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SUMMARY

It has been posited that anti-tumoral innate activation is driven by derepression of endogenous 

repeats. We compared RNA sequencing protocols to assess repeat transcriptomes in The Cancer 

Genome Atlas (TCGA). Although poly(A) selection efficiently detects coding genes, most non-
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coding genes, and limited subsets of repeats, it fails to capture overall repeat expression and co-

expression. Alternatively, total RNA expression reveals distinct repeat co-expression subgroups 

and delivers greater dynamic changes, implying they may serve as better biomarkers of clinical 

outcomes. We show that endogenous retrovirus expression predicts immunotherapy response 

better than conventional immune signatures in one cohort yet is not predictive in another. 

Moreover, we find that global repeat derepression, including the HSATII satellite repeat, correlates 

with an immunosuppressive phenotype in colorectal and pancreatic tumors and validate in situ. In 

conclusion, we stress the importance of analyzing the full spectrum of repeat transcription to 

decode their role in tumor immunity.

In Brief

Solovyov et al. compare protocols used in tumor transcriptional profiling. They show the most 

widely used poly(A) protocol fails to detect several classes of repeat RNAs. In contrast, repeat 

expression in total RNA sequencing can correlate with the cancer-immune phenotypes and patient 

responses to immunotherapy.

INTRODUCTION

The transcriptional landscape of a cancer cell extends well beyond protein-coding mRNA 

and includes numerous non-coding transcripts, some of which play essential roles in 

modulating malignant transformation (Lin and He, 2017). Among the different classes of 

non-coding RNA are repetitive elements, which constitute more than half of genomic DNA 

and undergo increased transcriptional activity during neoplasia (Ting et al., 2011; Criscione 

et al., 2014). Aberrant transcription of repetitive elements in tumors is likely modulated by 

epigenetic modifications (Carone and Lawrence, 2013) and loss of tumor suppressor 

function (Wylie et al., 2016; Levine et al., 2016). Moreover, many repeat RNAs include 

specific sequence motifs (Tanne et al., 2015) and general RNA structures (Chiappinelli et al., 

2015; Roulois et al., 2015) typically found in pathogen rather than human transcripts. Such 
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pathogen “mimicry” can be detected by innate pattern recognition receptors (PRRs) and 

initiate signaling in the tumor microenvironment relevant for immune and epigenetic 

therapies (Leonova et al., 2013; Chiappinelli et al., 2015; Roulois et al., 2015; Woo et al., 

2015; Desai et al., 2017; Greenbaum, 2017). These direct immunomodulatory features of 

repetitive elements provide a functional signaling pathway not previously appreciated in 

human cancers.

Unfortunately, the typical protocols employed in next generation RNA sequencing (RNA-

seq) have been a practical barrier to assessing the landscape of aberrantly transcribed 

immunostimulatory repetitive elements (Zhao et al., 2014). The vast majority of publicly 

available RNA-seq datasets were biased to sequence polyadenylated RNA and, as we show, 

often consequently fail to detect many putatively functional non-coding transcripts that can 

stimulate PRRs. To give a sense of the degree to which assessments are biased in this regard, 

one need only look at the statistics of The Cancer Genome Atlas (TCGA). Although 

thousands of solid tumors are sequenced using the poly(A) select approach, only 38 solid 

tumor samples probe the total RNA. The breadth of aberrant repetitive element transcription 

and its link to PRR engagement in the tumor microenvironment is therefore severely under-

quantified.

In this work, we first examined the 29 samples from TCGA for which both poly(A)-selected 

and total RNA-seq data are available from the same tumor. We find a large number of 

missing repetitive element transcripts from tumors sequenced using poly(A) protocols. 

Second, we show that repetitive elements expressed from these tumors fall into a set of 

distinct co-expression clusters. We quantify the nature of these clusters, their diversity, and 

whether the sequences they contain have anomalous motif use (one indicator of their 

potential to trigger PRRs). Finally, we unravel associations between expression of specific 

classes of repetitive elements, patient survival rates, and the immune profile of the tumor 

microenvironment.

RESULTS

Normalization of Total and Poly(A)-Selected Sequencing Shows Widespread Differences in 
Repetitive Element Detection

We identified 29 patient samples in TCGA that had RNA-seq data prepared using both the 

poly(A)-selected and total RNA protocols. Gene expression values computed from total 

RNA and poly(A) sequencing cannot be compared directly, because of gene-specific biases 

inherent to each protocol. However, we find that by applying trimmed mean of M-values 

(TMM) normalization (Robinson and Oshlack, 2010) between the 29 paired patient samples

—and clustering samples based on protein-coding genes only—the same patient’s samples 

will mostly cluster together, despite having different sequencing library construction 

protocols (Figure 1A, black/white color code at the top). The technical difference between 

the poly(A) and total RNA protocols is therefore less than the biological difference for 

protein-coding genes in our cohort. A similar picture, to a lesser extent, was observed when 

we examined the computed expression of annotated non-coding RNAs (Figure 1B). 

