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Estimation of systolic 
blood pressure by Random 
Forest using heart sounds 
and a ballistocardiogram
Rafael Gonzalez‑Landaeta, Brenda Ramirez & Jose Mejia*

Cuffless blood pressure measurement enables unobtrusive and continuous monitoring that can 
be integrated with wearable devices to extend healthcare to non‑hospital settings. Most of the 
current research has focused on the estimation of blood pressure based on pulse transit time or 
pulse arrival time using ECG or peripheral cardiac pulse signals as proximal time references. This 
study proposed the use of a phonocardiogram (PCG) and ballistocardiogram (BCG), two signals 
detected noninvasively, to estimate systolic blood pressure (SBP). For this, the PCG and the BCG were 
simultaneously measured in 21 volunteers in the rest, activity, and post‑activity conditions. Different 
features were considered based on the relationships between these signals. The intervals between S1 
and S2 of the PCG and the I, J, and K waves of the BCG were statistically analyzed. The IJ and JK slopes 
were also estimated as additional features to train the machine‑learning algorithm. The intervals S1‑J, 
S1‑K, S1‑I, J‑S2, and I‑S2 were negatively correlated with changes in SBP (p‑val < 0.01). The features 
were used as explanatory variables for a regressor based on the Random Forest. It was possible to 
estimate the systolic blood pressure with a mean error of 3.3 mmHg with a standard deviation of 
± 5 mmHg. Therefore, we foresee that this proposal has potential applications for wearable devices 
that use low‑cost embedded systems.

Arterial blood pressure (ABP) is a reliable indicator of health conditions. Current gold standard noninvasive 
methods rely on the use of inflatable cuff-based systems, which may be uncomfortable for some subjects. To 
tackle this, different cuff-less approaches have been proposed, mainly based on the estimation of pulse transit 
time (PTT), pulse arrival time (PAT), and pulse wave velocity (PWV). This implies multimodal measurement 
 approaches1, the most common being those where the ECG is used as a proximal timing reference signal versus 
the peripheral pulse. In these cases, the time between the R-wave and different points of the pulse signal (peak, 
foot, and slope) was measured to determine the correlation between ABP and  PTT2,3. This method is termed 
PAT and includes the pre-ejection period (PEP) (PAT = PTT + PEP)4, which depends on the isovolumetric con-
traction in the left  ventricle5 and is influenced by sympathetic  activity6. PEP changes independently of  ABP2,7, 
and it is not easy to estimate it.

Other biosignals have been considered proximal time references; the most common are photoplethysmog-
raphy (PPG)8,9, phonocardiography (PCG)10, ballistocardiography (BCG)7,11, and seismocardiography (SCG)12. 
With these signals, the PEP is excluded, and the PTT is estimated by measuring the time between some waves 
of these signals and the peak, foot, or slope of the peripheral pulse signal.

The PCG is a good indicator of the onset of mechanical  systole13,14, and the analysis of its main waves provides 
information about blood pressure (systolic, diastolic, and mean)15. Regarding the use of PCG as a proximal 
timing reference signal, the PTT is usually estimated by using the PPG as a distal timing signal, and it has been 
demonstrated that the correlation with ABP is comparable when using the ECG as  reference10. However, the 
morphology of the PPG signal can be modified by the effects of  aging16 and by the peripheral arterial  stiffness17, 
bringing about misleading results when using PTT as an ABP indicator.

