with a binding constant K 0
a

pbound ¼

½A�
K 0
a

1þ ½A�
K 0
a

(5)

In general, any Hill equation of order n can be derived from a more fundamental equilibrium ther-

modynamic model of simple activation possessing n activator-binding sites in the appropriate limits

of high cooperativity. Thus, any time a Hill equation is invoked, equilibrium thermodynamics is

implicitly used, bringing with it all of the underlying assumptions described in Appendix section 6.5.

This highlights the importance of rigorously grounding the assumptions made in any model of tran-

scription, to better discriminate between the effects of equilibrium and non-equilibrium processes.

1.2 Thermodynamic MWC model

In the thermodynamic MWC model, we consider a system with 6 Bicoid-binding sites and 10 Zelda-

binding sites. In addition, we allow for RNAP binding to the promoter.

In our model, the DNA can be in either an accessible or an inaccessible state. The difference in

free energy between the two states is given by �D"chrom, where D"chrom is defined as

D"chrom ¼ "accessible� "inaccessible: (6)

Here, "accessible and "inaccessible are the energies of the accessible and inaccessible states,

respectively. A positive D"chrom signifies that the inaccessible state is at a lower energy level, and

therefore more probable, than the accessible state. We assume that all binding sites for a given

molecular species have the same binding affinity, and that all accessible states exist at the same

energy level compared to the inaccessible state. Thus, the total number of states is determined by

the combinations of occupancy states of the three types of binding sites as well as the presence of

the inaccessible, unbound state. We choose to not allow any transcription factor or RNAP binding

when the DNA is inaccessible.

In this equilibrium model, the statistical weight of each accessible microstate is given by the ther-

modynamic dissociation constants Kb, Kz, and Kp of Bicoid, Zelda, and RNAP, respectively. The sta-

tistical weight for the inaccessible state is e
D"chrom . We allow for a protein-protein interaction term

!b between nearest-neighbor Bicoid molecules, as well as a pairwise cooperativity !bp between

Bicoid and RNAP. However, we posit that Zelda does not interact directly with either Bicoid or

RNAP. For notational convenience, we express the statistical weights in terms of the non-dimension-

alized concentrations of Bicoid, Zelda, and RNAP, given by b, z and p, respectively, such that, for

example, b � ½Bicoid�
Kb

. Appendix 1—figure 2 shows the states and statistical weights for this thermody-

namic MWC model, with all the associated parameters.
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Appendix 1—figure 2. States, weights, and rate of RNAP loading diagram for the thermodynamic

MWC model, containing 6 Bicoid-binding sites, 10 Zelda-binding sites, and a promoter.

Incorporating all the microstates, we can calculate a statistical mechanical partition function, the

sum of all possible weights, which is given by

Z ¼ eD"chrom=kBT þ 1þ zð Þ10
|fflfflfflfflffl{zfflfflfflfflffl}

Zelda binding

1þ bþ b2!b þ :::þ b6!5

b þ pþ pb!bpþ :::þ pb6!5

b!
6

bp

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Bicoid and RNAP binding

: (7)

Using the binomial theorem

ðaþ bÞN ¼
XN

n¼0

N

n

� �

anbN�n;

Appendix Equation 7 can be expressed more compactly as

Z ¼ eD"chrom=kBT þð1þ zÞ10ð1þ pþ
X

j¼0;1

X6

i¼1

6

i

� �

bi!i�1

b pj!ij
bpÞ: (8)

From this partition function, we can calculate pbound, the probability of being in an RNAP-bound

state. This term is given by the sum of the statistical weights of the RNAP-bound states divided by

the partition function

pbound ¼
1

Z
ðð1þ zÞ10pð1þ

X6

i¼1

6

i

� �

bi!i�1

b !i
bpÞÞ: (9)
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In this model, we once again assume that the transcription associated with each microstate is

zero unless RNAP is bound, in which case the associated rate is R. Then, the overall transcriptional

initiation rate is given by the product of pbound and R

dmRNA

dt
¼ R

1

Z
ðð1þ zÞ10pð1þ

X6

i¼1

6

i

� �

bi!i�1

b !i
bpÞÞ: (10)

Note that since the MS2 technology only measures nascent transcripts, we can ignore the effects

of mRNA degradation and focus on transcriptional initiation.

1.3 Constraining model parameters

The transcription rate R of the RNAP-bound states can be experimentally constrained by making use

of the fact that the hunchback minimal reporter used in this work produces a step-like pattern of

transcription across the length of the fly embryo (Figure 4C, blue points). Since in the anterior end

of the embryo, the observed transcription appears to level out to a maximum value, we assume that

Bicoid binding is saturated in this anterior end of the embryo such that

pboundðb!¥Þ»1: (11)

In this limit, Appendix Equation 10 can be written as

dmRNA

dt
¼ Rmax »R; (12)

where Rmax is the maximum possible transcription rate. Importantly, Rmax is an experimentally

observed quantity rather than a free parameter. As a result, the model parameter R is determined

by experimentally measurable quantity Rmax.

The value of p can also be constrained by measuring the transcription rate in the embryo’s poste-

rior, where we assume Bicoid concentration to be negligible. Here, the observed transcription bot-

toms out to a minimum level Rmin (Figure 4C, blue points), which we can connect with the model’s

theoretical minimum rate. Specifically, in this limit, b approaches zero in Appendix Equation 10 such

that all Bicoid-dependent terms drop out, resulting in

dmRNA

dt
¼ Rmin »

1

Z
ðð1þ zÞ10pÞRmax; (13)

where we have replaced R with Rmax as described above. Next, we can express p in terms of the

other parameters such that

p»
Rminðe

D"chrom=kBT þð1þ zÞ10Þ

ðRmax �RminÞð1þ zÞ10
: (14)

Thus, p is no longer a free parameter, but is instead constrained by the experimentally observed

maximum and minimum rates of transcription Rmax and Rmin, as well as our choices of Kz and D"chrom.

In our analysis, Rmax and Rmin are calculated by taking the mean RNAP loading rate across all embryos

from the anterior and posterior of the embryo respectively, extrapolated using the trapezoidal fitting

scheme described in Appendix section 2.3.

Finally, we expand this thermodynamic MWC model to also account for suppression of transcrip-

tion in the beginning of the nuclear cycle via mechanisms such as mitotic repression (Appendix sec-

tion 3). To make this possible, we include a trigger time term tMitRep, before which we posit that no

readout of Bicoid or Zelda by hunchback is possible and the rate of RNAP loading is fixed at 0. For

times t>tMitRep, the system behaves according to Appendix Equation 10. Thus, given the constraints

stemming from direct measurements of Rmax and Rmin, the model has six free parameters: D"chrom, !b,

!bp, Kb, Kz, and tMitRep. The final calculated transcription rate is then integrated in time to produce a

predicted MS2 fluorescence as a function of time (Appendix section 2.2).
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For subsequent parameter exploration of this model (Appendix section 5.1), constraints were

placed on the parameters to ensure sensible results. Each parameter was constrained to be strictly

positive such that:

. D"chrom>0

. Kb>0

. Kz>0

. !b>0

. !bp>0

. 0<tMitRep<10.

where an upper limit of 10 min was placed on the mitotic repression term to ensure efficient

parameter exploration. This was justified because none of the observed transcriptional onset times

in the data were larger than this value (Figure 4D).

2. Input-output measurements, predictions, and characterization
2.1 Input measurement methodology

Input transcription-factor measurements were carried out separately in individual embryos contain-

ing a eGFP-Bicoid transgene in a bicoid null mutant background (Gregor et al., 2007b) or a Zelda-

sfGFP CRISPR-mediated homologous recombination at the endogenous zelda locus (Hamm et al.,

2017). Over the course of nuclear cycle 13, the fluorescence inside each nucleus was extracted

(details given in Section ’Image analysis’), resulting in a measurement of the nuclear concentration of

each transcription factor over time. Six eGFP-Bicoid and three Zelda-sfGFP embryos were imaged.

