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Abstract

Fetal motor behavior is an important clinical indicator of healthy development. How-

ever, our understanding of associations between fetal behavior and fetal brain devel-

opment is limited. To fill this gap, this study introduced an approach to automatically

and objectively classify long durations of fetal movement from a continuous four-

dimensional functional magnetic resonance imaging (fMRI) data set, and paired

behavior features with brain activity indicated by the fMRI time series. Twelve-

minute fMRI scans were conducted in 120 normal fetuses. Postnatal motor function

was evaluated at 7 and 36 months age. Fetal motor behavior was quantified by calcu-

lating the frame-wise displacement (FD) of fetal brains extracted by a deep-learning

model along the whole time series. Analyzing only low motion data, we characterized

the recurring coactivation patterns (CAPs) of the supplementary motor area (SMA).

Results showed reduced motor activity with advancing gestational age (GA), likely

due in part to loss of space (r = �.51, p < .001). Evaluation of individual variation in

motor movement revealed a negative association between movement and the occur-

rence of coactivations within the left parietotemporal network, controlling for age

and sex (p = .003). Further, we found that the occurrence of coactivations between

the SMA to posterior brain regions, including visual cortex, was prospectively associ-

ated with postnatal motor function at 7 months (r = .43, p = .03). This is the first

study to pair fetal movement and fMRI, highlighting potential for comparisons of fetal

behavior and neural network development to enhance our understanding of fetal

brain organization.
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1 | INTRODUCTION

Complexity of fetal motor behavior increases as the nervous system

matures across gestation. Studies of individual variation show that

more active fetuses tend to have higher behavioral and neurological

maturation as neonates (DiPietro et al., 2010) and infants (Richards &

Newbery, 1938). Studies have also documented that fetal motor

behavior can predict postnatal mental development (Hayat

et al., 2018), and even childhood temperament (Dipietro et al., 2018).

Apart from reflecting neurobehavioral maturation in typical develop-

ment, fetal behavior also informs risk of postnatal congenital disorders

(De Vries & Fong, 2007; Hayat & Rutherford, 2018) and poor perinatal
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outcomes (De Vries & Fong, 2007). For instance, decreased fetal

movement has been associated with preterm birth, elevated rates of

cesarean delivery (Dutton et al., 2012), mild language delay (Hayat

et al., 2018), and neonatal stroke (Hielkema & Hadders-Algra, 2016).

Although fetal motor behavior is an important marker of development,

methods for quantifying fetal movement are rather limited, which has

constrained our ability to study these at a large scale.

Traditionally, Ultrasound Sonography and state-of-art Cine Mag-

netic Resonance Imaging (MRI) have been used to visualize and assess

fetal motor behavior (Hayat & Rutherford, 2018). Fetal motor behav-

ior is most frequently characterized in terms of “general movements”
and “isolated movements,” where general movements are character-

ized by a global sequence of movement of variable speed, amplitude,

direction, and fluency (Guzzetta et al., 2003; Prechtl &

Einspieler, 1997), and isolated movements involve distinctive

sequencing of particular body parts (Fagard et al., 2018). Utilization of

these techniques has led to important insight into the progression of

motor maturation that occurs across human gestation.

A new application with potential to advance understanding of

fetal motor maturation is application of deep-learning techniques to

automatically and objectively classify long durations of fetal move-

ment data from continuous four-dimensional data sets. Recently, a

Convolutional Neural Network (CNN) trained by 1241 manually

traced fetal brain functional MRI (fMRI) images, achieved rapid and

accurate automated brain masking for all volumes across the time

series (Rutherford et al., 2021). This advancement in technology

enables the objective and automatic quantification of fetal

movement—a feat that was previously difficult to achieve. Although

fetal brain fMRI typically only provides information about head

motion, rather than whole body movements, it nonetheless presents

an interesting use case, as the Blood Oxygen Level Dependent

(BOLD) time-series data carry crucial information about brain activity

that can be paired with volume of activity over the scan. Opportunity

to examine associations between fetal motor behavior and fetal brain

development can be easy to overlook because motion of the fetus is

typically regarded as a contaminant in fMRI imaging data that uncon-

ditionally interferes with reliable measurement (Thomason, 2020).

However, it is standard in fetal fMRI studies to acquire more data than

is needed and to discard high-motion volumes (van den Heuvel

et al., 2018). Thus, it is possible to pair neural connectomes or net-

work analyses from low movement data with objective quantification

of fetal activity across the full scan to begin to understand associa-

tions between fetal behavior and fetal brain development.

An aspect of neural connectomes that has recently gained atten-

tion is examining network reorganization over the scan. So-called

“dynamic” functional connectivity (DFC) takes into account natural

oscillations in the strength of connections between pairs or sets of

regions. Rather than regarding neural connectivity as a “static” repre-
sentation of connection strength, this technique remains sensitive to

alterations in and out of primary patterns of organization that may be

reflective of brain states or natural shifts in connectivity that may

underlie mental experiences. Among the existing set of DFC methods,

one focusing on recurring coactivation patterns (CAPs) of the brain by

regarding individual fMRI volumes as basic units of analysis, has been

shown a valid and robust method to capture clear but distinct brain

states (Liu et al., 2013; Liu et al., 2018). Despite remarkable progress

in understanding the human fetal connectome in health and disease,

there are no studies that have analyzed the dynamic nature of fetal

neural functional connectivity, which is critical for our understanding

of human brain maturation.