Evaluation of repetitive element expression, however, was markedly different between the 

total and poly(A) RNA protocols. For most repeats, expression computed using the total 
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RNA protocol exceeded the one computed from the poly(A) protocol (Figure 1C). 

Hierarchical clustering for repeat expression is therefore completely governed by the 

protocol used to prepare the RNA-seq library. We evaluated the robustness of the clustering 

using multiscale bootstrap resampling. Both approximately unbiased (AU) and bootstrap 

probability (BP) confidence values equal 100% for the cluster containing the 29 total RNA 

samples (Figure 1C). This partitioning is almost the same as partitioning into the total RNA 

and poly(A) samples (adjusted Rand index = 0.931).

Assuming that the effects of the preparation protocol are gene specific and sample 

independent, we compared expression of the same genes computed from RNA-seq data 

using both protocols. We performed a paired t test for expression values obtained from the 

total RNA and poly(A) data. This “differential expression” analysis evaluates the technical 

difference between protocols, not the biological difference between samples. Among 13,740 

sufficiently expressed coding genes, 3,600 (26%) had lower and 3,414 (25%) had higher 

computed expression in the total RNA protocol (FDR < 0.05). Among 893 annotated non-

coding genes, 281 (32%) had lower and 220 (25%) had higher computed expression in the 

total RNA protocol. Among 967 repeat elements, 33 (3%) had lower and 850 (88%) had 

significantly higher computed expression in the total RNA protocol. Interestingly, some 

coding genes (75 of 13,740 [0.5%]) form an outlier population with higher computed 

expression in the total RNA protocol (Figure 1D, Statistical Methods). Those were histone-

related genes on chromosome 6. This finding is expected given the lack of polyadenylation 

of these genes. For non-coding genes, 38 of 893 (4%) were outliers composed mostly of 

small RNAs (Figure 1E). Finally, in the case of repeats, there is a clear and consistent 

inability to capture repetitive element expression using the poly(A) protocol (Figure 1F).

Given the possible differences in DNA contamination between sequencing protocols, we 

computed the average depth of coverage for repeat reads coming from possible DNA using 

the number of reads mapping to unambiguously sequenced genome loci not annotated as 

genes or repeat elements. Five hundred sixty-five repeat elements had significantly greater 

expression difference than expected from pure contamination, and 209 repeat elements had 

significantly lower expression difference than expected from pure contamination. Fifteen of 

20 satellite repeat elements had significantly higher expression difference than expected 

from pure contamination, and only 3 satellite repeat elements had significantly lower 

expression. This is consistent with the inability to detect satellite repeats using the poly(A) 

protocol.

If the effect of preparation on computed gene expression is sample independent, expression 

computed from paired total RNA and poly(A) samples will differ by a gene-specific constant 

independent of the sample. We designed an analysis, restricted to genes whose computed 

median expression among the 29 patients was at least 10 reads per million in both protocols. 

After computing the gene-specific difference in the expression from the total RNA and the 

poly(A) counts, we added this difference to the expression computed from the poly(A) 

counts. Application of such protocol-specific correction improves the clustering accuracy 

according to expression of coding and annotated non-coding RNAs (Figures 1G and 1H). 

When clustering according to the coding gene expression, there are 20 robust (AU 

confidence value > 95%) two-element clusters containing the paired poly(A) and total RNA 
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samples from the same patient each before the application of the correction, and there are 28 

such clusters after the application of the correction (p = 0.012, two-tailed Fisher’s exact 

test). When clustering according to the annotated non-coding gene expression, there are 12 

such two-element clusters before the application of the correction and 25 after the 

application of the correction (p = 0.0008, two-tailed Fisher’s exact test). When clustering 

according to the repeat element expression, there are no such two-element clusters before the 

application of the correction and 5 such clusters after the application of correction (Figure 

1I), only 3 of them being robust.

Technical Noise for Repeat Expression Is Higher Than for Conventional Coding/Non-
coding Genes

We tested whether bias due to technical noise in computing gene expression is protocol 

specific and gene independent. We performed a chi-square test for the variance of the ratio 

of the computed expression for each sample. We required that the variance of this ratio 

across the samples does not exceed the biologically significant expression difference. As a 

result, 61% of the coding genes, 37% of annotated non-coding RNA, and only 8% of 

annotated repeats passed the test at the FDR cutoff of 0.05. Genes and repeats that did not 

pass the test would require a larger sample size to detect the biologically significant effects.

