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The COVID-19 pandemic presents a serious public health challenge in all countries. However, repercussions of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections on future global health
are still being investigated, including the pandemic’s potential effect on the emergence and spread of global
antimicrobial resistance (AMR). Critically ill COVID-19 patients may develop severe complications, which may
predispose patients to infection with nosocomial bacterial and/or fungal pathogens, requiring the extensive
use of antibiotics. However, antibiotics may also be inappropriately used in milder cases of COVID-19
infection. Further, concerns such as increased biocide use, antimicrobial stewardship/infection control, AMR
awareness, the need for diagnostics (including rapid and point-of-care diagnostics) and the usefulness of
vaccination could all be components shaping the influence of the COVID-19 pandemic. In this publication, the
authors present a brief overview of the COVID-19 pandemic and associated issues that could influence
the pandemic’s effect on global AMR.
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Introduction and overview of the global
COVID-19 pandemic

In December 2019, several cases of atypical pneumonia were
reported in Wuhan, China, and later confirmed as severe acute
respiratory syndrome (SARS) coronavirus, which was named
SARS-Cov-2 because of its genetic relatedness to the 2003 SARS
outbreak.1 Subsequent investigations of the novel virus showed a
similarity of 79% to SARS-CoV and a 50% similarity to Middle East
respiratory syndrome coronavirus (MERS-CoV).2 Initially, on 12
January 2020, WHO named this new virus the 2019-novel corona-
virus (2019-nCoV). Later, the Coronavirus Study Group (CSG) of the
International Committee on Taxonomy of Viruses (ICTV) proposed
the name as SARS-CoV-2.3 On 11 February 2020, WHO officially
named the disease caused by this novel coronavirus as COVID-19.

The coronaviruses are enveloped viruses from the
Coronaviridae family and possess positive-sense single stranded
RNA as genetic material.4 The Coronaviridae family is divided into
four genera: a-, b-, c- and d-coronaviruses. a- and b-coronaviruses
are able to infect mammals, whereas c- and d-coronaviruses
mainly infect birds, or sometimes mammals.5 In the past 20 years,
three outbreaks—including SARS-CoV in 2003, MERS-CoV in 2012
and the much feared COVID-19/SARS-CoV-2 in 2020—have been
recorded.3,6–8 Additionally, several other coronaviruses (CoVs)
belonging to both a- and b-coronaviruses circulate in humans
causing mild respiratory diseases9 and it is estimated that 15%–
30% of common colds are caused by CoVs.10 Among the seven
human-associated strains (Figure 1), infection with two a-CoVs
(HCoV-229E and HCoV-NL63) and two b-CoVs (HCoV-OC43 and
HCoV-HKU1) lead to mild respiratory tract infections similar to the
common cold, while infection with the three highly pathogenic b-
CoVs (SARS-CoV, MERS-CoV and COVID-19/SARS-CoV-2) may result
in severe disease.5 At this point, it should be noted that some cor-
onavirus outbreaks trace their origin to animal reservoirs of CoVs,
such as the SARS-CoV outbreak in China in 2003,11 and the MERS-
CoV causing outbreaks in the Middle East in 2012.12

With specific respect to SARS-CoV-2 and COVID-19, fever and
cough have been recorded as the predominant clinical symptoms,
with more serious effects among elderly patients and those with
underlying comorbidities such as hypertension, COPD, obesity, dia-
betes and other immunosuppressive conditions.13,14 These
patients may develop symptoms such as acute respiratory distress
syndrome, septic shock, metabolic acidosis, coagulation dysfunc-
tion and in some cases lead to death.15 A study conducted by