The objectives of this study were to utilize CAPs to assess time-

varying neural network dynamics in fetal brain data, to introduce a

novel fMRI-based approach for assessing fetal behavior, and to test

hypotheses about developmental change and associations between

motor activity and brain development. Specifically, we expect that the

observed movement of the fetus will relate to neural dynamics

expressed in regions connected to the motor cortex. We also expect

fetal motion to decline with advancing gestational age (GA; e.g., due

to reduced space) and that behavior and neural dynamics in utero

have potential to predict postnatal motor outcomes.

2 | MATERIALS AND METHODS

2.1 | Participants

Healthy mothers were recruited during routine obstetrical appoint-

ments at Hutzel Women's Hospital in Detroit, MI, between 2011 and

2018. Inclusionary criteria included maternal age ≥ 18 years old,

native English speaking, singleton pregnancy, and normal fetal brain

anatomy as assessed by ultrasound and MRI examination. All study

procedures were approved by the Wayne State University Human

Investigation Committee.

MRI visits occurred when fetuses were between 22- and

39-week GA. For quality control, fetuses were excluded if they were

scanned before 25-week GA (n = 9) or had low birthweight or were

born very preterm (<1800 g or <33 weeks GA; n = 14). Subjects

younger than 25 GA were excluded based on prior evidence that

intrinsic network connectivity emerges at approximately the 25th GA

(Jakab et al., 2014). We also excluded fetuses with few low-motion

functional volumes or excessive head motion within low-motion data

chunks (1.5 mm max excursion, 0.5 mm mean, rotational: >2� or <100

low-motion volumes; n = 22). The final sample consisted of

120 fetuses (see Table 1). After birth, 77 infants completed standard-

ized assessments of their motor development at 7 months of age and

89 infants completed the same assessment at 36 months of age.

2.2 | fMRI acquisition and preprocessing

Fetal functional MRI images were collected, using a 3 T Siemens Verio

70 cm open-bore system with a 550 g abdominal 4-channel Siemens

Flex coil (Siemens). For each participant, two runs of 6 min-fMRI scan

(180 volumes per run) or one run of 12-min scan (360 volumes per

run) were collected with the following gradient echo planar imaging

sequence: TR = 2000 ms; TE = 30 ms; flip-angle: 80�, slice-gap: none;
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voxel-size: 3.4 � 3.4 � 4 mm3; matrix-size: 96 � 96 � 25 voxels. This

sequence was repeated when time permitted. Longer TE is preferred

for fetal EPI, as T2* relaxation times in fetal brains of the cortical tis-

sue is about twice as high as those in adults (Blazejewska et al., 2017).

Preprocessing was performed using combined functions provided

by FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and Statistical Paramet-

ric Mapping (SPM12) software (http://icatb.source-forge.net). In brief,

fMRI volumes with significant head motion were manually identified,

using FSL image viewer, and excluded. Remaining segments of rela-

tively low-motion fMRI data are henceforth referred to as “the low-

motion segments.” These are the data that were retained for further

analyses. Next, Brainsuite (Shattuck & Leahy, 2002) was used to man-

ually draw three-dimensional masks around single reference images,

which were then applied to all other volumes for brain extraction

within the same low-motion segment. For each 4D low-motion seg-

ment, manual masking, reorientation, motion correction, and normali-

zation to a 32-week fetal brain template (Serag et al., 2012) were

performed. Preprocessed segments were then concatenated to form a

single series and realignment was applied to correct potential misa-

lignment between segments. This was followed by individual-level

denoising based on Independent Component Analysis (ICA) with “FSL
Melodic,” and spatial smoothing with a 4-mm FWHM Gaussian kernel.

After concatenation of selected low-motion segments, number of

retained volumes across subjects was mean = 165.00 (SD = 52.72).

The average length of a single low-motion segment was 21.61 vol-

umes (SD = 15.36). In line with prior recommendations (Ji

et al., 2022), noise components were manually labeled based on both

spatial and temporal features. In the spatial domain, components

showing banding patterns, ring-like patterns at the edge of the brain,

or with clusters primarily located in the white matter or cerebrospinal

fluid were labeled as noise. In temporal and frequency domains, com-

ponents with high-frequency peaks or sudden jumps in signal magni-

tude (caused by segment concatenation) were labeled as noise. Noise

components were removed using the “fsl_regfilt” function. This

approach resulted in 60% of components being labeled as noise, on

average, across fetuses. Visual inspection of images suggests that this

denoising approach led to reduction in spatial banding patterns, inten-

sity inhomogeneity, and abnormal signal oscillations caused by rapid

motion or segment concatenation.