Each sample has only one poly(A) prepared and one total RNA prepared aliquot, and thus 

two computed values. We computed the rank correlation between expressions of genes and 

repeat elements according to the poly(A) and the total RNA protocols (Figure 2A). We used 

only genes and repeat elements that were detectable using both protocols. At the FDR value 

of 0.05, 99% of coding genes, 95% of annotated non-coding RNA, and 56% of repeats 

passed the significance test for correlation. Expression values of repetitive elements 

computed using the poly(A) and total RNA samples exhibit a positive correlation (Figure 

2A). However, the value of this correlation is smaller than for coding and annotated non-

coding RNA. The reason may be techical noise from polyadenylated repeats having copies 

lacking a sufficiently long poly(A) tail or the aforementined contamination from genomic 

DNA.

We investigated the relationship of the rank correlation between poly(A) and total RNA 

expression and the cumulative length for repeat sequences within the human HG38 genome. 

These values are negatively correlated (rank correlation rho = −0.42, p = 8e-19). We 

performed regression between these variables (Figure 2B, p < 2e-16), which predicted that 

correlation between expression values computed using the two protocols of 0.99 is achieved 

for a cumulated sequence length of 5 kilobases:

log10L = 6.47 − 0.53 ln1 + ρ
1 − ρ ;

where ρ is the rank correlation and L is the cumulative repeat length in the genome. 

Regression between the variance of the expression difference between the two protocols and 

the cumulative length of repeat sequences (Figure 2C, p < 1.3e-12) further support the 

hypothesis that repeats with a higher length of integration sites within the genome exhibit 
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greater noise. The regression is V = −0.17 + 0.08 log10L, where V is the variance of 

expression between the two protocols and L is the cumulative repeat length in the genome.

Repetitive Elements Form Distinct Co-expression Clusters

We performed consensus clustering of repetitive elements using the 39 total RNA tumor 

samples in TCGA. Five clusters of repetitive element co-expression were detected, 

indicating that many repetitive elements aberrantly expressed in tumors are not expressed 

independently of one another but rather are co-expressed (Figures 2D and 2E). Such 

clustering further indicates that different clusters of repeat expression may confer or are 

associated with distinct phenotypic traits. One cluster is an outlier in terms of its expression 

and contains most of the satellite repeats (Figures 2D and 2E). This cluster exhibits the 

highest diversity of expression across tumors, implying that satellite repeats are most likely 

to have individualized patterns of expression, as observed before (Ting et al., 2011). The 

other four clusters involve respectively LINEs, SINEs, ERVs, and repetitive DNA plus 

various repeats labeled “other” (e.g., CR1, hAT, simple repeats) (Figure 2F). Unlike the 

cluster containing the most SAT repeats, these clusters have similar consensus expression. 

We compared the detectability of each repetitive element class using the poly(A) protocol 

(Figure 2G). Strikingly, contrary to ERV, LINE, and SINE, satellite repeats appear almost 

universally undetectable by the poly(A) protocol, despite studies reporting that a fraction of 

these transcripts are actively polyadenylated (Criscione et al., 2014).

It was recently shown that the host defense protein ZAP (ZC3HAV1), an antiviral factor that 

also possesses retroelement restriction activity, specifically targets RNAs that are rich in 

CpG (Takata et al., 2017). Similarly, in an earlier study, we found that immunostimulatory 

properties of aberrantly expressed repeats were associated with unusual use of dinucleotide 

motifs compared with the rest of the human genome (Tanne et al., 2015). We therefore 

quantified aberrant motif use by the forces on CpG and UpA dinucleotides. The forces 

measure a sequences deviation from maximum entropy dinucleotide usage. We computed 

these effective forces for all LINE, SINE, and SAT elements (Figure 2H). Interestingly, 

satellite elements are the most diverse in terms of the CpG and UpA compositional bias, and 

consequently we propose that they are more likely to be sensed by innate PRRs as non-self 

based on motif usage (Vabret et al., 2017).

ERV Expression Can Be Associated with Positive Anti-PD-L1 (CD274) Immunotherapy 
Response

Pre-existing tumor T cell inflammation can be a strong predictor of response to cancer 

immunotherapy such as anti-PD-L1 (CD274)/PD-1 (PDCD1) or anti-CTLA-4 antibodies 

(Chen and Mellman, 2017). Several studies have recently highlighted links between a 

tumor’s ERV expression, “viral defense genes,” and anti-tumor immune responses 

(Chiappinelli et al., 2015; Roulois et al., 2015; Badal et al., 2017). It was hypothesized that 

chemically induced epigenetic dysregulation in tumors leads to expression of ERVs, which 

in turn stimulate innate immune PRRs and create an anti-tumoral innate immune response. 

In one study (Chiappinelli et al., 2015), endogenous ERV presence was associated with 

clinical benefit in patients treated with anti-CTLA-4 therapy. We examined one of the few 

available tumor immunotherapy RNA-seq datasets from patients treated with PD-L1 
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blockade (Snyder et al., 2017). In this cohort of patients with urothelial carcinoma, we tested 

the hypothesis that ERV expression is also associated with clinical benefits from therapy.