Guan et al.16 recruiting 1099 laboratory confirmed cases found
clinical manifestations such as fever (88.7%), cough (67.8%), fa-
tigue (38.1%), sputum production (33.4%), shortness of breath
(18.6%), sore throat (13.9%), headache (13.6%), and pneumonia
(91.1%) in affected patients. The SARS-CoV-2 virus has also been
isolated from rectal swabs of patients with severe pneumonia and
gastrointestinal tract symptoms such as diarrhoea, nausea and
vomiting. However, only a low proportion of virus-positive rectal
swabs have actually been reported (below 10% of patients), sug-
gesting that virus transmissibility through the faecal-oral route is
limited.15,17–19 SARS-CoV-2 RNA is detectable 2–3 days prior to the
onset of symptoms, but peaks with the start of symptoms (usually
in the first week). During the period of overt symptoms, an individ-
ual is known to be infectious, with viable virus decreasing in quan-
tity over the following days to weeks. However, although cultivable
viable virus may be detected for up to 9 days, viral PCR remains
positive for up to 3 months after infection.20 According to the infor-
mation received on 8 October 2020 [based on the number of total
confirmed cases (36 002 827) and total deaths (1 049 810) caused
by SARS-CoV-2], the mortality rate has been estimated to be
2.9%,21 which is lower than that found with SARS-CoV (10%)22 and
MERS-CoV (37.1%).23 However, the transmissibility of SARS-CoV-2
is much higher when compared with other CoVs.24 Further, there is
evidence to suggest that some racial and ethnic populations may
be more affected than others.25 Although case fatality rates are
difficult to calculate during a pandemic—largely due to the hetero-
geneity of methodologies used in data collection—it is not un-
thinkable that a progressive decrease in the COVID-19 mortality
rate will be observed as SARS-CoV-2 seroconverts and immunity
spreads among the population.

Literature search

To compile the information in preparing this manuscript, a PubMed
and Google literature search was conducted by using the key
terms ‘COVID-19’, ‘COVID-19 pandemic’, ‘SARS-CoV-2’, ‘SARS-CoV-
2019’, ‘coronavirus-2019’, ‘global burden of antimicrobial resist-
ance’, ‘COVID-19 and secondary infections’, ‘COVID-19 and sec-
ondary bacterial infections’, ‘COVID-19 and secondary fungal
infections’, ‘antimicrobial treatment of COVID-19 patients’,
‘COVID-19 and biocides’, ‘COVID-19 pandemic and biocides’,
‘COVID-19 and healthcare services’, ‘COVID-19 and compromised
healthcare services’, ‘COVID-19 and antimicrobial stewardship’,
‘vaccines and antimicrobial resistance’, and ‘COVID-19 vaccines’.
The authors included full text articles published in the English lan-
guage only.

The global burden of antimicrobial resistance
(AMR)—an introduction

Similar to COVID-19, AMR presents a serious challenge to global
public health in all countries across the world. In September 2016
(years prior to the emergence of the COVID-19 pandemic), the
WHO committed itself to fighting AMR, which had become a prob-
lem of global public health importance.26 For example, global
infections due to antimicrobial resistant pathogens result in ap-
proximately 700 000 deaths annually, which has been estimated
to increase to 10 million deaths by the year 2050.27 The Global
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Antimicrobial Surveillance System (GLASS) of WHO continues to re-
port increasing levels of AMR in a range of pathogens that cause
serious or common infections in many regions of the world.28

Recently, an estimated 3 million annual infections in America were
reported to be caused by high priority antimicrobial-resistant
pathogens.29,30 Moreover, the US CDC previously estimated that
approximately 23 000 deaths will occur every year due to infec-
tions caused by antimicrobial resistant pathogens in the USA.31 In
2019, ECDC reported the deaths of 25 000 patients in high-income
countries of Europe.32 Similarly, in low- and middle-income
countries (LMICs) such as India and Thailand, infections caused by
antimicrobial-resistant pathogens were responsible for the annual
deaths of approximately 58 000 children and 38 000 adults, re-
spectively.33 In the current century, AMR is a substantial and con-
tinually growing problem, being considered one of the greatest
threats to global health34 with significant global economic
burden.35 For example, antimicrobial-resistant infections have
been estimated to result in an extra economic burden of $20 billion
in the USA alone.31 In the EU and European Economic Area (EEA),
AMR results in an extra healthcare cost of e1.1–1.5 billion.32,36 By
2050, there is predicted to be a global loss of 1.1%–3.8% of the glo-
bal annual gross domestic product due to antimicrobial-resistant
infections. It is predicted that, in low-income countries, around
24 million people will be forced into extreme poverty by 2030,
and one in six will die due to AMR-related infections.35

The increased incidence of infections by microorganisms
resistant to the most recently developed antibiotics, e.g. the carba-
penems, or to ‘last resort’ antimicrobial agents, such as colistin, is
worrisome. While the emergence of AMR continues to increase,
there has been a decline in the availability of newly developed anti-
microbial agents on the market. If this continues, most of the
currently prescribed antibiotics applied for human and animal
infections will be ineffective within a decade, leading to conditions
similar to that of the pre-antibiotic era. In this respect, it should be
noted that programmes such as the US ‘10 % ’20 initiative’ have
been implemented.37 Although the AMR crisis has tended to be
more serious in Gram-negative compared with Gram-positive
bacterial infections, in recent years, an increased incidence of anti-
biotic resistant Gram-positive organisms has been reported.38,39