2.3 | Quantification of fetal motor behavior

In parallel to the manual masking procedures described above, a pro-

cess was performed to quantify fetal movement across all acquired

fMRI scan data. Raw fMRI volumes were auto-masked by the CNN

model developed by Rutherford et al. (2021). Twenty-two subjects

(GA, mean = 34.50, SD = 2.72 weeks) were excluded due to the brain

detection failure by the CNN, which related to poor image quality or

large displacements of the brain from the image origin, resulting in a

final sample of n = 98. After fetal brain extraction, the FSL MCFLIRT

realignment tool (Jenkinson et al., 2002) was used to estimate a linear

TABLE 1 Participant demographics

Final sample included in fetal
CAP analysis (n = 120)

Final sample included in fetal

motor behavior
assessment (n = 98)

Postnatal sample included
at 7 months (n = 77)

Postnatal sample included at
36 months (n = 89)

Mean (SD) or N (%) Mean (SD) or N (%) Mean (SD) or N (%) Mean (SD) or N (%)

Demographics

Maternal age

at fetal MRI

25.35 (4.55) years 25.11 (4.28) years 26.22 (4.88) years 25.51 (5.12) years

Maternal GA

at fetal MRI

32.95 (3.76) weeks 32.44 (3.90) weeks 33.19 (3.55) weeks 32.84 (3.75) weeks

Maternal race

African

American

98 (82%) 84 (86%) 60 (78%) 74 (83%)

Caucasian 10 (8%) 6 (6%) 7 (9%) 7 (8%)

Bi-racial 5 (4%) 2 (2%) 4 (6%) 3 (3%)

Asian

American

1 (1%) 1 (1%) 1 (1%) 1 (1%)

Latina 1 (1%) 1 (1%) 0 0

Not disclosed 5 (4%) 4 (4%) 5 (6%) 4 (4%)

GA at birth 39.09 (1.45) weeks 39.04 (1.53) weeks 39.13(1.39) weeks 38.98 (1.61) weeks

Preterm

(<36 weeks)

4 (3%) 4 (4%) 1 (1%) 4 (5%)

Birth weight 3236.70 (512.83) g 3245.73 (536.20) g 3238.34 (498.21) g 3169.89 (519.29) g

Fetal sex 53 (44%) females 47 (48%) females 33 (43%) females 43 (48%) females
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transformation between a volume n to the middle volume as the ref-

erence. This step creates a text file that summarizes the six rigid-body

realignment parameters across time. Frame-wise displacements (FDs)

were then calculated as the sum of the absolute temporal derivatives

of the six motion parameters between a volume n to the next volume

n + 1. Rotational parameters were transformed to millimeters by com-

puting the arc length displacement on the surface of a sphere with

radius of 30 mm, according to the following equation:

FD tð Þ¼
X

jd t�1ð Þ�d tð Þjþ30� π=180ð Þ�
X

jr t�1ð Þ� r tð Þj

where d(t) denotes translational motion parameters of tth volume, and

the r(t) is rotational parameters. The radius of 30 mm accounts for the

smaller size of the fetal brain and scales with the standard used for

adult MR image analysis (50 mm; Power et al., 2012).

We used the average FD, maximum FD, and maximum displace-

ment relative to reference to quantify the motor behavior of the fetus

during a scan. The average FD and maximum FD measure the brain

location changes in every 2 s, while the maximum displacement mea-

sures the maximum movement over the entire 12 min. The motor

behavior captured by fMRI of a representative subject (GA = 32) is

shown in Figure 1. Henceforth, we use “Motor behavior” to refer to

fetal behavior as measured by average FD, maximum FD, and the

maximum displacement across a full �12-min period. In contrast,

“head motion” will refer to contaminant motion that remains within

the analyzed neural network data (described below in Section 2.4),

extracted from 100 low-motion volumes. In this way, head motion

serves as measurement of a potential confound, whereas motor

behavior references how much activity occurred in that fetus during

the full EPI run. It was necessary to hold the number of volumes con-

sistent across subjects, as varied data quantity may cause differential

subject contribution to the k-means cost function, and because

varied-length data in CAP analyses have yet to be validated. Finally, to

ensure the quality of the movement estimation and registration, we

evaluated the accuracy of alignment after FSL MCFLIRT motion cor-

rection. Specifically, in a subsample of 10 subjects, we employed Dice

coefficient (Dice, 1945) to quantify volume overlap between each vol-

ume to the reference (the middle volume), following priors (Liao

et al., 2019). The workflow of the full analysis is shown in Figure 2.