We performed hierarchical clustering using expression of ERV repeats with the 

RepeatMasker/Repbase annotation, which revealed two distinct clusters of high and low 

ERV expression levels (Figure 3A). In this case, association between ERV repeats 

expression and patient response (Response Evaluation Criteria in Solid Tumors [RECIST]) 

to PD-L1 immunotherapy was significant (p = 0.024, Fisher’s exact test). Consequently, 

patient survival analysis showed that high expression of ERV repeats correlates with overall 

survival (Figure 3D, p = 0.012) and progression-free survival (Figure 3E, p = 0.025). We 

performed logistic regression for the clinical benefit versus the total ERV repeat expression:

log p
1 − p = − 7.0 + 2.4 EERV;

where EERV is the total expression of ERV repeats, and p is the probability of a clinical 

benefit (progression-free survival of at least 6 months). The coefficient for EERV is 

significant (p = 0.04). We performed Cox regression for the overall survival (hazard = −2.9 × 

EERV + 0.4 × age + 3.2 × met, where EERV is the total expression of ERV repeats, age is the 

patients’ age, and met = 1 when liver metastases are present and 0 otherwise). Coefficients 

for EERV and met are significant (p = 0.001 and p = 0.003). We performed the Cox 

regression for progression-free survival (hazard = −1.5 × EERV −1.9 × age + 1.8 × met). 
Coefficients for EERV and met are significant (p = 0.009 and p = 0.02). In both cases we 

performed a test for the proportional hazards assumption, and the assumption holds.

Interestingly, expression of ERV repeats was a better predictor of response to 

immunotherapy than the viral defense signature, which did not similarly segregate patients 

(Figure 3; Table S5). We performed a series of Cox regressions for the hazard ratio using the 

patient’s age, presence of liver metastases, and expression of one of the viral defense genes 

or ERVs as independent variables. The effects of ERV expression were associated with 

improved survival (p = 0.001, FDR = 0.02), contrary to the viral defense genes. 

Additionally, as we show that RepeatMasker/Repbase annotation for ERV repeats yields a 

higher read number than that for ERV genes annotated in Ensembl, we suggest that clinical 

studies would reveal more accurate associations by interrogating global repeat expression for 

a particular class of repeats rather than specific ERV genes. Thus, the read counts of the 

ERV genes annotated in Ensembl were below the standard 10 reads per million threshold in 

RNA-seq, with ERV3-1 and ERVK3-1 having the highest read numbers. Expression of these 

two genes is correlated with mean ERV expression (Figure 3B). The implication is that 

because of the abundant transcription of repetitive elements, they are more robust predictors 

of response to immunotherapy than the expression of associated immune genes, which likely 

require a larger sample size to resolve cohorts.

In addition, we investigated a dataset of anti-PD-1 (PDCD1) therapy in metastatic melanoma 

(Hugo et al., 2016) and performed a similar series of Cox regressions using age, number of 

non-synonymous mutations, and expression of one of the viral defense genes or ERVs as 

independent variables. Neither expression of viral defense genes nor that of ERVs had a 
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statistically significant effect on the hazard ratio. It is worth noting that almost all the tumors 

in this dataset are metastatic, unlike the dataset of Snyder et al. (2017). Likewise, both 

datasets originate from two different tumor types, which may have different patterns of ERV 

expression. Altogether, this suggests that there are unique repeat classes linked with different 

phenotypes that may be tissue context dependent, which merits further investigation.

Global Repeat Derepression Is Associated with an Immunosuppressive Phenotype

We next studied the relation between expression of repetitive elements and tumor 

progression in human cancers not treated with immunotherapy. Because few total tumor 

RNA-seq data are publicly available, we examined the expression of LINE and ERV 

elements, which can be detected using poly(A) capture, thus increasing our sample size. We 

focused on LINE and ERV expression in colon and rectal adenocarcinoma cancers available 

in TCGA, given the well-established genetics of colon cancer progression, the established 

co-expression of LINE1 and HERV-K (Desai et al., 2017), and the known presence of 

satellite repetitive element genome expansions (Bersani et al., 2015). We examined 364 

paired-end RNA-seq samples prepared with the poly(A) protocol. We performed Cox 

regression for the hazard ratio using age, mutational load, presence of metastasis, high 

microsatellite instability (MSI-H), low micro-satellite instability (MSI-L), and expression of 

LINE, SINE, or ERV elements as independent variables. High expression of ERV elements 

has negative effect on survival (p = 0.004, FDR = 0.015). We then sorted samples by their 

expression level of LINE1 elements most recently integrated into the genome (L1HS) and 

performed differential expression analysis between the third and first terciles. Survival 

analysis (Kaplan-Meier curve) using the TCGA data shows that patients from the lowest 

L1HS expression tercile have the longer survival, compared to patients from the highest 

L1HS expression tercile (p=0.0297; Figure 4A).