The most serious group of MDR bacteria associated with AMR
are those that pose a particular threat to hospitals and nursing
homes; referred to by IDSA as ‘ESKAPE’ pathogens, which include
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumo-
niae, Acinetobacter baumannii, Pseudomonas aeruginosa and
Enterobacter spp.40 In 2017, WHO published its first ‘Priority
Pathogens List (PPL)’ in order to help direct efforts into the research
and development of new antibiotics. The PPL comprised a
catalogue of 12 families of bacteria that pose the greatest threat
to mankind, including both Gram-negative and Gram-positive
bacteria. The PPL divides pathogens into three categories, namely
‘critical’, ‘high’ and ‘medium’ priority dependent on the urgency of
the global need for new antibiotics.41,42 Critical priority species
include the carbapenem-resistant A. baumannii, P. aeruginosa,
carbapenem-resistant and ESBL-producing Enterobacteriaceae
such as Klebsiella spp., Escherichia coli, Serratia spp. and
Proteus spp. These are associated with severe infections of the
bloodstream and the lower respiratory tract. Bacterial species
in the high priority category include vancomycin-resistant E. fae-
cium, MRSA and vancomycin-intermediate/resistant S. aureus,

clarithromycin-resistant Helicobacter pylori, fluoroquinolone-
resistant Campylobacter spp., Salmonella spp. and cephalosporin-
and fluoroquinolone-resistant Neisseria gonorrhoeae. These are
commonly associated with the general infections, gastroenteritis
and gonorrhoea. Species in the medium priority category include
penicillin-resistant Streptococcus pneumoniae, ampicillin-resistant
Haemophilus influenzae and fluoroquinolone-resistant Shigella
spp.42

The COVID-19 pandemic and its potential
relationship with the emergence of AMR

AMR naturally occurs as a mechanism by which microorganisms
adapt to survive in hostile environments, such as those containing
antibiotics. The high growth rate of most bacteria combined with
microbial genomic mutation and the phenomenon of natural
(Darwinian) selection results on the emergence of microorganisms
adapted to withstand the presence of these antibiotics. Although
this process occurs naturally, the inappropriate (over/misuse) use
of antibiotics (and disinfectants/biocides) in many ‘One Health’
areas such as human health and hygiene, agriculture, animal hus-
bandry and food production industries are major contributing fac-
tors in the emergence of AMR (or disinfectant/biocide resistance) in
the last century.43,44 The various prevention and treatment proto-
cols being used for the management of the COVID-19 pandemic
has heightened concern over the development and spread of
existing and novel resistance mechanisms associated with patho-
genic bacteria. One of the major concerns is the extensive and in-
appropriate use of antimicrobials in the treatment of critically ill
COVID-19 patients.45 However, this is not the only factor potential-
ly linking COVID-19 infections to increasing AMR (and biocides).
Details of these factors are provided below (Figure 2).

1. Bacterial and fungal infections in COVID-19 patients

Critically ill COVID-19 patients admitted to the hospital, especially
the ICU, suffer more frequent bacterial or fungal nosocomial infec-
tions. Patients with underlying risk factors such as advanced age,
previous systemic diseases, mechanical ventilation, and prolonged
hospital stay are more prone to these complications.15,46

Furthermore, secondary bacterial infections may occur as a conse-
quence of viral respiratory infections, being associated with high
morbidity and mortality rates in affected patients.47–49 Although
the precise mechanisms facilitating secondary bacterial infections
during viral respiratory infection have not been fully elucidated,
dysregulation of the immune system,15,50,51 virus-mediated im-
munosuppression,52 immune response alterations generated to-
wards one pathogen,53 and increased susceptibility of
mammalian cells to bacterial attachment when infected by
viruses54,55 are some of the published consequences of viral infec-
tions that contribute to the development of secondary bacterial
infections in affected individuals. However, coinfections with bac-
terial or fungal pathogens are considered unlikely to be common
in patients with mild COVID-19 when compared with those with
more severe disease upon hospital admission.56

Mechanical ventilation and prolonged hospitalization or ICU
stay has been found to be the most common risk factor for bacter-
ial or fungal superinfections, irrespective of COVID-19 disease.57–59