Representative fluorescence traces of eGFP-Bicoid for a single embryo indicate that the magni-

tude of eGFP-Bicoid fluorescence decreases for nuclei located toward the posterior of the embryo

(Appendix 1—figure 3A). Further, the nuclear fluorescence of eGFP-Bicoid at 8 min into nuclear

cycle 13 (Appendix 1—figure 3B) exhibited the known exponential decay of Bicoid, with a mean

decay length of 23.5% ± 0.6% of the total embryo length, consistent with but slightly different than

previous measurements that suggested a mean decay length of 19.1% ± 0.8% (Liu et al., 2013). This

discrepancy could stem, for example, from minor differences in acquisition from the laser-scanning

two-photon microscope used in Liu et al., 2013 versus the laser-scanning confocal microscope used

here, such as differences in axial resolution (due both to different choices of objectives and the

inherent differences in axial resolution of one-photon and two-photon fluorescence excitation pro-

cesses). Nevertheless, the difference was minute enough that we felt confident in our eGFP-Bicoid

measurements.
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Appendix 1—figure 3. Measurements of input transcription-factor concentration dynamics . (A)

Nuclear eGFP-Bicoid concentration as a function of time into nuclear cycle 13 across various

positions along the anterior-posterior axis of a single embryo. (B) eGFP-Bicoid concentration at 8

min into nuclear cycle 13 as a function of position along the embryo averaged over all measured

embryos (n = 6). The fit of the concentration profile to an exponential function (dashed line) results

in a decay length of 23%� 0:6% embryo length. (C) Intra- and inter-embryo variability in eGFP-Bicoid

Appendix 1—figure 3 continued on next page
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Appendix 1—figure 3 continued

nuclear fluorescence along the anterior-posterior axis. (D) Zelda-sfGFP concentration as a function of

time into nuclear cycle 13 across various anterior-posterior positions of a single embryo. (D, inset)

Zelda-sfGFP concentration averaged over the data shown in D. (E) Zelda-sfGFP concentration at 8

min into nuclear cycle 13 as a function of position along the anterior-posterior axis of the embryo

averaged over all measured embryos (n = 3). Note that anterior of 40% and posterior of 77.5% only

a single embryo was measured; no error bars were calculated. (F) Intra- and inter-embryo variability

in Zelda-sfGFP nuclear fluorescence along the anterior-posterior axis. (B,E, error bars represent

standard error of the mean nuclear fluorescence, measured across embryos; C,F, error bars

represent standard error of the mean intra-embryo variability, measured across embryos.).

Intra-embryo variability in eGFP-Bicoid nuclear fluorescence, defined by the standard deviation

across nuclei within a single embryo divided by the mean, was in the range of 10–30%, as was the

inter-embryo variability, defined by the standard deviation of the mean amongst nuclei, across differ-

ent embryos (Appendix 1—figure 3C, blue and black, respectively). Six separate eGFP-Bicoid

embryos were measured.

Similarly, representative fluorescence time traces of Zelda-sfGFP for a single embryo are shown in

Appendix 1—figure 3D. Unlike the eGFP-Bicoid profile, the Zelda-sfGFP nuclear fluorescence was

approximately uniform across embryo position (Appendix 1—figure 3E), consistent with previous

fixed-tissue measurements (Staudt et al., 2006; Liang et al., 2008). Intra-embryo variability in

Zelda-sfGFP nuclear fluorescence was very low (less than 10%), whereas inter-embryo variability was

relatively higher, up to 20% (Appendix 1—figure 3F, red and black, respectively). Three separate

Zelda-sfGFP embryos were measured.

Due to the consistency of Zelda-sfGFP nuclear fluorescence, we assumed the Zelda profile to be

spatially uniform in our analysis, and thus created a mean Zelda-sfGFP measurement for each individ-

ual embryo by averaging all mean nuclear fluorescence traces in space across the anterior-posterior

axis of the embryo (Appendix 1—figure 3D, inset). This mean measurement was used as an input in

the theoretical models. However, we still retained inter-embryo variability in Zelda, as described

below.

To combine multiple embryo datasets as inputs to the models explored throughout this work, the

fluorescence traces corresponding to each dataset were aligned at the start of nuclear cycle 13,

defined as the start of anaphase. Because each embryo may have possessed slightly different nuclear

cycle lengths and/or experimental sampling rates (due to the manual realignment of the z-stack to

keep nuclei in focus), the individual datasets were not combined in order to create average Bicoid

and Zelda profiles across embryos. Instead, a simulation and model prediction were performed for

each combination of measured input Bicoid and Zelda datasets, essentially an in silico experiment

covering a portion of the full embryo length. In all, outputs at each embryo position were predicted

in at least three separate simulations. Subsequent analyses used the mean and standard error of the

mean of these amalgamated simulations. With six GFP-Bicoid datasets and three Zelda-GFP data-

sets, there were 18 unique combinations of input embryo datasets; for a single set of parameters

used in a particular model, each derived metric (e.g. ton) was calculated using predicted outputs

from each of the 18 possible input combinations. This procedure provided full embryo coverage and

resulted in a distribution of the derived metric for that particular set of parameters. From this distri-

bution, the mean and standard error of the mean were calculated, leading to the lines and shading

in plots such as Appendix 1—figure 6.

2.2 MS2 fluorescence simulation protocol

To calculate a predicted MS2 fluorescence trace from measured Bicoid and Zelda inputs for a given

theoretical model, we utilized a simple model of transcription initiation, elongation, and termination.

First, the dynamic transcription-factor concentrations were used as inputs to each of the theoretical

models outlined throughout the paper. These models generated a rate of RNAP loading as a func-

tion of time and space across the embryo over the course of nuclear cycle 13.

For each position along the anterior-posterior axis, the predicted rate of RNAP loading was inte-

grated over time to generate a predicted MS2 fluorescence trace. Given the known reporter con-

struct length L of 5.2 kb (Garcia et al., 2013), we assume that RNAP molecules are loaded onto the
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start of the gene at a rate RðtÞ predicted by the particular model under consideration (Appendix 1—

figure 4; see Appendix sections 1.2, 6.1, 7.1, and 8.1 for model details). Each RNAP molecule traver-

ses the gene at a constant velocity v of 1.54 kb/min, as measured experimentally by Garcia et al.,

2013. With these numbers, we calculate an elongation time

telon ¼
L

v
: (15)

= 
Lloops

Lloops

L L

L

Appendix 1—figure 4. MS2 fluorescence calculation protocol. RNAP molecules load onto the

reporter gene at a time-dependent rate RðtÞ, after which they elongate at a constant velocity v.

Upon reaching the end of the gene after a length L has been transcribed, they are assumed to

terminate and disappear instantly, given by the time-shifted rate Rðt � L
v
Þ. The time-dependent MS2

fluorescence is calculated by summing the contributions of RNAP molecules that are located before,

within, or after the MS2 stem loop sequence (i, ii, and iii, respectively).

Finally, we assume that upon reaching the end of the reporter gene, the RNAP molecules termi-

nate and disappear instantly such that they no longer contribute to spot fluorescence.

The MS2 fluorescence signal reports on the number of RNAP molecules actively occupying the

gene at any given time and, under the assumptions outlined above, is given by the integral

FðtÞ ¼ a

Z t

0

ðRðt0Þ�Rðt0 � telonÞÞdt
0; (16)

where FðtÞ is the predicted fluorescence value, RðtÞ is the RNAP loading rate predicted by each spe-

cific model, Rðt� telonÞ is the time-shifted loading rate that accounts for RNAP molecules finishing

transcription at the end of the gene, and a is an arbitrary scaling factor to convert from absolute

numbers of RNAP molecules to arbitrary fluorescence units. The predicted value FðtÞ was scaled by

a to match the experimental data.

The final predicted MS2 signal was modified in a few additional ways. First, any RNAP molecule

that had not yet reached the position of the MS2 stem loops had its fluorescence value set to zero

(Appendix 1—figure 4, i), since only RNAP molecules downstream of the MS2 stem loop sequence

exhibit a fluorescent signal. Second, RNAP molecules that were only partially done elongating the

MS2 stem loops contributed a partial fluorescence intensity, given by the ratio of the distance tra-

versed through the stem loops to the total length of the stem loops

Fpartial ¼
Lpartial

Lloops
;

where Fpartial is the partial fluorescence contributed by an RNAP molecule within the stem loop

sequence region, Lpartial is the distance within the stem loop sequence traversed, and Lloops is the

length of the stem loop sequence (Appendix 1—figure 4, ii). For this reporter construct, the length

of the stem loops was approximately Lloops ¼ 1:28kb. RNAP molecules that had finished transcribing

the MS2 stem loops contributed the full amount of fluorescence (Appendix 1—figure 4, iii). Finally,

to make this simulation compatible with the trapezoidal fitting scheme in Appendix section 2.3, we

included a falling signal at the end of the nuclear cycle, achieved by setting RðtÞ ¼ 0 after 17 min into

the nuclear cycle and thus preventing new transcription initiation events.

Given the predicted MS2 fluorescence trace, the rate of RNAP loading and ton were extracted

with the fitting procedure used on the experimental data (Appendix section 2.3).

Eck, Liu, et al. eLife 2020;9:e56429. DOI: https://doi.org/10.7554/eLife.56429 34 of 57

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.56429


2.3 Extracting initial RNAP loading rate and transcriptional onset time

To extract the initial rate of RNAP loading and the transcriptional onset time ton used in the data

analysis, we fit both the experimental and calculated MS2 signals to a constant loading rate model,

the trapezoidal model (Garcia et al., 2013).

The trapezoidal model provides a heuristic fit of the main features of the MS2 signal by assuming

that the RNAP loading rate is either zero or some constant value r (Appendix 1—figure 5A). At time

ton, the loading rate switches from zero to this constant value r, producing a linear rise in the MS2

signal. After the elongation time telong, the loading of new RNAP molecules onto the gene is bal-

anced by the loss of RNAP molecules at the end of the gene, producing a plateau in the MS2 signal.