A different approach is proposed in this paper, where it is not necessary to detect the peripheral pulse. The 
change in systolic ABP is estimated by detecting the time delay between the two main sounds (S1, S2) of the 
PCG and the main waves (I, J, K) of the BCG. This idea stems from the fact that changes in blood pressure have 
little effect on the onset of S1 and S2. However, they do have an important influence on the genesis of the main 
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waves of the BCG. In the case of PCG, S1 is due to the simultaneous closure of the atrioventricular valves, so its 
correlation with blood pressure is not as evident compared with that of S2, whose spectrum has been shown to 
have a significant correlation with systolic blood pressure (SBP)15,18. In the case of BCG, pressure gradients in the 
ascending and descending aorta define both the amplitudes and the onsets of I, K, and K  waves19. In this sense, we 
believe that a change in systolic pressure causes a variation in the time delay between the main waves of the PCG 
and the BCG. To validate this, both signals are detected simultaneously, and the time relationship between the 
main waves of PCG and BCG is analyzed. To conduct the measurements in a simple way, in this work, the PCG is 
measured at the sternum, while the BCG is measured using a weighing scale. However, the intention is that these 
signals can be detected using wearable systems capable of detecting BCG at the sternum, using methods such 
as that proposed by Wiens et al.20, so both signals (PCG and BCG) could be measured at the same point. From 
the PCG, both S1 and S2 are used as proximal time references, and the time delay with respect to each I, J, and 
K wave of the BCG is estimated; see Fig. 1a. In addition, these time intervals are used as explanatory variables in 
a Random Forest regressor (RF) to estimate systolic blood pressure. The RF model provides more information 
because it evaluates the importance of each explanatory variable over the response variable (i.e., systolic blood 
pressure). To the best of our knowledge, these two signals have not been used together to assess the correlation 
with the ABP, so we consider that the results derived from this research may be relevant for future work related 
to the estimation of ABP using cuff-less methods.

This manuscript is organized as follows: Sect. “Random forest theory” provides a brief introduction to the RF 
model. Section “Methods” describes the setup used for signal acquisition, signal processing, and measurement 
protocol. Section “Results and discussion” shows the experimental results and discussion, and Sect. “Conclusion” 
draws the main conclusions.

Random forest theory
Regression trees. Classification and regression tree models work by recursively partitioning their input 
space into M decision  regions21. They are named such in part because such a partition is generally represented 
by a tree, with its leaf denoting different regions. Let f (x) be the output of the tree to an input vector x . Then the 
model can be written as:

where I(·) is an indicator function, Rm is the mth region, and wm is its associated weight. Figure 1b shows an 
example of an input space partitioned into four regions by the tree of Fig. 1c. Although tree models are well 
suited to large data sets and they handle outliers relatively well, they suffer from a lack of accuracy compared to 
other models. In addition, trees are known to be unstable due to small changes to the input data, and they are 
considered high variance estimators.

(1)f (x) =

M∑

m=1

wmI(x ∈ Rm)

Figure 1.  (a) Time intervals between the PCG and the BCG. (b) Example of a tree model, where the tree input 
space is a box of R2 and a partition of the input space, and (c) the associated decision tree.
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Random forest. Random Forests are procedures that use an ensemble of decision trees and are recognized 
for their high prediction performance when dealing with real  problems22. In these models, each tree was con-
structed using a randomly chosen subset of the training set through a random vector � . An RF model tries to 
reduce the variance of the regression tree model by averaging many tree estimates. Considering that the model 
uses T decision trees, {f1(x,�1), f2(x,�2), . . . , fT (x,�T)} , where now each tree has an additional parameter �t , 
the RF could be formally written as

where αt is an associated weight. For the regression case, this weight is generally chosen as one.

Methods
Signal acquisition. In this work, PCG and BCG were detected simultaneously (Fig. 2a,b). The PCG was 
detected at the pulmonary point located in the second intercostal space to the left of the sternum. The reason 
was that in preliminary tests, the PCG was obtained with greater amplitude at this point. The BCG was obtained 
by detecting cranial–caudal forces using an electronic weighing  scale23.

To detect PCG, the approach proposed by Vazquez et al. was  used25. A shielded piezofilm was used as a micro-
phone (Fig. 2c) to obtain a high signal-to-noise ratio (SNR) PCG. For this, the SDT1-028K (TE Connectivity) 
was used and placed in a custom-built case to simplify the positioning of the sensor in the auscultation point. 
The conditioning circuit of the piezofilm consisted of a charge amplifier followed by a first-order passive band-
pass filter and a non-inverting amplifier (Fig. 2e). The sensitivity of the entire system was 2.12 V/pC in a range 
of frequencies between 34 and 482 Hz. OA1 and OA2 were implemented using LT1793 (Linear Technology).