This fact becomes important as studies from many countries have
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shown the need for mechanical ventilation in 21%–88% of COVID-
19 patients admitted to the ICU.46,60–64 The development of
secondary respiratory infection such as ventilator-associated
pneumonia is also not surprising, as patients with severe COVID-19
have been reported to show the following: higher pro-
inflammatory cytokine levels (e.g. interleukin-2, soluble
interleukin-2 receptor, interleukin-6, tumour necrosis factor-
alpha), higher levels of anti-inflammatory cytokines (e.g.
interleukin-4, interleukin-10), lower CD4 and CD8 cell counts, and
decreased expression of interferon-gamma by CD4 cells when
compared with those experiencing moderate disease.50,51,65

These changes in inflammatory response are likely to contribute to
lung damage that may predispose patients to the abovemen-
tioned superinfections.

Initial studies found that 1%–10% of COVID-19 patients devel-
oped a secondary bacterial infection.66 However, later studies
from several hospitals in Wuhan, China, found that secondary bac-
terial or fungal infections occurred in 8.5%–42.2% and coinfections
occurred in up to 45.4% of COVID-19 patients.67 In a study
conducted at two hospitals in New York City, the hospitals reported
an associated bacteraemia in 6% of all COVID-19 patients, and in
12% of patients that were on mechanical ventilation.63 Similarly,
Zhou et al.68 recruited 191 patients and reported secondary bac-
terial infections in 28 patients admitted to hospitals in China, with
27 out of 28 patients that developed secondary bacterial infections
dying.

The respiratory system has been reported to be the most
affected system associated with COVID-19 related secondary
infections, e.g. bacterial and fungal pneumonia, especially
ventilator-associated pneumonias.69 Bloodstream and urinary
tract infections appear to be less frequent. Most of the bacterial
pathogens isolated were found to produce antibiotic-degrading
enzymes such as carbapenemases and ESBLs, which confer resist-
ance to the carbapenem and cephalosporin groups of antibiotics,
respectively. Among pathogens causing secondary infections,
the pandrug resistant (PDR) A. baumannii, carbapenemase- and

ESBL-producing K. pneumoniae, ESBL-producing Pseudomonas
aeruginosa, Enterobacter cloacae, Serratia marcescens,
Mycoplasma species and H. influenzae were the bacterial patho-
gens most often observed, whereas Aspergillus fumigatus,
Aspergillus flavus, Candida albicans, Candida glabrata, and
Candida auris were the most common fungal pathogens
reported.17,60,67,70–73

Although it is widely debated as to when a blood culture should
be requested in patients with lower respiratory tract bacterial
infections such as bacterial pneumonia, microbiological studies
using sputum microscopy and culture, pleural effusion microscopy
and culture, blood culture, urinary antigen tests and serology are
all included in the management of bacterial pneumonia.74 Blood
culture reports offer additional information regarding whether an
antibiotic treatment should be implemented or not. De-escalation
of the antibiotic prescription in special cases plays an important
role in decreasing AMR. However, among several studies con-
ducted to evaluate secondary bacterial pneumonia in COVID-19
patients, only a few included blood culture processing.67 Despite
this fact, it has been widely recognized by the medical community
that antibiotics have been overprescribed for the management
of COVID-19 patients.

There is currently a paucity of data on the association between
increased respiratory bacterial and/or fungal respiratory coinfec-
tions and the frequent use of broad-spectrum empirical antimicro-
bial medications in patients with COVID-19 infections. Data from
such studies are required in order to generate scientific evidence
to support the development of (inter)national antimicrobial
stewardship practices and policies targeted to COVID-19 and
future pandemic infections.75

2. Inappropriate prescribing and use of antimicrobials

Inappropriate prescribing and use of antimicrobials are the most
common factors fuelling the development of AMR across
the globe. It is estimated by experts that at least 50% of the anti-
microbial medications currently used to treat infectious diseases

COVID-19 pandemic and emergence of AMR 
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Figure 2. The most relevant predictors playing a role in the global development of AMR in the face of the worldwide COVID-19 pandemic.
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worldwide are unnecessary or inappropriate.76 In this respect, the
COVID-19 pandemic may be contributing to worsening the scope
of AMR globally through the non-rational use of antibiotics as part
of preventive and therapeutic management of COVID-19. In fact,
repeated warnings have been raised about the role of the COVID-
19 pandemic causing an increase in antimicrobial drug resistant
bacteria which is an additional burden on already overwhelmed
healthcare systems.77,78 In this line, WHO released guidance dis-
couraging the use of antibiotics in the treatment of patients with
mild or moderate symptoms of COVID-19 unless indicated by
established laboratory culture susceptibility testing protocols.79