Finally, at the end of the nuclear cycle, transcription ceases at toff and the RNAP loading rate

switches back to zero, producing the falling edge of the MS2 signal and completing the trapezoidal

shape. Because we only consider the initial dynamics of transcription in the nuclear cycle in this inves-

tigation, we do not explore the behavior of toff .
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Appendix 1—figure 5. Outline of fitting to the trapezoidal model of transcription. (A) The

trapezoidal model of transcription, where transcription begins at an onset time ton and loads RNAP

molecules with a constant rate r. (B) Results of fitting the MS2 fluorescence data from a position in a

single embryo to the trapezoidal model to extract ton and the initial rate of RNAP loading. (C)

Comparison of inferred ton values between the trapezoidal model (solid lines) and using the time of

first detection of signal in a fluorescence spot (dashed lines) for both wild-type and zelda�

backgrounds. (B, error bars are standard error of the mean averaged over multiple nuclei within the

embryo, for data in a wild-type background at 50% along the embryo length; C, error bars are

standard error of the mean, averaged across embryos).

Appendix 1—figure 5B shows the results of fitting the mean MS2 fluorescence from a narrow

window within a single embryo to the trapezoidal model. With this fit, we can extract the initial rate
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of RNAP loading (given by the initial slope) as well as ton (given by the intercept of the fit onto the

x-axis).

As a consistency check, the ton values extrapolated from the trapezoidal fit of the data were com-

pared with the experimental time points at which the first MS2 spots were observed for both the

wild-type and zelda� mutant experiments (Appendix 1—figure 5C). Due to the detection limit of

the microscope, this latter method reports on the time at which a few RNAP molecules have already

begun transcribing the reporter gene, rather than a ‘true’ transcriptional onset time. Using the first

frame of spot detection yields similar trends to the trapezoidal fits, except that the measured first

frame times are systematically larger, especially in the mutant data. Additionally, utilizing the first

frame of detection to measure ton appears to be a noisier method, likely because the actual MS2

spots cannot be observed below a finite signal-detection limit, whereas the extrapolated ton from

the trapezoidal fit corresponds to a ‘true’ onset time below the signal-detection limit. For this rea-

son, we decided to rely on the trapezoidal fit to extract ton, rather than using the first frame of spot

detection.

3. Mitotic repression is necessary to recapitulate Bicoid- and Zelda-
mediated regulation of hunchback using the thermodynamic MWC
model
As described in Section ’The thermodynamic MWC model fails to predict activation of hunchback in

the absence of Zelda’ of the main text, a mitotic repression window was incorporated into the ther-

modynamic MWC model (Appendix section 1.2) in order to explain the observed transcriptional

onset times of hunchback. Here, we justify and explain this theoretical modification in greater detail.

Appendix 1—figure 6A and B depicts the experimentally observed initial rates of RNAP loading

and ton across the length of the embryo (blue points) for the wild-type background. After constrain-

ing the maximum and minimum theoretically allowed rates of RNAP loading (Appendix section 1.3),

we attempted to simultaneously fit the thermodynamic MWC model to both the rate of RNAP load-

ing and ton.
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Appendix 1—figure 6. A thermodynamic MWC model including mitotic repression can recapitulate

hunchback regulation by Bicoid and Zelda. (A) Measured initial rates of RNAP loading and (B) ton
(blue points) across the length of the embryo, compared to fits to the thermodynamic MWC model

with and without accounting for mitotic repression (blue and purple curves, respectively). (C) Nuclear

concentration dynamics of Bicoid and Zelda with proposed mitotic repression window (gray

shading). (D) Predicted MS2 dynamics with no mitotic repression term or a 3 min mitotic repression

Appendix 1—figure 6 continued on next page
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Appendix 1—figure 6 continued

window compared to experimental measurements. (A,B, solid lines indicate mean predictions of the

model and shading represents standard error of the mean, while points indicate data and error bars

represent the standard error of the mean, across 11 embryos; C, D, data from single embryos at

45% of the embryo length with error bars representing the standard error of the mean across nuclei,

errors in model predictions in D were negligible and are obscured by the prediction curve; fitted

parameter values for a 3 min mitotic repression window were D�chrom ¼ 10 kBT, Kb ¼ 34 AU,

Kz ¼ 500 AU, with different arbitrary fluorescent units for Bicoid and Zelda, !b ¼ 10, !bp ¼ 0:4, for a

model assuming six Bicoid-binding sites.).

The fit results demonstrate that while the thermodynamic MWC model can recapitulate the mea-

sured step-like rate of RNAP loading at hunchback (Appendix 1—figure 6A, purple line), it fails to

predict the ton throughout the embryo (Appendix 1—figure 6B, purple line; see Appendix sections

2.2 and 2.3 for details about experimental and theoretical calculations). This model yields values of

ton that are much smaller than those experimentally observed, a trend that holds throughout the

length of the embryo. This disagreement becomes more evident when comparing the output tran-

scriptional activity reported by the measured MS2 fluorescence with the input concentrations of

Bicoid and Zelda. Specifically, the Bicoid and Zelda concentration measurements at 45% along the

embryo, shown for a single embryo in Appendix 1—figure 6C, are used in conjunction with the pre-

viously mentioned best-fit model parameters to predict the output MS2 signal at the same position.

This prediction can then be directly compared with experimental data (Appendix 1—figure 6D, pur-

ple line vs. black points, respectively). Although the model predicts that transcription will commence

around 1 min after anaphase due to the concurrent increase in the Bicoid and Zelda concentrations,

the observed MS2 signal begins to increase around 4 min after anaphase (Appendix 1—figure 6D).

As a result, the predicted transcriptional dynamics in Appendix 1—figure 6D are systematically

shifted in time with respect to the observed data.

The observed disagreement in ton suggests that in this model, transcription is prevented from

starting at the time dictated solely by the increase of Bicoid and Zelda concentrations. While we

speculate that this effect could stem from processes such as RNAP escape from the promoter, DNA

replication at the start of the cell cycle, and post-mitotic nucleosome clearance from the promoter,

we choose not to commit to a detailed molecular picture and instead ascribe this transcriptional

refractory period at the beginning of the nuclear cycle to mitotic repression, the observation that

the transcriptional machinery cannot operate during mitosis (Shermoen and O’Farrell, 1991;

Gottesfeld and Forbes, 1997; Parsons and Spencer, 1997; Garcia et al., 2013). To account for

this phenomenon, we revised our thermodynamic MWC model by stating that hunchback can only

read out the inputs and begin transcription after a specified mitotic repression time window follow-

ing the previous anaphase (Appendix section 1.3).

Since we expect mitotic repression to operate independently of position along the length of the

embryo (Shermoen and O’Farrell, 1991), we assumed that the duration of mitotic repression was

uniform throughout the embryo. After incorporating a uniform 3 min mitotic repression window into

the thermodynamic MWC model (Appendix 1—figure 6C and D, grey-shaded region), the model

successfully recapitulates ton throughout the embryo (Appendix 1—figure 6B and D, blue curves),

while still explaining the observed rates of RNAP loading (Appendix 1—figure 6A, blue curve).

Thus, once mitotic repression is accounted for, the thermodynamic MWC model based on statistical

mechanics can quantitatively recapitulate the regulation of hunchback transcription by Bicoid and

Zelda.

4. The effect of the zelda� background on the Bicoid concentration
spatiotemporal profile
Our models rest on the assumption that the Bicoid gradient remains unaltered regardless of whether

these measurements are made in the wild-type or zelda� backgrounds. To confirm this assumption,

we measured eGFP-Bicoid concentrations in a zelda� background. These flies were heterozygous for

eGFP-labeled Bicoid and for wild-type Bicoid, resulting in roughly 50% of total Bicoid being labeled

with eGFP. As shown in Appendix 1—figure 7A and B, the resultant eGFP-Bicoid nuclear fluores-

cence levels in nuclear cycle 13 in the zelda� background (red) were roughly half the magnitude of
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the equivalent measurements in the wild-type background (blue), a trend that held both in time and

along the embryo. After doubling the heterozygote eGFP-Bicoid nuclear fluorescence measurements

to rescale them (Appendix 1—figure 7B, black), the two eGFP-Bicoid curves became similar,

although the zelda� eGFP-Bicoid values were systematically lower than in the wild-type background.

The normalized difference, defined as the absolute value of the difference between the wild-type

and zelda� profiles at each position in the embryo divided by the value of the wild-type profile at

the position, averaged across all measured positions, was 15%� 2%. This value is within the range of

the inter-embryo variability of eGFP Bicoid in wild-type background embryos (Appendix 1—figure

3C). Measuring the decay length of the eGFP-Bicoid profile in the zelda� background also yielded a

slightly different result: 21%� 1% of the total embryo length, as opposed to 23:5%� 0:6% in the

wild-type background (dashed curves, see also Appendix 1—figure 3B).
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Appendix 1—figure 7. Comparison of eGFP-Bicoid measurements in wild-type and zelda� embryos.