To study in detail the relationship between repeat expression and cancer progression, we 

further analyzed the difference in gene expression in tumors expressing high or low levels of 

human LINE1. Gene Ontology (GO) enrichment analysis uncovered significant enrichment 

of specific GO terms when analyzing the subset of genes downregulated in high versus low 

LINE1 expression samples. Interestingly, all the terms were related to immune response, 

suggesting that they are the main pathways associated with LINE1 expression. Moreover, 

genes that were overexpressed in the samples that show upregulation of LINE1 expression 

demonstrated no significantly enriched GO term. The most significant GO terms enriched 

for the downregulated genes include “leukocyte migration,” “complement activation,” 

“phagocytosis,” “response to interferon-gamma,” and “regulation of antigen processing and 

presentation” (Figure 4). We also performed gene set enrichment analysis (GSEA) on one of 

the enriched GO terms, “positive regulation of leukocyte chemotaxis” (Figure 4D). The 

implication is that either there is a correlation between the lack of epigenetic control 

associated with LINE1 expression and immune suppression, or, to the extent LINE1 

elements engage immune pathways, they are activating pathways associated with negative 

regulation (Figure S1).

Similar gene expression analysis could not be performed with satellite repeats because of the 

small number of total RNA sequences available. Thus, we measured the relationship 
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between LINE1 and specific satellite RNAs. Previous work using single-molecule RNA-seq 

had shown a strong association of LINE1 repeats with pericentromeric satellites in both 

mouse and human cancers (Ting et al., 2011). We confirmed that LINE1 expression 

correlates with expression of the human pericentromeric satellite HSATII in TCGA tumor 

samples prepared with total RNA protocol and in pancreatic tumors sequenced by single-

molecule sequencing, obtained from Ting et al. (2011) (Figure 4B; R2 = 0.179, p = 0.009, 

and R2 = 0.571, p = 0.001, respectively). Given the ability of single-molecule RNA-seq to 

better quantify HSATII, we performed a targeted analysis of the 16 such pancreatic cancer 

samples (Ting et al., 2011) to determine if there was a consistent relationship between 

HSATII and the tumor immune micro-environment. We binned samples into terciles 

according to HSATII expression and performed differential expression analysis between the 

third and first terciles. In particular, genes downregulated in HSATII-high samples were also 

enriched in the “lymphocyte migration” GO term.

Additionally, we performed a GO-independent analysis of immune gene enrichment 

following the immune signatures defined by Rooney et al. (2015). Interestingly, the two 

genes labeled as responsible for the cytolytic activity (GZMA and PRF1) associated with 

cytotoxic T (CD8+) activation are highly downregulated in high-HSATII-expressing samples 

(8-fold change). It was recently shown that active β-catenin signaling in metastatic 

melanoma samples results in T cell exclusion from the tumor microenvironment (Spranger 

et al., 2015). To evaluate the role of β-catenin pathway in the relation between LINE1/ 

HSATII expression and immune-excluded tumor phenotype, we analyzed the differential 

expression of a list of β-catenin target genes in the TCGA and pancreatic tumor datasets 

(Table S5). We did not measure any significant correlation between a β-catenin signature 

and L1HS and HSATII.

To validate the relevance of these GO terms, we performed combined RNA in situ 
hybridization for HSATII and immunohistochemistry for cytotoxic T cells (CD8+) in a 

cohort of 75 colon tumor samples (Figures 4E and 4F). We scored tumors on the basis of 

high or low levels of HSATII by comparing relative levels of HSATII staining in tumor cells 

compared with normal adjacent cells. We then quantified the density of CD8+ T cells 

observed in the tumor microenvironment, finding significantly fewer CD8+ T cells in 

HSATII-high tumors. This is consistent with our computational analysis of RNA-seq data 

demonstrating a downregulation of immune-related GO terms in repeat-expressing (LINE1 

or HSATII) cancers.

DISCUSSION

Broader use of total RNA-seq protocols and single-molecule sequencing platforms would 

allow researchers to investigate the expression of repetitive elements and their use as 

biomarkers or immune stimulators in cancer. Available data reveal that conventional poly(A) 

capture-based RNA-seq allows one to detect expression of only a limited number of 

repetitive elements, despite their recently established role in prognosis and response to 

epigenetic and immunotherapy. Only a subset of LINE-, SINE-, and ERV-related elements 

can be captured with the poly(A) protocol, along with some DNA repeats. Conversely, 
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satellite repeats (in particular HSATII, a known cancer biomarker and immunostimulatory 

molecule) are only detected using the total RNA protocol.