In the face of the COVID-19 pandemic the tendency to pre-
scribe antimicrobial medications by healthcare workers is very
high. This is partly due to the difficulty in distinguishing the
symptoms of COVID-19 from those of other respiratory diseases or
even hospital-acquired or ventilator-associated pneumonia,
particularly among hospitalized patients.1,68,71,80 Several studies
have observed a comparative increase in the use of antibiotics
while treating COVID-19 patients, despite relatively low number of
confirmed cases of secondary bacterial or fungal infection. For ex-
ample, the International Severe Acute Respiratory and Emerging
Infections Consortium (ISARIC) reported that 62% of COVID-19
patients in their study had received antimicrobial therapy.81 Other
studies have also found widespread use of antibiotics (80%–
100%) and antifungals (7.5%–15%) in critically ill COVID-19
patients admitted to ICUs in China.15,16,61,70,71,82 Another study
highlighted the administration of antibacterial therapy to 72% of
COVID-19 patients even though only 8% of patients were con-
firmed to have bacterial or fungal infections.83 In this respect, the
most common antibiotics prescribed for empirical therapy in
Chinese hospitals were fluoroquinolones, cephalosporins, carbape-
nems, azithromycin, vancomycin and linezolid.46,61,70,71,84

However, the extensive and widespread use of antimicrobials to
treat COVID-19 patients was also reported outside the Asian con-
tinent. A study conducted in France highlighted the use of anti-
microbial medications for the treatment of COVID-19 patients,
with the use of various combinations of meropenem, tigecycline,
levofloxacin, aerosolized colistimethate, voriconazole and/or isa-
vuconazole being reported.72 In a meta-analysis of 154 studies
(30 623 patients), Langford et al.67 found a prevalence of antibiotic
prescribing of 74.6% (95% CI 68.3%–80.0%). A Dutch retrospective
observational study conducted in four hospitals also reported high
prevalence of antimicrobial use (60.1%; range 33.3%–73.4%) in
the absence of corresponding level of laboratory confirmed bacter-
ial coinfection (1.2%).85 One option to address this high level of
non-rational antimicrobial use is to expedite the prompt and ac-
curate diagnosis of viral/bacterial coinfection. For example, triage
(based on clinical symptoms) combined with the measurement of
inflammatory biomarkers such as C-reactive protein (CRP),86,87

procalcitonin (PCT) or commercially available assays88—e.g. the
FebriDx rapid test (Lumos Diagnostics, The Netherlands)89—could
be more efficiently implemented. In 2020, Mason et al.90 con-
cluded that the absence of both elevated baseline white cell
counts and antibiotic-related decrease in CRP in COVID-19 infec-
tions could help exclude bacterial coinfection. A recent systematic
review and meta-analysis of 26 studies showed that the use of
PCT to guide initiation and duration of antibiotic treatment reduces
the risk of mortality, lowers antibiotic consumption and decreases
the risk of antibiotic-related side effects.91 A study conducted in

England evaluated the usefulness of PCT in antimicrobial steward-
ship. The study reported reduced antibiotic consumption (without
an increase in mortality) and a reduction in admission-related car-
bapenem prescribing for COVID-19 patients presenting with a
negative PCT test.92

Undoubtedly, antimicrobial therapy is important in the man-
agement of suspected or confirmed cases of bacterial or fungal
coinfections or secondary infections whether community-acquired
or nosocomial infections.93 However, determining the role of anti-
biotic treatment in the efficient management of COVID-19
patients still requires more evidence-based research.