(A) Example mean nuclear eGFP-Bicoid concentrations for a single embryo at 30% along the

embryo’s length, for wild-type (blue) and zelda� (red) backgrounds. Datapoints are raw values and

lines are smoothed results. The raw fluorescence at 8 min into the nuclear cycle, indicated by the

black dashed line, is calculated to yield (B). The blue and red dashed lines correspond to the times

to reach 50% and 90% of the maximum fluorescence for the smoothed wild-type and zelda� signals,

respectively. (B) eGFP-Bicoid measurements in wild-type (blue) and zelda� mutant embryos (red),

along with rescaled mutant profiles (black). Fits to an exponentially decaying function yield decay

lengths in each background (blue and black dashed curves). (C, D) Time to reach 50% and 90% of

maximum nuclear eGFP-Bicoid fluorescence for wild-type (blue) and zelda� (red) backgrounds. A

total of n = 3 embryos were measured in the zelda� background, compared to n = 6 for wild-type.

All error bars are standard error of mean across embryos.

Having compared the spatial profile of Bicoid in both backgrounds, we then contrasted the

dynamics of nuclear Bicoid import. To quantify this analysis, we calculated the time to reach 50%

and 90% of the maximum eGFP-Bicoid fluorescence signal for wild-type and zelda� embryos, at

each position along the anterior-posterior axis (Appendix 1—figure 7A, blue and red dashed lines).

Because the raw fluorescence signals were noisy enough to confound this calculation, we first

smoothed the signals using a moving average filter of ten datapoints (Appendix 1—figure 7A,

lines).

Appendix 1—figure 7C and D show the times to reach 50% and 90% of maximum fluorescence

for the anterior positions in both embryo backgrounds, where transcription was observed, respec-

tively. In both backgrounds, the 50% and 90% times are similar to within approximately 1 min, indi-

cating that the dynamics of nuclear eGFP-Bicoid at the start of nuclear cycle 13 are quantitatively
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comparable. Thus, we concluded that differences in transcription between the two embryo back-

grounds do not stem from differences in Bicoid dynamics.

In summary, the dynamics of nuclear Bicoid concentration are quantitatively comparable in both

wild-type and zelda� backgrounds, whereas the overall Bicoid concentration is slightly lower in the

zelda� case. Nevertheless, these differences in concentration would have a negligible effect on our

overall conclusions: in the context of our models, an overall rescaling in the magnitude of the Bicoid

gradient between the wild-type and zelda� backgrounds can be compensated by a corresponding

rescaling in the dissociation constant of Bicoid, Kb. Because our systematic exploration of theoretical

models considers many possible parameter values (Appendix section 5.1), this rescaling has no effect

on our conclusion that the equilibrium models are insufficient to explain the zelda� data. As a result,

and given that our statistics for the wild-type eGFP-Bicoid data consisted of more embryos than the

data for the zelda� background, we used this wild-type data in our analyses as an input to both the

wild-type and zelda� model calculations.

5. State-space exploration of theoretical models
5.1 General methodology of state-space exploration

To help visualize the limits of our models, we collapsed our observations onto a three-dimensional

state space, following a method similar to that described in Estrada et al., 2016. In this space, the

x-axis was the average ton delay. This magnitude was computed by integrating the ton across 20% to

37.5% of the embryo length, corresponding to the range in which both wild-type and zelda� experi-

ments exhibited transcription in at least 30% of observed nuclei (Appendix 1—figures 8A and

5A, as defined in Equation 5). The offset in ton at 20% embryo length (Equation 4) was the y-axis in

the state space. The z-axis was given by the average initial rate of RNAP loading between 20% and

37.5% of the embryo length (Appendix 1—figure 8B).
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Appendix 1—figure 8. Description of state-space metrics and boundary-exploration algorithm. (A)

Representative average ton delay (black dashed line) and ton offset for the zelda� background data in

Figure 4D. (B) Average initial RNAP loading rate for the zelda� background data in Figure 4C. (C)

Overview of the boundary-exploration algorithm for an example state space containing two

dimensions. (i) A set of 50 points with random input parameters generates an initial state space of

the investigated model. (ii) The space is sectioned into 10 horizontal and 10 vertical slices. (iii) The

extremal points of each slice are found. (iv) For each extremal point, five new points are generated

with input parameters in a small neighborhood around the parameters of this extremal point. (v) The

new space is plotted with these new points, and steps (ii) - (iv) are repeated. (D) Normalized volume

of state-space domain of each model investigated in this work as a function of algorithm iteration

number. All volumes approach a steady value, indicating convergence.

Combined, the average ton delay, ton offset, and average initial RNAP loading rate provide a sim-

plified description of our data as well as of our theoretical predictions. Each theoretical model inhab-

its a finite region in this three-dimensional state space, which we can calculate by systematically

varying model parameters. Appendix 1—figure 8A and B show an example of how the three

parameters are calculated using the zelda� background data presented in Figure 4C and D (red

points) in the main text.

Due to the large number of parameters in each model explored, the corresponding state-space

boundaries were generated by efficient sampling of the underlying high-dimensional parameter
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space. Although in actuality the state space contained three dimensions, we illustrate the sampling

process here with a two-dimensional example, using only the offset and average delay in transcrip-

tional onset time, for ease of visualization (Appendix 1—figure 8C). The methodology is similar to

the one described in Estrada et al., 2016. Briefly, a starting set of 50 points was generated, each

with a randomized set of initial parameters, the specifics of which depended on the model being

tested (Appendix 1—figure 8Ci). The state space was sectioned into 100 slices along each orthogo-

nal axis (Appendix 1—figure 8Cii). The most extremal points in each slice were found, resulting in

two extremal values each for the ton offset and average ton delay (Appendix 1—figure 8Ciii). For

each of these points, a new set of five points was generated using random parameters within a small

neighborhood of the seed points determined by the extremal points of the previous iteration

(Appendix 1—figure 8Civ). These new points were plotted; some of these points may be more

extreme than the previous set of points. Steps ii-iv were iterated, resulting in a growing boundary

over time (Appendix 1—figure 8Cv). This algorithm was run in the full three-dimensional state

space, where 100 three-dimensional columns along the orthogonal xy-, yz-, and xz-planes were used

instead of two-dimensional slices.

Constraints imposed by the data were used to filter unrealistic results and ensure rapid conver-

gence of the algorithm. First, if the simulated average ton delay was less than �0.5 min or greater

than 2 min, the point was filtered out. This removal was justified experimentally, since none of the

observed average ton delays were outside of this range (Figure 5A). Second, if the simulated average

initial loading rate was smaller than 1 AU/min or greater than 4 AU/min, the point was also filtered

out. This was also justified experimentally, since none of the observed initial RNAP loading rates

between 20% and 37.5% embryo position lay outside this range (Figure 4C). Points that fulfilled

these constraints were retained for the next iteration of the algorithm. This process was repeated

until the resulting space of points no longer grew appreciably, resulting in an estimate of the size

and shape of the state space for each of the models presented in Appendix sections 1.2, 6.1, 7.1,

and 8.1.

To determine whether the algorithm had indeed converged, the total volume of each model’s

region in state space was tracked with each iteration number. If the algorithm worked well, then this

volume would approach some maximum value. Appendix 1—figure 8D shows the volume of the

state space corresponding to each model presented in this work (normalized by the volume at the

final iteration number) as a function of the iteration number. Each model converged to a finite value,

indicating that the parameter space occupied by the models had been thoroughly explored.

5.2 State space exploration with the thermodynamic MWC model

Appendix 1—figure 9A and Appendix 1—video 1 show the resulting three-dimensional state space

for the thermodynamic MWC model (green), as well as all of the theoretical models considered

here. We plotted the wild-type and zelda� data on the same state space, represented as small ellip-

soids of uncertainty. Any successful model must occupy a region that overlaps both the wild-type

and zelda� data.
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Appendix 1—figure 9. Exploration of state space. (A) Three-dimensional state-space exploration,

showing the extents of state space of the wild-type (blue) and zelda� (red) data as well as of various

models explored in the main text. See also Appendix 1—video 1 for an more comprehensive

representation of our results. (B) Two-dimensional state-space exploration, created by projecting the

three-dimensional state space in (A) for average initial loading rate values between 2.5 and 3.6 AU/

min onto the xy-plane corresponding to the average ton delay and ton offset. Volumes (A) and areas

(B) covered by the experimental data represent the standard error of the mean.