We show ERV expression is associated with positive response in a set of patients treated 

with anti-PD-L1 therapy, extending previous findings in melanoma patients treated with 

anti-CTLA-4. Moreover, although ERV expression segregated patients, the viral defense 

signature associated with response in previous work did not, suggesting abundant 

transcription of repetitive elements may represent a more robust biomarker. Satellite repeats 

display heterogeneous expression and anomalous nucleotide motif use relative to other 

repeat classes. One may hypothesize that in late-stage tumors, in which abundant repetitive 

element expression is associated with failure of tumor suppressors, the large-scale 

transcription of many “non-self” repetitive elements has been co-opted by the tumor’s 

evolution to maintain an advantageous inflammatory state. The distinct sequence motifs in 

satellite RNAs, including HSATII, that appear “non-self” lead to differential innate immune 

response is consistent with this theory (Tanne et al., 2015).

Altogether, our work indicates that expression of repeat RNAs is heterogeneous and 

correlates with relative changes in the balance of inflammatory immune response that are 

pro- or anti- tumoral. Mechanistically, this may involve the sensing of repeat expression by 

innate immune cells in the tumor microenvironment or by innate immune sensors expressed 

by the cancer cell itself. This would be consistent with previous work demonstrating that 

specific stimulation of innate immune receptors on cancer cells can be pro-tumorigenic, such 

as in pancreatic cancer (Ochi et al., 2012; Zambirinis et al., 2014), in which HSATII is 

known to be highly abundant (Ting et al., 2011). Because HSATII is not detected by the 

poly(A) sequencing protocol, we conclude that causal molecules with a critical role 

engaging the innate response in the tumor microenvironment may be hidden from view 

using current sequencing protocols. We therefore demonstrate the need for total RNA 

protocols and associated bioinformatics tools to uncover the currently hidden, yet likely 

critical, signaling RNAs in the cancer immune microenvironment.

EXPERIMENTAL PROCEDURES

We selected 38 samples from TCGA that had total RNA frozen solid tumor RNA-seq data. 

These samples were composed of 12 LUAD, 10 COAD, 5 BRCA, 4 KIRC, 4 UCEC, and 3 

BLCA tumors. Among these 38 samples, 29 samples had matching poly(A) RNA-seq data. 

Total RNA- and poly(A)-selected aliquots were derived from the same physical sample. 

These samples were composed of 11 LUAD, 6 COAD, 5 BRCA, 4 KIRC, and 3 BLCA 

tumors. The presence of such paired samples allows one to perform a technical comparison 

of sequencing protocols and their effects on computed gene expression.

The total RNA and poly(A) preparation protocols use different strategies for rRNA 

depletion. The total RNA protocol uses the RiboZero kit to remove rRNA. The poly(A) 

protocol uses the poly(A) capture procedure to isolate the polyadenylated transcripts, which 

leaves rRNA out. After initial quality filtering, we aligned the reads to the human genome 

and to the Repbase database of repetitive elements (Bao et al., 2015). The number of reads 

mapping to the annotated genomic features was quantified, and expression was computed.
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Gene expression in terms of log2-CPM (counts per million reads) was computed and 

normalized across samples using the TMM method as implemented in the calcNormFactors 

function of edgeR (Robinson et al., 2010). Only coding genes were used for normalization. 

In particular, this procedure ensures that the computational subtraction of the rRNA reads is 

done. The purpose of the normalization procedure is to identify some reference quantities 

(e.g., housekeeping gene expression) that can be compared among the different samples to 

establish the sample specific normalization factor. In particular, the TMM normalization 

procedure assumes that most of the genes are not differentially expressed or that the effects 

of the overexpression and the underexpression are approximately equal except for some 

outliers. These assumptions are reasonable when we consider the protocol-specific 

difference for the coding genes. Indeed, the majority of the coding genes are expected to be 

detectable by both protocols, which is not the case for the repeat elements. Genes with low 

expression (ones not having at least 10 reads per million reads in at least two samples) were 

filtered out. The same protocol was used for all datasets.

The difference of the computed expression between the two protocols was computed using 

limma (Smyth, 2004; Ritchie et al., 2015). Expression data were used in conjunction with 

the weights computed by the voom transformation (Law et al., 2014). Despite the use of the 

same computational procedure, this “differential expression” test measures the technical 

difference between the two sequencing protocols, not the biological difference between the 

various tissues. This difference is expressed as the binary logarithm of the fold change 

(logFC).

The chi-square test for the variance of computed gene expression was performed as follows. 

We considered only genes with median expression using both poly(A) and total RNA 

protocols that exceeded log2(10). For every physical sample, we computed the difference 

between the expression values from the poly(A) protocol and total RNA protocol. Then we 

computed the variance of these differences. We performed the chi-square test for the 

variance to verify whether these differences were sample independent. We required that the 

linear fold change between the two biological conditions (e.g., tumor and normal tissue) FC 

= 2 be detectable, assuming n = 3 replicates for each of the conditions. This led to the cutoff 

for the variance used in the test.