3. Increased use of biocides

Significantly less is known about the mechanisms and extent of
microbial resistance to biocides than is known about microbial re-
sistance to antibiotics. In this respect, the word ‘biocides’ refers to
compounds with antiseptic, disinfectant or preservative activity.94

Due to the current COVID-19 pandemic, the use of biocides has
hugely increased in private, community and hospital settings.
Interestingly, improved hygiene practices involving biocides may
actually reduce the transmission of antimicrobial-resistant patho-
gens that are found on our hands, but paradoxically may at the
same time select for antimicrobial-resistant pathogens, thereby
having an unknown impact on global AMR.95–99 Additionally, the
intensive use of surface disinfectants and household cleaners
contribute to an increased concentration of these substances in
wastewater treatment plants and receiving waters, altering the
normal ecosystem and potentially favouring the emergence of
AMR due to biocide-related selection pressure.100,101 Moreover, in
densely populated countries, where the use of disinfectants was
mostly confined to the clinical/healthcare settings, the increased
use of hand sanitizers and disinfectants might potentially impact
on the human microbiome, which contributes to maintaining
homeostasis in and on its host. According to the Scientific Advisory
Board of the British Institute of Cleaning Sciences, the killing activ-
ity of alcohol-based sanitizers for SARS-CoV-2 has not yet been
proven. The overuse of these sanitizers may assist alcohol-
resistant organisms, in particular the spore-forming Bacillus spp.
found on the hands, to escape and survive antibiotics, leading to
creation of even more harmful resistant microbes.102 Furthermore,
the increased use of disinfectants may induce organisms to a vi-
able but non-cultivable state, becoming undetectable using stand-
ard culture-based detection methods.103,104 These conditions
may alter the isolation and antimicrobial susceptibility patterns
of microbial pathogens, potentially giving rise to new AMR traits.

In this context, evidence-based data are required to evaluate the
impact of the intensive use of sanitizers during the COVID-19 pan-
demic on the selection and acquisition of AMR genes, as well as on
the viability, detection and transmission of antimicrobial-resistant
microorganisms in private, community, hospital and environmental
situations. This approach should take into consideration a One
Health approach and not just focus on hospital-based AMR.

4. The impact of compromised healthcare services on
the rise of COVID-19

Regular surveillance and monitoring of AMR through anti-
microbial stewardship has provided insights into some of the
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key mechanisms associated with the increasing prevalence of
antimicrobial-resistant organisms. In turn, this knowledge permits
the development of targeted AMR guidelines and strategic plans
to combat the further emergence and transmission of AMR.105

Unfortunately however, the COVID-19 pandemic has disrupted
healthcare services in many countries and potentially impacted on
the microbiological diagnostic laboratory systems that conduct
routine screening and surveillance for antibiotic-resistant organ-
isms.106 This disruption in services is further worsened by the ex-
cess pressure on the existing workforce and competing manpower
needs. The impact of these changes on the maintenance of anti-
microbial stewardship and antibiotic resistance monitoring pro-
grammes is likely to contribute to the further transmission of AMR
in affected healthcare settings.107 The impact of the COVID-19
pandemic in many hospitals, across the UK, was a reduction in
antimicrobial stewardship activities, with 64% (61/95) of respond-
ents reporting that COVID-19 had a negative impact on routine
antimicrobial stewardship activities.108 Further, the COVID-19 pan-
demic may interrupt the routine healthcare services associated
with antimicrobial stewardship and infection control practices,
including the isolation and treatment of patients infected/colon-
ized with AMR bacteria, for example, patients infected with MDR TB
or HIV.75,109 Knock-on effects may also be experienced via the dis-
ruption of infectious disease vaccination programmes and serv-
ices.109 The use of technology may assist in reducing some of the
difficulties being encountered by antimicrobial stewardship teams
during the COVID 19 pandemic, as virtual meetings and ward
rounds are increasingly being used in stewardship activities in the
UK.75

Opportunities for controlling AMR in the
COVID-19 era (including in LMICs)

Although the emergence of AMR is a great challenge, the imple-
mentation of the following strategies could potentially help min-
imize the emergence of AMR during the COVID-19 pandemic era
(Figure 3).

1. Antimicrobial stewardship

To decrease the spread of AMR, it is necessary to discourage and
curtail inappropriate prescribing and use of antimicrobials in
COVID-19 patients with mild symptoms (see also sections 2 and 4
above). This is achievable through the application of properly
articulated and carefully implemented hospital-wide antimicrobial
stewardship programmes such as drug, dose, duration, de-
escalation and diagnosis protocols.110 In this respect, the most ac-
curate antimicrobial (such as the antimicrobial with the narrowest
spectrum), at the right dose adjusted for patient weight and
assessed with its renal toxicity, should be prescribed by all clini-
cians. Likewise, the correct duration of antimicrobial prescribing
(e.g. successful treatment within the shortest amount of time) is
also the most important factor for effective antimicrobial steward-
ship programs.110 The de-escalation of antimicrobial medication
during the treatment of COVID-19 should not only be encouraged
among clinicians/therapists, but medical personnel should also be
regularly updated on this practice by AMR taskforces across the
globe. The use of broad-spectrum antimicrobials and combination
therapy are likely to be more prevalent among critically ill patients.