Appendix 1—video 1 continued on next page
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Appendix 1—video 1 continued

Appendix 1—video 1. Exploration of three-dimensional space consisting of average initial RNAP

loading rate and offset and average delay in transcriptional onset time. The models explored in

the main text inhabit domains in this space, whereas the wild-type and zelda� data inhabit ellipsoids

of uncertainty. Whereas the thermodynamic MWC, generalized thermodynamic, and non-equilibrium

MWC model with up to five Bicoid-binding sites cannot explain the zelda� data, the transcription-

factor-driven model with three inaccessible states can adequately encompass both datasets.

https://elifesciences.org/articles/56429#A1video1

As shown in Appendix 1—figure 9A and Appendix 1—video 1, the state space corresponding

to the thermodynamic MWC model fails to overlap with the zelda� data. To more clearly reveal this

disagreement, this three-dimensional state space was projected onto the xy-plane, the space incor-

porating the average ton delay and ton offset information. To do this projection, we noticed that both

the wild-type and zelda� data only occupied average initial loading rate values between 2.5 AU/min

and 3.6 AU/min (Appendix 1—figure 9A and Appendix 1—video 1). As a result, only points in that

range of initial loading rates were retained for the projection. The resulting two-dimensional repre-

sentation of our exploration is shown in Appendix 1—figure 9B. Even in this simplified representa-

tion, the failure of the thermodynamic MWC model (Appendix 1—figure 9B, green) is evident.

Therefore, we utilized this representation throughout the main text and Appendix (Figures 5C,

6B and 7D and Appendix 1—figures 13 and 14C).

6. Failures and assumptions of thermodynamic models of transcription
6.1 Generalized thermodynamic model

The generalized thermodynamic model is an extension of the thermodynamic MWC model pre-

sented in Appendix section 1.2. For extra generality, we assume the presence of twelve Bicoid bind-

ing sites and one RNAP binding site, but do not include the action of Zelda since the objective was

to attempt to recapitulate the zelda� mutant experimental data. We still allow for an inaccessible

DNA state.

In this generalized model, the weight of each microstate can be arbitrary, rather than determined

by underlying biophysical parameters. Since pbound only depends on whether RNAP is bound, there is

no need to distinguish between different microstates that have the same number of Bicoid mole-

cules bound: the arbitrary coefficients allow separate microstates to effectively be combined

together into the same weight. Thus, each microstate corresponds only to the overall number of

bound molecules, regardless of binding site ordering. With 12 Bicoid sites, in addition to the inac-

cessible state, there are 27 total microstates and 26 free parameters describing the weights of each

state (with the accessible, unbound microstate normalized to unity). Like with the thermodynamic

MWC model, we assume that transcription only occurs when RNAP is bound, with the same con-

strained maximum rate of RNAP loading Rmax. However, since the weights of each microstate are

arbitrary, we no longer have a variable p that can be constrained by Rmin like in Appendix

Equation 14.

This generalized model is much more powerful than the thermodynamic MWC model due to a

lack of coupling between individual microstate weights. Whereas in the previous model the underly-

ing parameters Kb and !b caused similar microstates to be related mathematically, now the statistical

weights for each microstate are completely independent. Physically, this scenario can arise due to,

for example, higher-order cooperativities or non-identical binding energies between binding sites

(Estrada et al., 2016).

The partition function in this generalized thermodynamic model is given by the polynomial

Z ¼ pinacc þ
X1

r¼0

X12

n¼0

Pr;n½Bicoid�
n; (17)

where pinacc is the weight of the inaccessible state and Pr;n is the weight of the accessible state with r
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RNAP molecules bound and n Bicoid molecules bound. The overall transcriptional initiation rate is

now

dmRNA

dt
¼

1

Z
ð
X12

n¼0

P1;nR½Bicoid�
nÞ; (18)

where P1;n is the statistical weight of each RNAP-bound state and R is the corresponding rate of tran-

scriptional initiation. Note that, as described above, R is still equal to Rmax, the constraint described

in Appendix section 1.3, but we no longer use the Rmin constraint.

The resulting rate of transcriptional initiation is integrated over time to produce a simulated MS2

fluorescence trace using the same procedure as for the models presented in Appendix sections 1.2,

7.1, and 8.1 (see Appendix section 2.2 for details). As with the thermodynamic MWC model, we

allow for a mitotic repression time window to account for the lack of transcription early in the nuclear

cycle.

6.2 Generalized thermodynamic model state space exploration

Due to the high-dimensional parameter space of the generalized thermodynamic model, constraints

were necessary to efficiently explore this parameter space (Appendix section 5.1). These constraints

were placed on the values of the individual microstate weights Pr;n, based on dimensional analysis

and heuristic arguments. Specifically, each weight Pr;n is derived from a product of binding constants

Kd for either Bicoid or RNAP, pairwise cooperativity parameters !, and higher order cooperativity

terms. For the purposes of these parameter constraints, we only consider the Kds and !s, and ignore

constraints on higher-order cooperativities. In principle, each Bicoid-binding site possesses a unique

Kd and protein-protein interaction terms ! with other Bicoid molecules and/or with RNAP. However,

as described below, these biophysical parameters, once non-dimensionalized, can be constrained to

reasonable values by scaling relations through a simple bounding scheme.

For illustrative purposes, consider the microstate with RNAP and one Bicoid molecule bound. Its

weight depends on two independent binding constants p; b and a cooperativity term between RNAP

and Bicoid !bp. First, we assume that the p; b terms are non-dimensionalized, that is they take the

form p ¼ ½RNAP�=Kp and b ¼ ½Bicoid�=Kb. Although the two individual p; b terms are in principle differ-

ent since RNAP and Bicoid have can different binding energies, we can be generous about the con-

straints and assume that the non-dimensionalized forms are both bounded below and above by 0

and 1000, respectively. This strategy is justified by assuming that neither RNAP nor Bicoid exist in

concentrations three orders of magnitude above their dissociation constants, and do not exist at

negative concentrations (Estrada et al., 2016). Similarly, we can be generous about any possible

cooperativities and say that !bp and !b have a similar bound between 0 and 1000, thus accounting

for both positive and negative cooperativities. For this state with RNAP and one Bicoid molecule

bound, we can say that

P1;1 ¼ bp!bp (19)

which has bounds

0<P1;1<ð1000Þ
2ð1000Þ ¼ 10

9 (20)

and thus provide a bound for the possible values that the weight P1;1 can take.

In general, this process can be applied to enforce bounds on any microstate weight Pr;n through

constraining of the possible values of p, b, !bp, and !b. As a result, the weight of a microstate with

more Bicoid bound (i.e. higher values of n) will have a more generous dynamic range, due to the

larger powers of b and !b. In this way, exploration of parameter space can be made more con-

strained by restricting the possible values of the microstate weights Pr;n. In addition, the mitotic

repression term was constrained like in the thermodynamic MWC model, where 0<tMitRep<10.

As a result of these constraints, the region occupied by the generalized thermodynamic model in

the ton offset and average ton delay space does not entirely include that of the thermodynamic MWC

model, whose parameters were only constrained to be positive values (Appendix section 1.3).
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Nevertheless, this model still fails to capture the delays observed in the zelda� data (Appendix 1—

figure 9B, yellow).

6.3 Extended generalized thermodynamic model with transcription factor
binding in the inaccessible state

The generalized thermodynamic model (Appendix section 6.1) encompasses all possible thermody-

namic models with up to twelve Bicoid-binding sites that can be bound in the accessible state. How-

ever, a potentially more general class of models involves those where Bicoid can also bind to the

inaccessible state. For example, Bicoid action could conceivably result in some pioneering activity by

directly binding to chromatin in the inaccessible state and facilitating RNAP binding and transcrip-

tion. Here, we show that these models can be reformulated into the generalized thermodynamic

model presented above.

If we allow for Bicoid to bind to any of the 12 binding sites in the inaccessible states, then we

introduce l new microstates with individual Boltzmann weights Pl, one for each Bicoid-bound inac-

cessible state, in addition to the unbound inaccessible state with weight Pinacc. Nevertheless, as long

as the ensuing transcription rate of each Bicoid-bound inaccessible state is zero, then the net effect

of these additional inaccessible states could simply be described by a single effective inaccessible

state with Boltzmann weight P0
inacc ¼ Pinacc þ

P

l Pl. The resulting state space exploration (Section ’No

thermodynamic model can recapitulate the activation of hunchback by Bicoid alone’ and Figure 5C,

yellow), which explores the whole parameter space of reasonable values of Pinacc, would thus also

capture the behavior of this single effective inaccessible state. As a result, models that consider the

binding of Bicoid to the inaccessible states are contained within our generalized thermodynamics

model.

6.4 Investigation of the failure of thermodynamic models

Here, we provide an intuitive explanation for why thermodynamic models fail to recapitulate the

delay in ton for zelda� embryos. The combination of the occupancy hypothesis and the assumption of

separation of times scales described in Appendix section 6.5 imply that the rate of transcriptional ini-

tiation at any moment in time is an instantaneous readout of the Bicoid concentration at that time

point. Thus, any thermodynamic model is memoryless. Intuitively, this means that a thermodynamic

model requires transcription to begin as soon as the Bicoid concentration crosses a certain ‘thresh-

old’ since time delays between input and output require some sense of memory. Examination of the

dynamic measurements of MS2 output in zelda� embryos reveals that no matter what ‘threshold’

concentration of Bicoid is assigned for the start of transcription, the model cannot simultaneously

describe two values of ton corresponding to different positions along the anterior-posterior axis

(Appendix 1—figure 10A and B).
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Appendix 1—figure 10. Intuition for failure of equilibrium models. (A) Mean Bicoid concentrations

for two positions along the embryo (blue, red), with a ‘threshold’ chosen to to attempt to match the

corresponding ton in (B). (B) MS2 fluorescence signal for the two positions shown in (A) for the zelda�

experiment. Note that no single threshold value of Bicoid can match the timings in (A) with the

transcriptional onset times in (B). (C) Mean Bicoid concentration at ton as a function of position for

the zelda� data.