The BCG was detected using a weighing scale from Smart Weigh (Fig. 2d). The strain gauges (SG) mounted 
on the load cells of the scale formed a full Wheatstone bridge whose output was connected to the circuit shown 
in Fig. 2f. The total gain of the circuit was adjusted to 61 ×  103, with a bandwidth limited to between 0.5 and 
10 Hz. The instrumentation amplifier (IA) used was the INA114 (Texas Instruments), and OA3 and OA4 were 
implemented using the TL082 (Texas Instruments). All the circuits were powered at ± 10 V with a Power Sup-
ply E3631A (Keysight). The PCG and BCG signals were registered using the data acquisition system USB-6341 
(National Instrument) connected to a laptop and configured with a sampling frequency of 1 kHz.

Signal processing. PCG is an acoustic signal that may be corrupted by noise from different sources, such 
as other sounds coming from the patient, skin contact with the stethoscope, and ambient  noise26–28. Therefore, it 
was necessary to filter the PCG signal. For this study, it was decided to preserve components in the band above 
34 Hz, since much of the low-frequency noise has main frequency components from 0 to 25  Hz29. In addition, 
because this study will not attempt to classify or detect sounds that indicate any abnormality, it was decided to 
eliminate high-frequency noises, unlike other studies in which pathologies are  detected30. Therefore, the upper 

(2)fRF(x) =
1
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Figure 2.  (a) Setup for detecting the PCG and the BCG simultaneously. (b) One of the volunteers using the 
measurement setup. (c) SDT1-028 K mounted on a custom-built case used for detecting the PCG. (d) Electronic 
weighing scale used for detecting the BCG. (e) Circuit used to detect the PCG, and (f) circuit used to detect the 
BCG. Figures (a, e, f) were drawn in Microsoft Visio Professional  201924 by Rafael Gonzalez-Landaeta.
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bound of the passband was established at 50 Hz, which facilitated the detection of sounds S1 and S2. Thus, the 
signal was filtered using a bandpass FIR filter designed with a Blackman window and cutoff frequencies of 34 Hz 
and 50 Hz. This also avoids other relatively high-frequency interferences, such as those produced by the AC line. 
In the case of BCG, this signal was filtered using a bandpass filter from 1 to 10 Hz, since it was observed that most 
of the signal power was in that band, which agrees with other  studies31.

Measurement of the features. The features considered in this study were the time intervals between S1-J, 
J-S2, S1-I, I-S2, K-S1, K-S2, the slope of the I-J segment, and the slope of the J-K segment. For the extraction of 
the features of interest, an algorithm similar  to32 was used. Initially, all signals were normalized. Next, for the 
signals of each subject, the detection of the I, J, and K peaks was performed by comparing neighboring points 
to determine the local maxima and minima in the signal. Subsequently, using point J, which was previously 
detected, we proceeded to search for S1 in the PCG, looking for a local maximum before the temporary loca-
tion of point J. Accordingly, point S2 was sought in the temporary neighborhood of point K. Finally, the peaks 
of waves I, J, and K of the next cycle were searched for at a distance of 4 ms from the previous J wave peak. This 
process was repeated until the end of the signal was reached. Then the time intervals between S1-J, J-S2, S1-I, 
I-S2, K-S1, K-S2, the slope of the I-J segment, and the slope of the J-K segment were calculated for each cardiac 
cycle. Finally, for each subject, a global estimate of each feature was obtained using the median of the measure-
ments made for each cardiac cycle. The median instead of the sample mean was used since this is a more robust 
estimator of the mean of the real distribution, especially when measures are noisy and more prone to  outliers27.

Data analysis. Behavior of features regarding pressure changes induced by activities. With the measure-
ments made on each individual, various statistical analyses were performed. The behavior of the features in 
response to changes in SBP was statistically analyzed using the empirical distributions of the features when the 
subjects performed different activities. Sample statistics of the mean and variance were calculated, as well as ap-
proximations to a probability distribution using kernel density  estimation28. Moreover, to test the normality of 
the data, the Shapiro–Wilk test was  used33.

Relationships of the features by distinctions in time and pressure. We further explored the relationships between 
these features. Based on the states of rest, activity, and post-activity, variations in pressure and the timing of 
characteristics were evaluated for the three states. The linearity of the relationship between the characteristics 
and the pressure was analyzed using the least squares regression technique with a Huber  regularizer27, so the 
estimation was less influenced by outliers. To quantify the degree of association between the quantities involved, 
the Pearson correlation coefficient was calculated, which shows how well the data fit a linear relationship, and 
Spearman’s correlation coefficient, which demonstrates how well the data agree with the monotone classification 
with relevant  outliers34. The p-value was calculated based on the probability of the null hypothesis: that the cur-
rent result would have been found if the correlation coefficients were zero. Therefore, it is assumed that if this 
probability is less than 5% (p-val < 0.05), the correlation coefficient will be statistically significant.