However, it is necessary to carefully de-escalate the use of broad-
spectrum antimicrobials and combination therapy in order to focus
treatment towards using narrow-spectrum antimicrobials and
monotherapy and minimize the emergence of AMR.111,112 There is
no sufficient evidence to favour the use of combination therapy
over monotherapy for the management of ventilator-associated
pneumonia. Moreover, combination therapy has apparently no
beneficial effects in decreasing superinfections or the emergence
of AMR in pathogens.113–117 Additionally, lower rates of superinfec-
tions have been observed using monotherapy rather than
combination antibiotic therapy.118

2. AMR awareness, perception and education campaigns

Public and clinician awareness, perceptions and education are im-
portant interventions in promoting behavioural change towards
the use of antibiotics in order to prevent AMR, also during periods
of viral-related pandemics.119 There should be continuous educa-
tional campaigns to educate healthcare workers and patients on
the need for the appropriate prescribing and use of antimicrobial
medications. Such campaigns targeting the general public and
the healthcare workers have been organized and implemented
using different approaches and methodologies, although mainly
involving high-income countries.120

In most LMICs, lack of national policies and poor regulation of
the distribution and use of antimicrobials means that many antibi-
otics can easily be purchased ‘over the counter’ without a prescrip-
tion. Further, the relatively high rates of HIV infection, TB and
malaria among patients of LMIC hospitals means that antibiotics
may be intensively administered as a proactive preventive
measure to try to avoid bacterial or fungal infections.121–123 Also,
in LMIC settings there may be poor levels of healthcare and limited
antimicrobial stewardship programmes, which are often linked to
lack of resources such as trained personnel and to under-equipped
diagnostic laboratories.124,125 Faced with the above-mentioned
challenges, physicians may find it difficult to follow evidence-
based antimicrobial prescribing practices,126,127 the consequence
of which may be higher AMR prevalence in affected LMIC
settings.128,129

Sustained public awareness campaigns on the ineffectiveness
of antibiotics to treat viral infections (including pandemic respira-
tory viruses, respiratory infections caused by ‘common cold’ viruses
and viral diarrhoea) should be instigated and implemented in
order to reduce unnecessary antimicrobial prescription, self-
medication and potential unwanted side effects.130,131 Medical
professionals themselves also need to be educated about the non-
rational use of antibiotics. For example, a randomized controlled
trial conducted within primary care environments in 12 European
countries recruited 1023 patients with acute cough syndrome—
the result indicated no clear advantage of the use of amoxicillin
over placebo.132 For both public and medical professionals,
scientific-based evidence is essential in the development of
appropriate health educational campaigns.

3. Diagnostics and laboratory surveillance

Diagnostic and laboratory surveillance systems are crucial compo-
nents of the AMR mitigation response. Robust diagnostic and
laboratory surveillance systems are needed to guide the accurate
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diagnosis of infectious diseases, ensure proper selection of
antimicrobial medications (targeted therapy) and monitor the
performance of antimicrobial stewardship programmes within
the healthcare system. In order to attain the United Nations
Sustainable Development Goals to achieve universal health cover-
age and access to quality healthcare, countries globally need to
have access to diagnostics.133 The CEO of the Foundation for
Innovative Diagnostics (FIND), Catharina Boehme, describes
comprehensive diagnostic services as a requirement to strengthen
the function and efficiency of health systems.134 The COVID-19
pandemic has served to highlight the lack of access to diagnostics
in many LMICs; with research showing that LMICs have lower rates
of COVID-19 testing per 100 000 of their population, compared
with COVID-19 testing rates in higher-income countries.135

The lack of diagnostics in LMICs in general is also apparent in the
limited participation of LMICs in WHO’s GLASS surveillance pro-
gramme for monitoring AMR.28

Finally, the willingness of healthcare authorities to develop,
fund and implement rapid diagnostic testing [including point-of-
care (POC) testing] against COVID-19 should be matched by a
concerted effort to develop, fund and implement rapid bacterial in-
fectious disease and POC testing to combat AMR. This effort, can
be augmented via the use of a ‘mix and match’ implementation
package directed at the individual stakeholders involved in the
development and use of rapid diagnostics.136