Another self-consistency check of a thermodynamic model is to examine the concentration of

Bicoid at ton for various positions along the embryo. Due to the memoryless nature of thermal equi-

librium, a valid thermodynamic model predicts that, at different positions along the embryo, ton will

occur when Bicoid reaches the same threshold value. For the zelda� data, however, the level of

Bicoid at each anterior-posterior position’s ton value actually decreases with increasing ton, suggesting

the failure of the thermodynamic model (Appendix 1—figure 10C). Thus, the strong position-

dependent delay in ton for the zelda� data cannot be explained by an instantaneous Bicoid readout

mechanism.

More generally, the memoryless nature of thermodynamic models implies that, given any input-

output function that increases monotonically with Bicoid and Zelda concentration, the ensuing onset

time of transcription cannot be later than the time at which Bicoid or Zelda reach their maximal val-

ues. This is a reflection of a generic feature of thermodynamic models, namely that only instanta-

neous couplings in time can exist, and that time delays are impossible (Coulon et al., 2013;

Wong and Gunawardena, 2020). By inspecting the nuclear concentrations of Bicoid and Zelda in

Appendix 1—figure 3, we notice that times of maximal nuclear concentration for both transcription

factors all occur around 4.5 min. This time is much earlier than the delayed transcriptional onsets

exhibited in the zelda� data (Figure 4D, red points), providing further evidence for the unsuitability

of thermodynamic models in describing the observed delay in the transcriptional onset time along

the anterior-posterior axis of the embryo.

6.5 Re-examining thermodynamic models of transcriptional regulation

Thermodynamic models based on equilibrium statistical mechanics can be seen as limiting cases of

more general kinetic models. For example, consider simple activation, where an activator whose

concentration is modulated in time regulates transcription by binding to a single site (Appendix 1—
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figure 11). In this generic model, the presence of activator can modulate the rates of activator and

RNAP binding and unbinding through the parameters a, b, g, and d.

In order to reduce kinetic models to thermodynamic models where the probabilities of each state

are dictated by Boltzmann weights such as those in Figure 2A, four conditions must be fulfilled.

First, the rate of mRNA production must be linearly related to the probability of finding RNAP

bound to the promoter (Appendix 1—figure 11i). This occupancy hypothesis is necessary for

Appendix Equation 2 to hold. Second, the time scales of binding and unbinding of RNAP and tran-

scription factors must be much faster than the time scales of the concentration dynamics of these

proteins (Appendix 1—figure 11ii). Third, these time scales must also be much faster than the rate

of transcriptional initiation and mRNA production (Appendix 1—figure 11iii). Under these condi-

tions of separation of time scales, the binding and unbinding of proteins quickly reaches steady state

while the overall concentrations of these molecular players are modulated (Segel and Slemrod,

1989). Fourth, there must be no energy input into the system (Appendix 1—figure 11iv). This con-

dition demands ‘detailed balance’ (Vilar and Leibler, 2003; Ahsendorf et al., 2014; Hill, 1985): the

product of state transition rates in the clockwise direction over a closed loop is equal to the product

going in the counterclockwise direction, a constraint known as the cycle condition (Estrada et al.,

2016). In the case of Appendix 1—figure 11, this requirement implies that

kONP dkONA bkOFFP kOFFA ¼ kOFFP kONA akONP gkOFFA : (21)

mRNA

(ii) separation of
timescales

(i) occupancy
hypothesis

(iv) no energy
expenditure
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Appendix 1—figure 11. A simple kinetic model of transcriptional activation in which activator mole-

cules influence RNAP binding kinetics. The assumptions that make it possible to turn this kinetic

model into a thermodynamic one are (i) the occupancy hypothesis, (ii, iii) a separation of time scales

between binding and unbinding rates, and activator and mRNA production dynamics, respectively,

and (iv) no energy expenditure (detailed balance).

If these four conditions are met, then the system is effectively in equilibrium and the various bind-

ing states adopt probabilities that can be calculated using equilibrium statistical mechanics.
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7. Non-equilibrium MWC model
7.1 Non-equilibrium MWC model

The non-equilibrium MWC model is an extension of the thermodynamic MWC model presented in

Appendix section 1.2, where we now relax the assumption of separation of time scales (Appen-

dix 1—figure 11ii and iii) and make it possible to assume, for example, that the system responds

instantaneously to changes in activator concentration. Here, we explicitly simulate the full system of

ordinary differential equations (ODEs) that describe the dynamics of the system out of steady state.

Additionally, we allow for energy to be expended and thus do not enforce detailed balance through

the cycle condition (Appendix 1—figure 11iv). We still employ a mitotic repression window term,

before which no transcription is allowed.

We consider a generic model with n Bicoid binding sites, and again ignore Zelda since we are

only interested in recapitulating the zelda� mutant data. As a result, this new model has nþ 1 total

binding sites which, together with the closed chromatin state, results in a total of 2nþ1 þ 1 ¼ N micro-

states. In the case of six Bicoid binding sites, this results in N ¼ 129 total microstates. We assign

each microstate xi a label i and describe the transition rate from state j to state i using kij, where i; j

range from 0 to N � 1, inclusive.

In matrix notation, we write the system of ODEs as

d~X

dt
¼K~X; (22)

where ~X is a vector containing the fractional occupancy of each microstate xi and K is a matrix con-

taining all the transition rates kij. Normalizing such that the sum of all the components in the vector

~X is unity, we now have a vector representing the instantaneous probability of being in each

microstate.

To relate the occupancies of the different states to the rate of transcriptional initiation, we retain

the occupancy hypothesis presented earlier: that pbound, the probability of being in a microstate with

a bound RNAP molecule, is linearly related to the overall average transcriptional initiation rate that

we determine from experimental measurements.

For this particular system, it is helpful to define an intuitive microstate labeling system. Because

the relevant physical processes are the binding and unbinding of Bicoid and RNAP molecules, we

can represent any microstate in binary form, where the total number of digits is the total number of

binding sites nþ 1, and each digit represents an individual binding site. Our convention is to assign

the first digit to the promoter, and the subsequent ones to the Bicoid sites. By assigning 0 to an

unbound site and one to a bound site, we can rewrite each unique microstate’s label i in binary

form. For example, for a model with six Bicoid sites, the label for the microstate with no RNAP

bound and the first two Bicoid sites occupied is represented with

i¼ binð0110000Þ ¼ 48: (23)

Here, bin() indicates taking the base 2 value of the binary label in the parentheses. The closed

chromatin state is added manually and assigned to the last position in our binary label, xN�1. This

convention allows us to intuitively define each unique label for the system’s microstates and provides

a way to map the physical contents of a microstate with its associated label i.

In general, the overall transition matrix K can be very complex. However, we benefit from the fact

that the only non-zero transitions kij are the ones that correspond to physical processes: modifying

the open/closed chromatin state, and binding and unbinding of Bicoid or RNAP molecules. In this

binary notation, these constraints imply that the only nonzero transitions are the ones that represent

individual flips between 0 and 1, as well as between the open and closed states 0 and N � 1. The

transition matrix K is then easier to write, since it is clear from the binary representation which transi-

tions must be nonzero. Finally, diagonal elements kii are entirely constrained because they represent

probability loss from a particular state i, and must be equal to the negative of the rest of the column

i, such that the sum over each column in K is zero.

Given that the Bicoid concentration changes as a function of time and that we assume first-order

binding kinetics, whichever rates kij correspond to Bicoid binding rates must be multiplied by this

time-dependent nuclear concentration. In contrast, all off-rates are independent of Bicoid
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concentration. To keep subsequent parameter exploration simple, we non-dimensionalized the

Bicoid concentration by rescaling it by its approximate scale. This was achieved by dividing all Bicoid

concentrations by the average Bicoid concentration, calculated by averaging the mean Bicoid

nuclear fluorescence across all datasets, anterior-posterior positions, and time points, yielding

approximately 35 arbitrary fluorescence units. Thus, all the transition rates kij in the model here are

expressed in units of inverse minutes.

To model transcription specifically, we assumed that at the beginning of the nuclear cycle, the

system is in the closed chromatin state: xiðt ¼ 0Þ ¼ 0 except for the closed chromatin state

xN�1ðt ¼ 0Þ ¼ 1. We simulated the full trajectory of all the microstates xi over time by solving the sys-

tem of ODEs given in Equation 22. Finally, we calculated pbound by summing the xi’s that correspond

to RNAP-bound states, and then computed the subsequent transcriptional initiation rate by multiply-

ing pbound with the transcription rate R. Here, R is the same Rmax as in Appendix sections 1.2 and 6.1

but again we do not constrain the model using Rmin, just as in Appendix section 6.1.