2.4 | Whole-brain CAP analysis with seeds in
bilateral SMAs

We analyzed fetal supplementary motor CAPs, which are thought to

reflect alternating brain states. Patterns expressed in each volume (all

participants over time) are evaluated and clustering is used to isolate

patterns that are repeated. More specifically, the process employs k-

means clustering which allocates each data point to the nearest clus-

ter, while reducing the within-cluster sum of squares. In this way, pat-

terns that re-occur overtime are represented as CAPs, and CAPs are

distinct from one another. The method does not depend on correla-

tion in signal over the time series; instead, voxels contained within an

individual CAP return to the same level of activity when that CAP

F IGURE 1 An example
(GA = 32 weeks) of fetal motor behavior
captured by fMRI. Top panels depict three
fetal brain volumes drawn from a period
of extreme repositioning. The mask used
to segment the volume at each time is
shown in turquoise. The brains
approximate coronal, sagittal, and axial
views, left to right. Plotted, below, is the
frame-wise displacement (FD) over the
time series. Circles in the lower plot
indicate the time point corresponding to
the brain figures shown in top panels.
fMRI, functional magnetic resonance
imaging; GA, gestational age.
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occurs. A further distinction in this method is that this k-means clus-

tering is applied only to time points that are selected a priori. Specifi-

cally, individual time series are extracted from ROIs or voxels of

interest, and peaks of activity for those regions define what will be

considered in the k-means clustering. This additional step enables iso-

lations of CAPs relevant to areas of focal interest.

CAP analyses utilized the tbCAPS toolbox (Bolton et al., 2020)

to implement these steps: (1) FMRI volumes with supra-threshold

signal (z > 1) in seed regions of each subject were selected as a fea-

ture set for following steps. Seeds were placed in the bilateral sup-

plementary motor areas (SMAs); (2) classification of extracted

volumes from all subjects into 6 clusters based on their spatial simi-

larity using k-means clustering; and (3) averaging fMRI volumes

assigned to same cluster to generate CAP maps. In the present

study, Step 1 of the CAP method yielded 3230 time points. Robust-

ness of clustering was assessed across candidates from K = 2 to

K = 8 using a subsample of 90% of data, similar to priors (Monti

et al., 2003). Stability and the CAP maps for different cluster num-

bers K are provided in Figure S1. Occurrences for each CAP were

computed to describe the spatiotemporal features, which corre-

spond to the total number of volumes assigned to each CAP for each

subject. Given that the concatenation of low-motion periods intro-

duces larger jumps in time-series data and interrupts the continuous-

ness, transitions between CAPs were not examined in this study. In

addition, a CAP analysis including all usable low-motion data is pro-

vided for comparison, in Figure S2.

We selected bilateral SMA seeds based on previous studies of

our group (Thomason et al., 2015) with primary interest in isolating

motor network hubs. Seeds were constructed using Mango Multi-

image Analysis software (http://ric.uthscsa.edu/mango/mango.html).

They were defined manually as spheres with a 3 mm radius (179 vox-

els), centered on MNI coordinates at (�9.5, �5.2, 22.3) and (9.5, �5.2,

22.3), with approximate locations of the bilateral SMA on a 32-week

fetal template (Serag et al., 2012). The seed masks are available online

at https://www.brainnexus.com/.

To ensure that CAPs were not contaminated by motion artifacts,

we conducted correlation analyses of the CAP occurrence and dura-

tion with motion parameters derived from the realignment of images

used in CAPs analysis.

2.5 | Assessment of postnatal motor behavior

At 7- and 36-month postpartum, infants' developmental skills were

assessed with the Bayley Scales of Infant Development (3rd ed.;

Bayley-III; Bayley; Bayley, 2006). In the current study, fine and gross

motor subtests, as well as a scaled composite motor score, were eval-

uated. Given high correlations among Bayley motor subtests (see

F IGURE 2 Workflow of the full analysis. For each subject, a 12-min scan, or two 6-min fMRI scans, was auto-masked by the deep learning
model. The “MCFLIRT” realignment tool was then applied to the resulting 4D extracted brain series, to generate motion parameters for the full-
time series. Fetal motor behavior measures of mean frame-wise displacement (FD), max FD, and maximum displacement were derived from the
output of this realignment step. FD measures reflect the magnitude of brain location changes from volume to volume, while the maximum
displacement measures the maximum movement over the entire 12 min. All the above steps are framed within yellow boxes. In parallel, the CAPs
analysis was conducted only on the low-motion data (indicated by light green boxes). fMRI volumes with significant head motion were manually
identified, using FSL image viewer, and excluded. Remaining segments of relatively low-motion fMRI data are henceforth referred to as “the low-
motion segments.” For each 4D low-motion segment, manual masking, reorientation, motion correction, and normalization to a 32-week fetal
brain template (Serag et al., 2012) were performed. Preprocessed segments were then concatenated to form a single series and realignment was
applied to correct potential misalignment between segments. This was followed by ICA-denoising and smoothing. CAP analysis was conducted on
the first 100 processed volumes, which assures consistent quantity of data across subjects. CAP, coactivation pattern; fMRI, functional magnetic
resonance imaging; ICA, Independent Component Analysis.
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Figure S3), the scaled composite motor score was used for longitudi-

nal analyses. The motor composite ranges from 45 to 145. Scores

ranging from 85 to 115 are considered typical motor development,

while scores at or below 70 are indicative of a developmental delay at

2 standard deviations below the mean. Our sample showed a mean

Bayley composite score of 96.90 (SD = 14.23, n = 77) at 7 months,

and 98.49 (SD = 11.58, n = 89) at 36 months.