BP estimation using machine learning algorithms. Once the features and their relationship with the 
SBP were analyzed, several machine learning algorithms were compared to estimate the SBP from the character-
istics analyzed. It was determined which characteristics were the most predominant in the estimation process.

Dataset. A data set, D1 = {
(
xi , yi

)
}
N1

i=0
 , with N1 = 1, 067 , was used to train the machine learning algorithms, 

which consisted of records xi ∈ R
10 with features of the PCG and BCG signals. In addition, yi ∈ R contains sys-

tolic pressure. To obtain the features, the measured signals of all subjects were segmented into cardiac cycles. A 
record xi then consisted of the following features obtained in one cycle: the intervals S1-J, J-S2, S1-I, I-S2, K-S1, 
K-S2, I-J, J-K, the slope from points I to J, and the slope from points J to K. Once the features were obtained, the 
corresponding systolic pressure was recorded in yi . Notably, not all segmented cycles were used; those cycles 
where it was not possible to obtain all the features due to distortions or noise were eliminated. In addition, those 
records with S1-J intervals that were far from the mean by more than two standard deviations were discarded. 
Additionally, a second data set was contemplated, D2 = {

(
xi , yi

)
}
N2

i=0
 , with the same characteristics of D1 , except 

those records with measures of S1-J, S1-K, and I-J with a deviation of the mean by more than two standard devia-
tions. This reduced the number of records to N2 = 235. The percentage of acceptance of cycles varied from person 
to person and with the activity; on average the percentage of acceptance for D1 was 78% and for D2 it was 41%.

Estimation of SBP. To estimate SBP, the following algorithms were evaluated: simple linear regression (LR); 
support vector machine (SVM), using a radial basis function kernel and parameters c = 45, gamma = 0.0001, 
epsilon = 0.01 for D1 and c = 55, gamma = 0.0001, and epsilon = 0.01 for D2 ; kernel ridge (KR), with the parame-
ters alpha = 0.005, gamma = 0.05, and a Laplacian kernel function for D1 and D2 ; and RF, with 139 trees for D1 and 
210 trees for D2 . The algorithms were used in regression mode instead of classifier mode because the quantity to 
be estimated, the BP, is a non-categorical continuous variable. The parameters were optimized using the search 
grid method with fivefold cross validation on the training test, and all the algorithms were implemented with the 
sklearn  library35. The algorithms were trained using data from 17 subjects, and data from four subjects were used 
for testing. The subjects in each set were chosen by a random permutation. It was decided not to use Deep Learn-
ing (DL) algorithms for two reasons: the tendency in DL is to obtain features automatically, using, for example, 
convolutional networks, which in some contexts such as medicine could make their interpretation  difficult36,37, 
and second, these types of architectures generalize better when they are trained with a large amount of  data38. 
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Moreover, the selected algorithms have a low computational cost, which could facilitate their implementation in 
an embedded system, as they do not require a high-end processor for their programming.

To evaluate the regressors, the following metrics were used: the Explained Variance Score (EVS), which 
calculates an estimate of the explained variance by the algorithm used, and is given by

where ŷ  is the value estimated by the regressor and Var(.) is the variance of the argument. The coefficient of 
determination (R2) estimates the proportion of the variation in the dependent variable that is predictable from 
the independent variable, and is given by

where the variable i runs through all observations and y is the mean of the observations. The mean absolute error 
(MAE) and mean square error (MSE) were also used to evaluate the regressors.