Appendix 1—figure 12A shows an example of this model for a system with only one Bicoid bind-

ing site and no closed chromatin state, for simplicity, resulting in a four-state network. The binary

indexing labels (shown beneath each state in light pink) can be converted into the base-10 labels

(light teal) ranging from 0 to 3. The connection matrix for this system is

C¼

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

2

6
6
6
4

3

7
7
7
5

(24)

and the corresponding transition rate matrix K is

K ¼

k00 k01 k02 0

k10 k11 0 k13

k20 0 k22 k23

0 k31 k32 k33

2

6
6
6
4

3

7
7
7
5
; (25)

where, in this example, k02 represents the transition rate from state j to state i. The diagonal ele-

ments kii are equal to the negative of the sum of the elements in the rest of the column in order to

preserve conservation of probability. For example, k00 ¼�ðk10þ k20þ k30Þ.
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Appendix 1—figure 12. Example of a four-state time-dependent model with one Bicoid binding

site and no closed chromatin state. (A) The binary label for each state (light pink) can be converted

into a base-10 label for each state (light teal). The transition rates kij are defined as the transition

rate from state i into state j using this labeling system. (B) For an example input activator

concentration temporal profile that is a step function, the time-dependent response is compared for

the cases of separation of time scales and lack thereof. In the former, the transcriptional initiation

rate responds instantaneously to the increase in activator input, while the response is slower in the

latter.

With all this information in hand, we solve for the occupancy of each of the four states using the

matrix ODE

dx0
dt

dx1
dt

dx2
dt

dx3
dt

2

6
6
6
6
4

3

7
7
7
7
5

¼

k00 k01 k02 0

k10 k11 0 k13

k20 0 k22 k23

0 k31 k32 k33

2

6
6
6
4

3

7
7
7
5

x0

x1

x2

x3

2

6
6
6
4

3

7
7
7
5
: (26)

In this case, the occupancy hypothesis relates pbound to the overall transcription rate, resulting in

dmRNA

dt
¼ Rpbound ¼ R

x1þ x3

x0 þ x1þ x2 þ x3
: (27)

This model can produce time-dependent behavior not found in the thermodynamic models.

Appendix 1—figure 12B contains an example of a hypothetical input Bicoid activator concentration

that switches instantaneously from zero to a finite value. In the thermodynamic models, the pre-

dicted transcriptional initiation rate also responds instantaneously (Appendix 1—figure 12B, top). In

contrast, for a suitable set of parameters, the non-equilibrium MWC model predicts a slow response

over time (Appendix 1—figure 12B, bottom).
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To produce a simulated MS2 fluorescence trace, the resulting rate of mRNA production is inte-

grated over time using the same procedure (Appendix section 2.2) as the models presented in

Appendix sections 1.2, 6.1, and 8.1. As with the thermodynamic MWC model, we allow for a time

window of mitotic repression to account for the lack of transcription early in the nuclear cycle. Spe-

cifically, this was implemented by allowing the system to evolve over time, but fixing transcription to

zero (R ¼ 0) until after the mitotic repression time tMitRep. An alternative formulation of the model, in

which the whole system is frozen such that no transitions between states are allowed until after

tMitRep, is discussed below in Appendix section 7.3.

7.2 Non-equilibrium MWC model state space exploration

In the parameter exploration of this model (Appendix section 5.1), the transition rates kij were con-

strained with minimum and maximum values of kmin ¼ 1 and kmax ¼ 10
5 respectively, in units of inverse

minutes. These bounds were conservatively chosen using the following estimates. First, we estimate

the values of the possible unbinding rates koff . We assume that RNAP and Bicoid obey the same

unbinding kinetics. Estimates of in vivo single-molecule binding kinetics inferred from Mir et al.,

2018 indicate that the lifetime of Bicoid on DNA is on the order of 3s�1. Second, we estimate the

values of the possible on-rates kon using the classic Berg-Purcell equation for the case of a diffusion-

limited binding to a perfectly absorbing spherical receptor (Berg and Purcell, 1977). In this case,

the on-rate of molecule binding is given by

kon ¼ 4pDaco; (28)

where D is the diffusion coefficient of the molecule, a is the estimated size of the spherical receptor,

and c0 is the background concentration of the molecular species. Since here we are talking about

transcription factor binding to a Bicoid binding site, we assume a to be on the order of 5 nm. We

assume that RNAP and Bicoid obey the same diffusion characteristics, leading to a diffusion coeffi-

cient of approximately 0:3�m2s�1(Gregor et al., 2007b). Finally, Bicoid is is present at concentrations

between 10 nM and 55 nM in the nucleus (Gregor et al., 2007a), and we assume that nuclear RNAP

concentrations exist within the same range. Plugging these values into Appendix Equation 28 yields

estimates for the maximum and minimum on-rates:

kmaxon ~ ð4pÞð0:3 �m2s�1Þð1 �mÞð55 nMÞ
~0:5 s�1 ~30 min�1:

and

kminon ~ð4pÞð0:3 �m2s�1Þð1 �mÞð10 nMÞ
~0:05 s�1 ~3 min�1:

Thus, our maximum and minimum transition rate bounds of kmin ¼ 1min�1 and kmax ¼ 10
5min�1 lie

outside these estimated binding and unbinding rates. The mitotic repression term was constrained

like in the thermodynamic MWC model, where 0<tMitRep<10.

One caveat of the state-space exploration approach is that the high dimensionality of the non-

equilibrium MWC model prevented us from calculating the full state-space boundary using six

Bicoid-binding sites. Due to computational costs, we were only able to accurately produce a state-

space boundary for this model (Appendix section 7.1) using five Bicoid-binding sites. Running the

exploration for a model with six Bicoid-binding sites took over 2 weeks on our own server, and the

algorithm had not noticeably converged in the end.

The results of the state space exploration for the non-equilibrium MWC model using five Bicoid-

binding sites resulted in larger average ton delays than the thermodynamic models (Appendix sec-

tions 1.2 and 6.1). However, this model, like those, failed to reproduce the delays observed in the

zelda� data (Appendix 1—figure 9B, cyan).

Interestingly, the total areas covered by each non-equilibrium MWC model did not monotonically

increase with Bicoid-binding site number (Figure 6B). This phenomenon where the state space of a

model does not strictly increase with binding site number has been previously observed

(Estrada et al., 2016) and the reason for this effect remains uncertain.
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7.3 Alternative non-equilibrium MWC model with strong mitotic repression

In the main text, we entertained a non-equilibrium MWC model where mitotic repression blocks any

productive transcription (R ¼ 0) until the mitotic repression window tMitRep has passed. Before this

time, in this model, the system can nevertheless transition through its different states over time.

In an alternate formulation of this non-equilibrium MWC model, we consider a form of mitotic

repression that we call strong mitotic repression. Here, the system itself is frozen in the initial inac-

cessible state and not allowed to evolve until after tMitRep. After tMitRep, the system evolves through

time according to the same rules as the original non-equilibrium MWC model.

Repeating the state space exploration for this model, for up to five Bicoid binding sites, yielded

similar conclusions. Namely, the model could not describe the average delay and offset in transcrip-

tional onset time in the absence of Zelda (Appendix 1—figure 13). The intuition behind this is that,

while this stronger form of mitotic repression could potentially achieve longer delays, the crucial fea-

ture of the zelda� data is not merely a delayed transcription onset time, but a position-dependent

delay that increases towards the posterior of the embryo. This stronger form of mitotic repression

does not result in a mechanism capable of achieving such delay. In contrast, the final transcription-

factor-driven model (Appendix section 8.1) does provide such a mechanism by coupling the inacces-

sible-to-accessible transition to the position-dependent Bicoid gradient.
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Appendix 1—figure 13. State space exploration for non-equilibrium MWC model with strong

mitotic repression for up to five Bicoid-binding sites.

8. Transcription-factor-driven model of chromatin accessibility
8.1 Transcription-factor-driven model of chromatin accessibility

The transcription-factor-driven model of chromatin accessibility is a slight modification of the ther-

modynamic MWC model (Appendix section 1.2) that replaces the MWC mechanism of chromatin

transitions with a direct driving action due to Bicoid and Zelda. Here, we retain the idea of inaccessi-

ble vs. accessible states, but no longer demand that these states be in thermodynamic equilibrium.

Instead, the system begins in the inaccessible state and undergoes a series of m identical, slow, and

effectively irreversible transitions to the accessible state. Once these transitions into the accessible

state occur, the system can rapidly and reversibly occupy all of its accessible microstates such that

the probability of the system being in any of these microstates is described by thermodynamic equi-

librium. The accessible states are governed by the same rules and parameters as the thermodynamic

MWC model (Appendix section 1.2), albeit without the D"chrom parameter since now the transition

from the inaccessible to accessible state is unidirectional.