2.6 | Statistical analysis

All Statistical analyses were performed using SPSS (version 25). Relation-

ships among motor behavior, age, and CAP occurrence were first exam-

ined using pairwise Pearson correlation analysis. Additional correlation

analyses between motor behavior, age, and CAP occurrence were strati-

fied by fetal sex. We then conducted six linear regression analyses to

predict fetal motor behavior based upon age, sex, and occurrence of the

six CAPs, respectively. CAP occurrences and maximum head

displacement were log-transformed due to high skewness to ensure

there was no violation of the assumption of normality and linearity. We

further tested the predictive effect of fetal motor behavior and fetal

CAPs on postnatal outcomes using a partial correlation that controlled

for GA of scan and fetal sex. Cook's distances were estimated for regres-

sion models to assess potential outliers (values > 1). Results were

deemed significant if they pass a threshold of p < .008 (.05/6 CAPs) as a

Bonferroni adjustment for multiple comparison correction.

3 | RESULTS

3.1 | Variation in fetal motor behavior with
advancing GA

Fetal motor behavior was assessed in 98 fetuses (mean GA = 32.44,

SD = 3.90 weeks) in which the CNN performance demonstrated high

reliability. Detailed study sample demographic characteristics are pro-

vided in Table 1. The group average mean FD was 4.78 mm

(SD = 2.24 mm), max FD was 44.72 mm (SD = 32.50 mm), and maxi-

mum brain displacement was 40.02 mm (SD = 34.08 mm). Raw

motion measures are provided in Table 2, including both motion mea-

sured across the entire scan (estimate for motor behavior) and motion

measured in low-motion periods of fMRI data that were included in

neuroimaging analyses.

GA was negatively correlated with all above three motor behavior

measures across the entire scan, with r = �.51 (p < .001) for mean

FD, r = �.37 (p < .001) for max FD, and r = �.25 (p = .01) for the

max displacement over the entire scan, respectively (Figure 3). For the

majority of subjects (n = 88), 360 volumes (12 min, TR = 2 s fMRI

scan) were used in motor behavior measurement. A small number of

cases had 180 (n = 6), 540 (n = 1), or 720 (n = 3) volumes due to

interrupted or additional repeat scans. Sensitivity analysis on the sub-

set of 88 cases with 360 volumes, confirmed that the significant rela-

tionship between motor behavior and age remained (mean FD:

r = �.50, p < .001, max FD: r = �.37, p < .001, max displacement:

r = �.27, p = .01). Correlation analyses between fetal motor behavior

TABLE 2 Quality control on the fMRI data set

Entire fMRI
scans in
evaluation of
behavior
(n = 98)

Low-motion fMRI
periods that included in
CAPs analysis (n = 120)

Mean (SD) Mean (SD)

Number of fMRI

volumes

361.83 (79.64) 165.00 (52.72)

Observed fetal motion

Mean

translation (mm)

2.17 (1.31) 0.23 (0.10)

Max translation (mm) 11.82 (7.51) 0.87 (0.30)

Mean rotation (�) 0.11 (0.08) 0.39 (0.18)

Max rotation (�) 0.74 (0.53) 1.23 (0.43)

Abbreviations: CAP, coactivation pattern; FD, frame-wise displacement;

fMRI, functional magnetic resonance imaging; SD, standard deviation.

F IGURE 3 Motor behavior changes across gestational age. Fetal mean (left) and max (middle) frame-wise displacement (FD), and the
maximum brain displacement (right) across all volumes in the fMRI scan are all negatively correlated with gestational age. fMRI, functional
magnetic resonance imaging.
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and GA by sex group are provided in Figure S4. In addition, the sec-

ondary analysis evaluating performance of movement estimation sug-

gested that images were well aligned after motion correction. Indeed,

volume overlap with the reference image was 88% on average

(Figure S5).

3.2 | Observed SMA CAPs

About 3230 fMRI volumes (26.9% of the total time) showing supra-

threshold high signal in either left or right SMA regions were

included in the subsequent k-means clustering. Brain regions coacti-

vated with bilateral SMA were clustered into six stable spatial pat-

terns (CAP maps) as shown in Figure 4. The first CAP, which

included 19% of the total included fMRI volumes from all subjects,

overlapped within the right parietal regions. The second CAP (18%

of the total) reflected coactivation localized in the bilateral SMA. The

third CAP (18% of the total) involved the posterior part of the right

hemisphere, extending to occipital regions. The fourth CAP (18% of

the total) was similar to the second CAP showing bilateral SMA coac-

tivation, but was more left lateralized. The fifth CAP (15% of the

total) was considered a left parietotemporal network, mostly within

the motor network but including subcortical regions. The sixth CAP

(12% of the total) constituted right frontal regions. A figure present-

ing equal distribution of CAPs across subjects is provided in

Figure S6, suggesting that the clustering was not driven by

individual-level variance.