Measurement protocol. The PCG and the BCG of 21 healthy subjects (11 females and 10 males) were 
measured (mean ± SD): age = (23 ± 4) years, weight = (65 ± 12) kg, and height (169 ± 12) cm. Subjects with hyper-
tension or other cardiac diseases were not considered in this study. The corresponding approval (CIEB-2019-1-
106) from the institutional ethical committee of the Autonomous University of Ciudad Juarez was obtained, and 
a written informed consent was signed by the volunteers. All experiments were performed according to relevant 
guidelines and regulations. Figure 3a describes the measurement protocol for each subject. Two resting periods 
were considered: the first one of 5 min before the physical activity, and the second one of 2 min after the physical 
activity. The ABP of the volunteers and the biosignals were measured after each rest period. To induce variations 
in ABP, the volunteers performed standard squats for 2 min, after which the ABP and biosignals were measured. 
The ABP was measured with an automatic blood pressure monitor HEM-7200 (Omron), with an accuracy of 
± 3 mmHg. The measurement protocol was repeated twice for each volunteer. Figure 3b reveals the distribution 
of the data collected with the measurement protocol. Data were summarized graphically using histograms of the 
samples and grouped by the subjects’ states during the measurement: rest, activity, and post-activity. In addi-
tion, approximations to a probability distribution using the kernel density estimation  method28 are illustrated as 
continuous curves. As expected, the mean pressure during activity was higher than at rest and post-activity; in 
addition, the mean pressures at rest and post-activity were very similar.

Results and discussion
Figure 4 illustrates the histograms for each of the features obtained and as an estimate of its probability distribu-
tion (continuous line). For each characteristic, three histograms were obtained depending on the person’s state, 
that is, at rest, physical activity, and post-activity. The first row of Fig. 4 shows that, in the intervals S1-J, S1-I, 
and S1-K, the means of their empirical distributions followed the same pattern; as physical activity increases, the 
mean of the intervals decreases. In addition, in the measurements of the intervals J-S2 and I-S2 (second row of 
Fig. 4), despite the distributions being noisier, their means followed the same pattern, except for the interval K-S2, 
where the mean of the activity data is greater than that of the post-activity, which may be due to the dispersion 

(3)EVS = 1−
Var

(
y − ŷ

)

Var
(
y
)

(4)R2 =

∑
i (yi − ŷi)

2

∑
i (yi − y)2
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Figure 3.  (a) Description of the measurement protocol. (b) Distribution of pressure measures related to each 
activity.
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in the data in both histograms, which revealed great variance with respect to their mean. In addition, it can be 
seen that the means of all the distributions are very close. Regarding the I-J and J-K intervals and the JK slope, 
the histograms were more defined, with less variance. In the I-J slope, their distributions presented a greater flat-
tening at their peak. All the data had a normality statistic above 0.8, according to the Shapiro–Wilk test. However, 
for the case of the I-J interval, the physical activity data did not reach statistical significance.

Figure 4.  Histograms of the features according to the subject state: R = Rest, A = Activity, P = Post-activity, 
μ = Mean, σ = Std. dev., S = Shapiro test for normality, and p = p-value of the Shapiro test. Sample: 21 volunteers: 
(a) S1-J, (b) S1-I, (c) S1-K, (d) J-S2, (e) I-S2, (f) K-S2, (g) J-K, (h) I-J, (i) slope J-K, and (j) slope I-J.
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Figure 5 illustrates scatter plots of time intervals against SBP changes for all features and for different states. 
For each feature, correlation coefficients and the regression curve were calculated. For this, the Spearman and 
Pearson correlations were estimated, as well as their p-values. The results of this study showed that the intervals 
S1-J, S1-K, S1-I, I-S2, and J-S2 were negatively correlated with changes in SBP (p-val < 0.01). However, for the dif-
ference S2-K, a slightly positive correlation trend and a greater dispersion in the data existed. With a p-val > 0.01, 
its statistical significance was ruled out.

Once the proposed characteristics were analyzed, they were used as explanatory variables for training the 
regression algorithms. Table 1 portrays the evaluation of the regression algorithms on the test set. For the case 
of using all measures, D1, SVM was the least adapted; even though various kernels were tested, the best kernel 
rbf could not model the non-linearity of the characteristics. The regressor based on Random Forest achieved the 
best adaptation with the least outliers; this was observed in the lowest MSE for all methods. Regarding the use of 
data, D2, constrained by the standard deviation, however, the other regressors also obtained good performance, 
especially the linear regression model.