We performed linear regression between the variance and the log of the repeat length in the 

genome. For the rank correlation rho, we performed linear regression between log[(1 + 

rho)/(1 − rho)] and the log of the repeat length in the genome (logistic regression).

Human tumor tissues were obtained from the Massachusetts General Hospital according to 

IRB-approved protocols 2012P000039 and 2015P000731. Research involving human 

participants was approved by the MSKCC IRB.

Additional details of the analyses are given in Supplemental Experimental Procedures.

Statistical Methods

The difference of the computed expression between the two protocols was computed and 

evaluated using a paired moderated t test (limma). We identified outlier coding and non-
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coding genes as follows. We computed the mean and the SD of the distribution of logFC for 

all genes. Then we performed the Z test for the logFC value for each gene and computed the 

false discovery rate (FDR) using the Benjamini-Hochberg procedure. Genes whose FDRs 

were less than 0.05 were considered outliers. For this computation, we considered the 

coding and annotated non-coding genes separately.

Significance of the rank correlation was evaluated using the asymptotic t approximation. 

Significance of the regression coefficients was evaluated using the t test. Survival analysis 

was carried out using Kaplan-Meier log rank test as well as Cox regression. Where 

applicable, adjusted p values (FDR) were computed using the Benjamini-Hochberg method. 

Statistical significance of the hierarchical clustering was assessed using the bootstrap 

method (Suzuki and Shimodaira, 2006).

Clustering of repeat elements on the basis of expression was performed as follows. We 

created 1,000 bootstrap datasets and performed centroid clustering on each of them. Then 

we computed consensus clustering. Entropic forces acting on the sequence motifs were 

computed using the methods previously developed (Greenbaum et al., 2014; Chatenay et al., 

2017).

DATA AND SOFTWARE AVAILABILITY

The accession number for the pancreatic cancer data (Ting et. al., 2011) reported in this 

paper is SRA: SRP006382; the accession number for the melanoma data (Hugo et. al., 2016) 

reported in this paper is SRA: SRP070710.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• RNA repeats are not properly detected in poly(A)-selected libraries

• Expression of specific RNA repeat classes correlates with immune infiltrates 

in tumors

• Quantifying nucleic acid repeats in tumors can serve as immunotherapy 

biomarkers

Solovyov et al. Page 15

Cell Rep. Author manuscript; available in PMC 2018 June 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Technical Comparison of Poly(A) and Total RNA Sequencing Protocols
(A–C) Hierarchical clustering and expression heatmap based on coding gene expression (A), 

non-coding gene expression (B), and repeat element expression (C). Color code (top): total 

and poly(A) aliquots from the same sample are denoted using the same color. Total RNA is 

denoted in red and poly(A) in blue. The black/ white color (top) indicates whether the total 

RNA and poly(A) aliquots were direct neighbors in the dendrogram. See also Figures S1A–

S1C. The total RNA- and poly(A)-selected aliquots were direct neighbors in the dendrogram 

for 23 of 29 pairs for coding genes and 18 of 29 pairs for non-coding genes.

(D–F) Volcano plots for the pairwise difference in the computed expression between the 

poly(A) and total RNA protocols. Positive log(fold change) indicates higher computed 
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expression in the total RNA protocol. Both coding (D) and non-coding (E) genes exhibit 

different biases (i.e., positive or negative log[fold change]), with a few outliers (shown in 

red). Mitochondrial genes (shown in orange) are depleted in the total RNA protocol. 

Computed expression of repeat elements (F) is higher in the total RNA protocol for all but a 

few elements. Here, satellite repeats are shown in orange. See also Table S1.

(G–I) Hierarchical clustering and expression heatmap based on adjusted coding gene 

expression (G), non-coding gene expression (H), and repeat element expression (I). Only 

genes detectable (i.e., having sufficient read numbers) in both protocols are included. See 

also Figures S1D–S1F. In the absence of technical noise, the computed expression difference 

between the two protocols would be a gene-specific sample-independent constant.
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Figure 2. Landscape of Repeat Elements Detected in RNA Sequencing Protocols
(A) Rank correlation between expression according to the total RNA and poly(A) data was 

computed for each gene and repeat element detectable using both protocols. Distribution of 

the rank correlation for the coding and non-coding genes as well as repeat elements is 

shown. Rank correlation of repeat expression is typically smaller than that of the coding or 

non-coding genes because repeats experience higher technical noise (t test, p = 3e-168). 

Small peaks for the non-coding genes near zero comes from rRNA. See also Table S2.
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(B) Regression for rank correlation between repeat expression according to the total RNA 

and poly(A) data versus length of the integration sites of the repeat element in the genome. 