Pearson correlation analyses between CAP occurrence and age

revealed one primary effect. We observed that CAP1 occurrence

was marginally negatively correlated with GA (r = �.19, p = .06,

Figure 4). That is, with advancing age, presence of CAP 1 was

reduced. Correlation between CAP occurrence and GA by sex is pro-

vided in Figure S7.

3.3 | Linear regression models of fetal motor
behavior and CAP features

Linear regression revealed significant linkage between fetal motor

behavior across the entire scan and CAP5 occurrence during low-

motion segments (F (3, 94)= 6.57, p < .001, R2 = .173), controlling for

age and sex. In this model, age (β(age) = �.27, p = .005) and CAP5

occurrence (β(CAP5) = �.29, p = .003) were both statistically signifi-

cant. Occurrences of other CAPs did not show a significant

F IGURE 4 SMA-CAPs. The six SMA CAPs (z values, thresholded at jzj > 0.5) are displayed on the left, with pie charts indicating the amount
of time each pattern coactivated with the left SMA, right SMA, or bilateral SMA seeds. CAPS were calculated on the first 100 low-motion fMRI
volumes. More frequent CAP 1 occurrence was marginally correlated with lower fetal gestational age (top right) and more frequent CAP
5 occurrence was significantly correlated with lower fetal maximum brain displacement across the entire fMRI scan. The frequency of CAP1 and
CAP5 occurrence is indicated on the top X axis of both scatterplots and the frequency of GA and max FD values is indicated on the right Y axis of
each plot, respectively. There were no other significant associations between CAP occurrence, fetal gestational age, and fetal motor behavior.
CAP, coactivation pattern; FD, frame-wise displacement; fMRI, functional magnetic resonance imaging; GA, gestational age; SMA, supplementary
motor area.
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association with fetal motor behavior (Table 3). Thus, occurrence of

coactivation of the left parietal–temporal network was isolated as the

single CAP associated with fetal motor behavior.

We did not find evidence to suggest that expression of CAP5 was

related to motion artifacts in low-motion images used in fMRI analy-

sis. That is, CAP5 occurrence was not related to any weighted aver-

aged head motion parameters derived from the realignment of usable,

low-motion data segments (mean translational displacements:

r = �.07, p = .47; maximum translation displacements: r = �.05,

p = .59; mean rotation: r = �.03, p = .76; maximum rotation:

r = �.06, p = .53). It is important to realize that this analysis showed

that the occurrence of CAP5 was related to fetal motor behavior

across the whole of the rest of the scan, not to motion within the

fMRI segment analyzed.

The additional CAP analysis including all usable data showed simi-

lar CAP maps, but CAP occurrence no longer showed a significant cor-

relation with motor behavior. We expect the latter finding results

from normalization of values by fMRI volume count, as the volume

count was related to motor behavior.

3.4 | Prediction effect of CAP features to
postnatal motor behavior

We did not find significant correlation between fetal motor behavior

and any postnatal motor outcomes. However, CAP3 occurrence was

prospectively associated with 7-month Bayley composite score

(r = .43, p = .03, Figure 5), controlling for GA at scan and sex. We

observed a positive association suggesting that more time spent in

CAP3, comprised of right parietal-posterior regions, during fetal

resting-state was prospective associated with improved motor out-

come at age 7 months.

4 | DISCUSSION

In this study, we applied a novel, automated fMRI-based approach for

analyzing fetal motor behavior. Compared to methods that manually

assess motor behavior (De Vries & Fong, 2007; Hayat et al., 2011),

automated approaches are less subject to potential bias, or subjectivity,

and are less labor intensive. We discovered that natural movements of

fetuses during fMRI scans, which have long been considered barriers to

effective imaging, can be quantified as meaningful indicators of fetal

behavior. This fMRI-based behavioral movement approach confirms

the decreasing occurrence of motor activity with increasing GA,

observed previously with other imaging modalities such as ultrasound

(Ten Hof et al., 2002) and cine MRI (Hayat et al., 2011). In addition, we

examined the fetal neural motor network (SMA) using CAP analysis, a

methodology that defines multiple CAPs, or “states,” for a given region

and then classifies time spent in each state. Results suggested the

intrinsic CAPs of SMA shifts between hemispheres, and between ante-

rior and posterior brain regions over time. Specifically, less time spent

in a brain state localized in motor network regions (CAP1 and CAP5)

was correlated with increased GA or increased motor behavior. More

time spent in a state linking SMA to posterior brain regions related to

TABLE 3 Summary of regression models predicting fetal motor behavior upon age, sex, and the occurrences

R2 F (3, 94) F. sig (p value) CAP T. sig (p value)

Model 1: Max FD � Age + sex + CAP1 occurrence 0.097 3.351 .022 .453

Model 2: Max FD � Age + sex + CAP2 occurrence 0.092 3.192 .027 .712

Model 3: Max FD � Age + sex + CAP3 occurrence 0.095 3.297 .024 .518

Model 4: Max FD � Age + sex + CAP4 occurrence 0.093 3.211 .027 .665

Model 5: Max FD � Age + sex + CAP5 occurrence 0.173 6.571 <.001* .003*

Model 6: Max FD � Age + sex + CAP6 occurrence 0.091 3.143 .107 .954

*Significant regression model with p < 0.008.