4. Vaccinations

One of the main focuses for stopping the spread of infectious dis-
eases, including SARS-CoV-2 is vaccination. The use of vaccines
(viral and bacterial) has a clear positive impact on global health, as
mass vaccination helps reduce the prevalence of infectious

diseases and subsequently the number of infections that are
unnecessarily treated using antibiotics. Vaccination can have a
major impact on the spread of AMR.137 For example, several stud-
ies have found decreased incidence in antibiotic-resistant
S. pneumoniae isolated from acute otitis media and acute bacterial
rhinosinusitis since the introduction of 7-valent pneumococcal
vaccine.138,139 Other studies have found a reduced incidence of
penicillin resistance in S. pneumoniae strains when collected be-
fore and after the use of a 7-valent pneumococcal vaccine.140,141

The successful implementation of vaccination against
SARS-CoV-2 will help reduce the global prevalence of COVID-19
disease, thereby reducing the (inappropriate) use of antibiotics and
potentially reducing the global burden of AMR. Additionally, there
may be knock-on effects on the willingness of the public to accept
vaccination even among ‘anti-vaxers’.142 For example, there is evi-
dence to suggest that a high influenza vaccine uptake may lead to
fewer COVID-19 deaths.143 Also an increased acceptance of influ-
enza vaccination is being reported with potentially fewer respira-
tory tract infections and (inappropriate) antibiotic use likely.144

Currently more than 100 COVID-19 vaccines are at various stages
of their development and several candidates have been approved
for emergency use. Among the COVID-19 vaccines that have been
approved, the adenovirus-vectored ChAdOx1 nCoV-19 vaccine
(AZD1222)—which is a replication-deficient chimpanzee adeno-
viral vector (ChAdOx1) that contains the structural surface glyco-
protein (spike protein) gene of SARS-CoV-2—showed an efficacy of
70.4% with an acceptable safety profile.145 An mRNA-based vac-
cine, i.e. the Pfizer-BioNTech COVID-19 (mRNA-BNT162b2) vaccine
(Pfizer Inc, Philadelphia, PA, USA)—which is a lipid nanoparticle
based nucleoside-modified mRNA vaccine that encodes the
pre-fusion spike glycoprotein of SARS-CoV-2—was approved for
emergency use by FDA on 11 December 2020 and has been shown
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Figure 3. The key points to AMR control strategies in the age of COVID-19.
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to be 95% effective.146,147 Another mRNA-based vaccine, mRNA-
1273 (Moderna Inc., Cambridge, MA, USA)—which is a lipid
nanoparticle-encapsulated mRNA-based vaccine encoding the
pre-fusion stabilized full-length spike protein—has been found to
be 94.1% effective in preventing COVID-19 related illnesses includ-
ing severe disease.148 Unfortunately however, it is not yet obvious
what the effects of new COVID-19 variants (including the UK,
Brazilian and South African variants) will be on the success of
COVID-19 vaccination campaigns and ultimately on the develop-
ment and spread of AMR.149

Conclusions

WHO has placed AMR among the top 10 most urgent global
health threats of the 21st century and provided advice on how
to tackle the problem. However, the emergence of the COVID-
19 pandemic has further complicated the current and future
landscape of global AMR. To confront this issue, there is a need
for global coordination, especially in developing relevant guide-
lines for the management of COVID-19 using diagnostics, novel
antimicrobials, biocides and vaccines. In addition, continuing
education of all stakeholders (healthcare workers, the general
public and politicians) about the dangers associated with in-
appropriate use of antimicrobials and biocides should be made
mandatory. The role of antimicrobial stewardship cannot be
overemphasized; mechanisms should be instituted to com-
mence stewardship programmes where lacking and made
more functional when the implementation of such programmes
is suboptimal. Finally, there is a need for LMICs to invest in diag-
nostics (including rapid and POC diagnostics) and to ensure vac-
cination of a significant proportion of their population within the
shortest possible time frame.

AMR Insights Ambassador Network

The first author and all co-authors are members of the Global AMR
Insights Ambassador Network. The AMR Insights Ambassador
Network consists of an integrated global and cross-professional
community discussing, devising and driving actions to combat
AMR. The Network aims to inspire, connect and empower the
Ambassadors to take individual and collective actions to curb AMR.
For more information about the Network: https://www.amr-
insights.eu/about-us/ambassadors.
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