Repeats with greater lengths have smaller correlations.

(C) Linear regression for variance of the computed expression difference for each repeat 

element versus length of the integration sites of the repeat element in the genome. Repeats 

with greater lengths have higher variance. See also Table S1.

(D) Cluster assignment versus repeat type. See also Table S3 and Figures S2B and S2C.

(E) Consensus (median) expression within the five repeat clusters.

(F) Proportion of different repeat types within repeat reads. Here we have not included the 

counts for rRNA, pseudogenes, and small nuclear RNA (snRNA). See also Figure S2A.

(G) Detectability of repeat elements of different types in poly(A) RNA-seq. Note that the 

satellites (SAT) are not detectable, and DNA transposons (DNA) are detectable. Most of the 

ERV/LINE1/SINE are detectable. See also Figure S2C.

(H) Boxplot for CpG compositional bias computed for the consensus sequence for repeats of 

different classes as well as coding and non-coding genes.

Solovyov et al. Page 19

Cell Rep. Author manuscript; available in PMC 2018 June 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Endogenous Retroviral Expression Is a Predictor of Patient Response in Urothelial 
Cancer Cohort
(A) Heatmap for ERV expression in the urothelial carcinoma dataset from Snyder et al. 

(2017). Annotation (top): L1HS, HERVK, and HSATII, expression of the corresponding 

repeat elements; ERV3-1, ERV3K-1, PD-L1 (CD274), PD1 (PDCD1), and CTLA-4, 

expression of the corresponding Ensembl genes. The read counts for ERV3-1 and ERVK3-1 
are the highest among ERV genes annotated in Ensembl; nevertheless, they are still below 

the conventional low bound in RNA-seq (10 reads per million) in all samples. RECIST: 

black, missing data; blue, PD (progressive disease); cyan, SD (stable disease); orange, PR 

(partial response); red, CR (complete response). Benefit: green, clinical benefit; orange, no 

clinical benefit; gray, long survival despite the absence of the clinical benefit.

(B) Heatmap for the ERV repeat expression in TCGA total RNA dataset. Annotation (top): 

L1HS, expression of the corresponding repeat element; ERV3-1 and ERVK3-1, expression 
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of corresponding Ensembl genes. The Pearson correlation between the mean expression of 

ERV elements and expression of ERV3-1 gene is 0.46 (p = 0.0040, two-tailed t test). Pearson 

correlation between the mean expression of ERV elements and expression of ERVK3-1 gene 

is 0.40 (p = 0.013, two-tailed t test).

(C) Heatmap for interferon-stimulated (viral defense) gene expression in urothelial 

carcinoma dataset from Snyder et al. (2017). Color annotation (top) is the same as that in 

(A).

(D) Kaplan-Meier plot for overall survival between patients from the ERV-repeat-high and 

ERV-repeat-low clusters. Association is significant (p = 0.012, log rank test). See also Table 

S5.

(E) Kaplan-Meier plot for progression-free survival between the patients from the ERV-

repeat-high and ERV-repeat-low clusters. Association is significant (p = 0.025, log rank 

test).
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Figure 4. Repeat Element Expression Is a Predictor of Colon Tumor Immune Infiltration and 
Patient Survival
(A) Kaplan-Meier plot depicting survival over time for patients with high (red, top tercile) 

and low (blue, bottom tercile) L1HS expression. Dataset comes from colon and rectal 

adenocarcinoma cancers available in TCGA and classified as microsatellite stable. See also 

Table S5.

(B) Correlation of HSATII and L1HS expression in tumors prepared with total RNA 

protocol available in TCGA (n = 38, left) and in pancreatic tumors sequenced by single-

molecule sequencing (n =16, right).
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(C) GO terms enriched in genes downregulated in the third compared with the first tercile of 

samples sorted by L1HS expression in TCGA MSS colorectal tumors. See also Tables S4 

and S6.

(D) GSEA enrichment plot for genes of the “positive regulation of leukocyte chemotaxis” 

GO set. Genes were ranked by the t statistic produced by comparison of their expression in 

the third and first terciles of samples according to L1HS expression in TCGA MSS 

colorectal tumors. p < 1e-4.

(E) Representative images of colon tumor stained for CD8 protein expression 

(immunohistochemistry, brown) and HSATII RNA (in situ hybridization, red). Left: low 

HSATII expression correlates with high CD8+ T cell infiltration. Right: high HSATII 

expression correlates with low CD8+ T cell infiltration.

(F) Associated quantification of colon cancer intratumoral CD8+ T cell per field of view 

(400 × 200 µm) (mean with SD). Tumor samples were classified as HSATII-high or HSATII-

low expression following in situ hybridization staining. p = 0.0004 (unpaired t test).
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