F IGURE 5 Prediction effect of CAP3 occurrence on postnatal
motor function (Bayley Composite score) at 7 months. Fetuses who
spent more time in CAP 3, representing coactivation of right occipital
regions with the SMA seeds, had more mature motor abilities at
7 months after birth. The distribution of Bayley motor composite

scores is displayed on the right Y axis and the distribution of CAP
3 occurrence is displayed on the top X axis. CAP, coactivation pattern;
SMA, supplementary motor area.
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future infant motor behavior at 7 months. Extending previous observa-

tions of fetal “static” networks, our results demonstrate that the occur-

rence of a fetal motor subnetwork is associated with fetal behavior and

postnatal motor outcomes. Concurrent measurement of fetal behavior

and fetal brain activity presents a new interface at which to evaluate

cognitive developmental and clinical neuroscience research questions.

Our results replicate prior work showing decreased “general
movements” of the fetus across gestation (Hayat et al., 2011; Ten Hof

et al., 2002). In utero spatial constraint secondary to fetal growth is

likely one factor that drives the observed decrease in gross fetal

movement across gestation. Consistent with this interpretation, rat

fetuses raised in a bath completely removed from all membranes

show higher activity levels by embryonic Day 21 compared to fetuses

growing in utero or in amnion (i.e., externalized from the maternal

compartment, but within amniotic membranes; Ronca et al., 1994). In

addition to spatial constraints, lower movement levels may be favored

later in gestation, a time when the larger fetal body places greater

demands on oxygen delivery from the placenta. Reduced fetal head

movement could also reflect maturing behavior patterns following the

emergence of inhibitory cortical influences as the corpus callosum

develops (Malinger & Zakut, 1993). As general movements decrease,

goal-directed isolated movements have been shown to increase

across gestation (Fagard et al., 2018). Indeed, the most frequent fetal

movements in the third trimester serve functional purposes in the

postnatal world, such as hand to face, scowling, eye opening, and

mouthing (Kurjak et al., 2004). The fMRI-based method for quantify-

ing fetal motor behavior implemented in the present study does not

allow for detection of these fine-grained movements, and instead

likely reflects gross motions of body and head. The onset of fetal

sleep, which begins at �28-week postconception (Peirano

et al., 2003), may also contribute to decreased fetal movements as

sleep states tend to cause less frequent and smaller motion (Hayat

et al., 2011).

The present study investigated fetal motor system dynamics

using the method of CAPs analysis, which enables evaluation of a

given network, as a collection of subsystems that move in and out of

synchrony. Compared to the sliding-window approach and other mul-

tivariate approaches, such as independent component analysis, CAPs

analysis provides observations of state alternations with the temporal

resolution of individual fMRI volumes. In contrast to “static” func-

tional connectivity analysis that has revealed a single connectivity pat-

tern of the SMA in fetal brains (Thomason et al., 2018), our dynamic

approach indicated that the fetal SMA alternates between six distinct

CAPs. We observed negative correlations between occurrence of

within-motor network patterns (CAP1 and CAP5) with age and motor

behavior, respectively, which may reflect a maturational pattern in

which the motor network is connecting to increasingly distant regions

outside of canonical motor regions with advancing GA. This is in line

with prior observations from graph theoretical analyses, showing that

modularity decreases and efficiency increases with advancing GA

(Thomason et al., 2014; Turk et al., 2019). Steps taken toward devel-

opment of an integrated network before birth may prime the brain for

continued development of long-range connections in the postnatal

period. In the postnatal period, these long-range connections will be

refined through pruning processes, giving rise to segregation between,

and integration within, specialized brain networks, a pattern typical of

the more mature human brain (Zhao et al., 2019).

We also found that increased occurrence of CAP3, reflecting

coactivation between SMA and posterior brain regions, including the

visual cortex, was prospectively related to the infant motor develop-

ment. The establishment of connectivity between motor and visual

cortex may represent the global shift from more local to long-range

connectivity, described above, or it may reflect priming of coordina-

tion between motor and visual systems. Further, increased coupling

between these systems may provide a potential scaffolding mecha-

nism for the phenomena of future motor learning by observing

(McGregor & Gribble, 2015). In contrast, the connection between

motor and prefrontal regions (CAP 6) showed no predictive effect,

which fits with the slower maturational timeline of the prefrontal cor-

tex (Hodel, 2018). It should be noted that the present study did not

find a significant association between prenatal motor activity and

postnatal motor outcomes. A prior examination by Hayat et al. (2018),

linking prenatal cine MRI motion measures with Bayley outcomes,

found that fetal motor behavior predicted outcome only in a risk

group, not in a neurotypical sample, suggesting there may be impor-

tant individual differences to be considered in comparison of pre- and

postnatal motor measurements.