Figure 6 shows error graphs for the algorithms. For the case of using the dataset D1 , the first column of Fig. 6, 
the best mean (2.9) is obtained by the KR. However, many measurements exceed the error by more than 20 units, 
which is reflected in a high MSE. The second-best method is the RF, which obtains a mean error of 3.7, where 
few measurements have more than 20 units of error compared to the other methods. The same occurs with LR, 
but to a lesser extent. As for SVR, it has the poorest performance of the exposed methods. Notably, for the clarity 
of graphs, only the first 100 samples are shown. Nonetheless, the mean and standard deviations were calculated 
using the entire D1 dataset. Figure 7a demonstrates a boxplot of the statistics of each algorithm.

Regarding dataset D2 , the RF obtains the smallest mean error of 3.3, followed by KR, though the latter pre-
sents more values greater than 20, so its MSE is large. Furthermore, in the RF method, several predicted values 
are zero, which does not occur in the other methods. Figure 7b depicts boxplots of the performance of the 
algorithms on the D2 dataset.

Finally, using the best classifier (RF in D2), the importance of the features was analyzed. In Fig. 7c, the bar 
height shows the importance in the Random Forest, while the lines show the variability between trees repre-
sented by the error bars. The importance is based on the mean decrease in impurity (MDI). The most important 

Figure 5.  Scatter plots of time intervals against SBP changes in the features for different states. rs = Spearman 
correlation coefficient; rp = Pearson correlation coefficient.

Table 1.  Evaluation of the regression algorithms with the metrics.

D1 dataset D2 dataset

EVS R2 MAE MSE EVS R2 MAE MSE

LR 0.302 0.040 8.072 125.89 0.719 0.332 5.646 46.06

KR 0.973 0.039 13.21 267.54 − 0.190 − 0.021 7.362 70.53

SVM 0.319 0.192 9.391 156.55 0.598 0.216 5.799 54.14

RF 0.318 0.213 7.090 103.26 0.641 0.486 4.402 35.47
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Figure 6.  Error in units of pressure, left column, reveals the performance using all measures, and the right 
column uses restricted data. First line (a), (b) linear regression, second line (c), (d) ridge regression, third line 
(e), (f) SVM, and fourth line (g), (h) Random Forest.

Figure 7.  Boxplots: (a) Four algorithms evaluated in D1, (b) Four algorithms evaluated in D2, and (c) Feature 
importance based on MDI.
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features are the intervals J-S2, followed by the slope J-K and slope IJ. Interestingly, point J is involved in two of 
the three features. Conversely, the feature with the least weight is the S1-K interval, which could be due to the 
distance between the two points.

Conclusion
In this work, a new cuffless method for estimating systolic blood pressure was proposed. It is not based on pulse 
transit time or pulse arrival time estimation, but relies on analyzing the correlation between the S1 and S2 of the 
phonocardiogram and the I, J, and K waves of the ballistocardiogram, which can be detected noninvasively in 
a simple way. For this, various intervals between these two signals were used as features to train the machine-
learning algorithms, including the IJ and JK slopes of the ballistocardiogram. The means of the empirical distribu-
tions of the intervals S1-J, S1-I, and S1-K decreased as the systolic blood pressure increased. The same behavior 
was observed for the J-S2, I-S2, and K-S2 intervals, although with a noisy probability distribution. Except for 
the interval K-S2, these features were negatively correlated with the systolic pressure, with a p-val < 0.01. Among 
all the regression algorithms employed, Random Forest exhibited a coefficient of determination of 0.48, and 
the mean error (mean difference) was 3.3 mmHg with a standard deviation of ± 5 mmHg in the estimation of 
systolic blood pressure. According to the mean decrease impurity, the best features to estimate systolic blood 
pressure were the S1-K interval and the JK slope of the BCG, which can also be used as indicators of changes in 
systolic blood pressure. From the results presented here, correlating the PCG and the BCG signals could be used 
to estimate changes in systolic blood pressure, and this could be a starting point to implement wearable systems 
that do not require pulse detection in peripheral arteries. Our vision is to develop a compact device capable of 
estimating blood pressure non-invasively by simultaneously detecting both PCG and BCG in a single area of the 
body (chest). This not only simplifies the blood pressure measurement procedure but may be useful for subjects 
with partial or total amputations of some or all of their limbs, and who cannot use current cuffless methods.

Data availability
The datasets generated during the current study are available in the MAYAS project repository, https:// github. 
com/ MAYAS proje ct/ data.
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