We consider two possible contributions for these irreversible transitions: a Bicoid-dependent

pathway and a Zelda-dependent pathway (Appendix 1—figure 15A, see Appendix section 8.2 for a

discussion on this choice of parameterization). We assume the transition rates to be first-order in

Bicoid and Zelda, respectively, such that
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pb ¼ cb½Bicoid� (29)

and

pz ¼ cz½Zelda�: (30)

Here, pb is the Bicoid-dependent contribution to the transition rates and pz is the corresponding

Zelda-dependent contribution. There are two input parameters cb and cz that give the relative speed

of each transition rate contribution. The overall rate p of each irreversible transition is given by the

sum

p¼pb þpz ¼ cb½Bicoid�þ cz½Zelda�: (31)

Because the accessible states are in thermodynamic equilibrium with each other, we can effec-

tively treat them as a single state and describe the entire system with mþ 1 states, corresponding to

the inaccessible, intermediate, and accessible states. We label the inaccessible state with 0, the m�

1 intermediate states with one through m� 1, and the final accessible state with m. Thus, we

describe the probability pi of the system being in the state i with the probability vector ~P

~P¼

p0

p1

:::

pm

2

6
6
6
4

3

7
7
7
5
: (32)

Calculating the overall RNAP loading rate then simply corresponds to rescaling pbound with the

overall probability pmðtÞ of being in the accessible state:

dmRNA

dt
¼ Rpbound pm; (33)

where R is the same maximum rate used in Appendix section 1.2. Note that pmðtÞ is a time-depen-

dent quantity that changes over time. To calculate pmðtÞ, we solve the corresponding system of

ODEs that describes the time evolution of ~P.

d~P

dt
¼P~P; (34)

where P is the transition rate matrix describing the time evolution of the system. P, by definition, is

a square matrix with dimension mþ 1. Given the initial condition that the system begins in the inac-

cessible state

~P¼

1

0

:::

0

2

6
6
6
4

3

7
7
7
5

(35)

the system of ODEs can be solved to find the probability of being in the accessible state pmðtÞ. For

example, for m¼ 3 irreversible steps, P takes the form

P¼

�p 0 0 0

p �p 0 0

0 p �p 0

0 0 p 0

2

6
6
6
4

3

7
7
7
5
; (36)

where p is given by Appendix Equation 31.

For simplicity, the time evolution of ~P was solved using MATLAB’s ode15s solver.

With the probability pmðtÞ of the system being in the accessible state calculated, we now calculate

the probability pbound of RNAP bound to the promoter in the accessible states, which lie in

Eck, Liu, et al. eLife 2020;9:e56429. DOI: https://doi.org/10.7554/eLife.56429 54 of 57

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.56429


thermodynamic equilibrium with each other. Because we now only have accessible states, the parti-

tion function is

Z ¼ ð1þ zÞ10ð1þ pþ
X

j¼0;1

X6

i¼1

6

i

� �

bi!i�1

b pj!ij
bpÞ; (37)

where z, p, and b correspond to the non-dimensionalized concentrations of Zelda, RNAP, and

Bicoid, respectively, and !b and !bp are the cooperativities between Bicoid molecules and between

Bicoid and RNAP, respectively. Thus, the overall transcriptional initiation rate is given by

Rate¼
R

Z
1þ zð Þ10 p 1þ

X6

i¼1

 !

6

i

� �

bi!i�1

b !i
bp

 !

pm:

¼ R

ðpð1þ
X6

i¼1

6

i

� �

bi!i�1

b !i
bpÞÞ

ð1þ pþ
X

j¼0;1

X6

i¼1

6

i

� �

bi!i�1

b pj!ij
bpÞ

pm:

(38)

Due to the lack of the inaccessible state in the partition function and because we assume that

Zelda does not directly interact with Bicoid or RNAP, now the presence of Zelda mathematically sep-

arates out so that only Bicoid influences transcription. The calculation above is a standard equilib-

rium statistical mechanical calculation, except that we have weighted the final result with pmðtÞ, the

probability of being in the accessible states. The resulting rate is integrated to produce a simulated

MS2 fluorescence trace using the same procedure (Appendix section 2.2) as the models presented

in Appendix sections 1.2, 6.1, and 7.1.

Interestingly, we found that a mitotic repression term was not necessary to recapitulate the data,

since the presence of intermediary states produced the necessary delay to explain the experimen-

tally observed ton values in the data (Figure 4D, points).

In order to sufficiently explain the data, we found that a minimum of m ¼ 3 irreversible steps was

necessary. Appendix 1—figure 14A and B show the results of fitting this model to the observed

rates of RNAP loading and ton for the wild-type and zelda� data, for increasing values of m (wild-

type results not shown, since all values of m easily explained the wild-type data). We see that while

lower values of m do a poor job of recapitulating the data, once we reach m ¼ 3 the model suffi-

ciently predicts the experimental data within experimental error. For values of m higher than 3,

explanatory power increases marginally. Considering the parameter exploration of this model

(Appendix section 8.3) highlights the necessity of having at least m ¼ 3 steps.
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Appendix 1—figure 14. Testing the transcription-factor-driven model of chromatin accessibility. (A,

B) Best-fit results of the transcription-factor-driven model to the mutant zelda� data. (A) initial RNAP

loading rates, and (B) ton, for varying numbers m of transcriptionally silent states. (C) Parameter

exploration in average ton delay and ton offset state space for increasing values of m.

8.2 Exploring alternatives to the additive transcription-factor-driven
transition rate

In Appendix section 8.1, we defined the transition rate between the transcriptionally silent states in

our transcription-factor-driven model of chromatin accessibility as

p¼ cb½Bicoid�þ cz½Zelda�: (39)

Here, we assumed that Zelda and Bicoid operate independently and in parallel to catalyze the

transitions from the inaccessible to accessible state (Appendix 1—figure 15A). Our choice in using

two independent Zelda- and Bicoid-mediated transitions was primarily motivated by the fact that, to

our knowledge, no direct interactions between Bicoid and Zelda have been reported to date. How-

ever, this is not the only possible choice of model formulation. Here, we discuss and rule out two

alternative mechanisms of Zelda- and Bicoid-mediated transitions from the inaccessible to accessible

state.

As a first alternative, instead of an independent and additive mechanism, we could imagine a sce-

nario where Bicoid and Zelda act simultaneously (Appendix 1—figure 15B). Here, each stochastic

transition is given by

p¼ c½Bicoid�½Zelda� (40)

where c is some constant with units of ½Bicoid��1½Zelda��1
min�1.
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Appendix 1—figure 15. Different potential schemes of Bicoid- and Zelda-mediated transition into

the accessible state, for a model with m ¼ 1 transcriptionally silent state. (A) The model used in the

main text, where Bicoid and Zelda provide independent pathways for chromatin to transition into

the accessible state. (B) A scheme where Bicoid and Zelda act simultaneously on the transition. (C) A

scheme where Bicoid acts first, and then Zelda, on the same pathway.

In a second alternative, Bicoid and Zelda could act sequentially. Here, each stochastic transition

contains an intermediary state (Appendix 1—figure 15C). In this case, the transition rate will be

dependent on Bicoid and Zelda such that

p~
c1½Bicoid�c2½Zelda�

c2½Zelda� þ c1½Bicoid�
; (41)

where c1 and c2 are constants with units of ½Bicoid��1
min�1 and ½Zelda��1

min�1.

One critical experimental observation is that transcription occurs even in the absence of Zelda,

albeit at a delayed capacity. Since removing Zelda would set p to zero in these alternative models,

transcription would not occur at all, and so both of the proposed alternative mechanisms can be

ruled out. More generally, the existence of transcription in the absence of Zelda requires that there

must exist some independence between Bicoid-and-Zelda-mediated transitions from the OFF to the

ON state. Otherwise, no transition, and hence no transcription, could occur in the absence of Zelda.

8.3 Transcription-factor-driven model of chromatin accessibility state space
exploration

In the parameter exploration of this model (Appendix section 5.1), the parameters were constrained

as

. cb>0

. cz>0:

The parameters shared with the thermodynamic MWC model retained the constraints described

in Appendix section 1.3.

Appendix 1—figure 14C shows the state space explorations (see Appendix section 5.1) of this

transcription-factor-driven model for increasing numbers of intermediate steps m. Not until m ¼ 3

does the model explain the both the wild-type and zelda� data, indicating that m ¼ 3 is the mini-

mum number of irreversible steps necessary. In the state space exploration shown in Figure 7D and

Appendix 1—figure 9, the number of irreversible steps was fixed at m ¼ 3.

Unlike the other models investigated (Appendix sections 1.2, 6.1, and 7.1), the transcription-fac-

tor-driven model of chromatin accessibility occupied a region in state space that encompassed both

the wild-type and zelda� data (Appendix 1—figure 9, purple).
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