The naturally occurring CAPs observed for the fetal SMA included

three components that were both lateralized and related to behavioral

variation (CAP1, CAP3, and CAP5). Further study of inter- versus

intra-hemispheric networks that develop over human gestation war-

rant further study. Hemispheric asymmetries are observed for a vari-

ety of structures beginning in the second trimester (Machado-Rivas

et al., 2022; Vasung et al., 2020), including greater leftward asymme-

try for temporal structures early in development (Kasprian

et al., 2011; Vasung et al., 2020). In adulthood, functional lateraliza-

tion has been observed for symbolic communication, emotion,

decision-making, and of particular relevance for the present study,

sensory perception and action (Karolis et al., 2019). This lateralization

is hypothesized to minimize inefficient conduction across hemispheres

and optimize faster informational exchanges between relevant neuro-

nal groups. Given this is the first application of the CAP methodology

in fetal fMRI data, there is considerable opportunity for future work

examining other sensory modalities with further evaluation of hemi-

spheric versus global patterns in relative occurrence of CAPs.

Detailed characterization of the function and cause of fetal move-

ments is an important area for future investigation. Here, general

motion was evaluated and physiological and sleep states were not

assessed. Further, the genesis of movement in this context is not

known. That is, fetal movement can result from extrinsic experiences,

such as movement of the mother and sequence-related variation in

sound and temperature (Gowland & De Wilde, 2008). There is oppor-

tunity to build on the deep learning approach applied here, for exam-

ple, by adding measures of fetal eye movements or physiology that

relay information about naturally occurring fetal sleep states. Other

studies might address the behavioral response of the fetus to the
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presentation of stimuli. Pioneering fetal task-based fMRI studies have

been achieved, but these have been conducted in very small sample

sizes and fetal behavior was not quantified (see review by Anderson &

Thomason, 2013).

Notable work by Schöpf et al. (2014) has demonstrated a link

between in-utero spontaneous fetal eye movements to simultaneous

resting-state activation in visual, motor, and orbitofrontal areas in

seven fetuses. In this study, eye center locations were tracked over

time computationally with the aid of a machine learning-based eye

detection algorithm in fMRI data. The opportunity to leverage simulta-

neously collected biological and behavioral measurements is an impor-

tant direction for future research on fetal development.

Another consideration for the current study is application of FSL

MCFLIRT for motion estimation. There is potential that emerging

novel registration algorithms may be better for addressing motion in

fetal functional MRI data (Liao et al., 2019; Scheinost et al., 2018;

Sobotka et al., 2022). Even though our deep learning approach has

provided us with precise masks, the lack of detailed structure in fetal

fMRI contrast with the rather coarse resolution (3.4 � 3.4 � 4 mm3),

can still hinder optimal registration. As the field of fetal fMRI

advances, it may serve well to explore alternate methods for motion

estimation, with potential for improved sensitivity.

It is useful to also consider potential for sample selection bias in

the present study. Given the high criteria of the image quality required

by the brain activity analysis, we had to exclude many fMRI volumes,

and in some cases, had to exclude subjects, both with potential to

introduce bias. We hope future studies could improve upon this situa-

tion by including more fMRI volumes with advanced image recon-

struction approaches. With more data, it may also be possible to

analyze fetal brain activity before initiation of a movement; one could

begin to examine order effects, and could possibly link neural patterns

to specific behavioral functions. Another consideration regarding the

current study is that the Bayley scale we used here is designed to

assess general infant development, rather than to specifically assess

motor outcomes. In future studies, more targeted assessments of

motor development, such as the Alberta Infant Motor scale (Piper

et al., 1992), may provide new knowledge in relation to our fetal

motor and brain measures. A final point to consider is that analyses

undertaken in the current study do not include sensitivity or specific-

ity analyses, which would be useful for estimating robustness of SMA

CAPS as a predictor of infant behavior. Future work using machine

learning and other complementary approaches will further strengthen

the understanding of the predictive value of these brain–behavior

associations at the individual level.

The present study identified unique network dynamics that

covaried with pre- and postnatal motor behavior using a novel deep

learning methodology. Findings suggest that time spent in a state

comprised of common activation patterns across motor regions was

inversely related to age and amount of motor activity during the scan,

supporting the idea that global integration (rather than segregation)

increases with fetal maturation. The present study also provided the

first characterization of substate organization of a given brain net-

work, here, the motor network. Utilization of the CAP technique is

valuable for moving beyond static, fixed representations of connectiv-

ity across brain systems of interest. The methods introduced in this

study provide a new and promising tool for investigating fetal brain

maturation. There is opportunity for methods such as this to advance

understanding of the ontology of developmental disorders and human

neurological disease, as well as to better define trajectories of typical

neural development.
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