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Abstract: Diethylcyanophosphonate (DCNP) is a simulant of Tabun (GA) which is an extremely toxic
chemical substance and is used as a chemical warfare (CW) nerve agent. Due to its toxic properties,
monitoring methods have been constantly come under the spotlight. What we are proposing within
this report is a next-generation fluorescent probe, DMHN1, which allows DCNP to become fully
traceable in a sensitive, selective, and responsive manner. This is the first fluorescent turn-on probe
within the dipolar naphthalene platform induced by ESIPT (excited state intramolecular proton
transfer) suppression that allows us to sense DCNP without any disturbance by other similar G-series
chemical weapons. The successful demonstrations of practical applications, such as in vitro analysis,
soil analysis, and the development of an on-site real-time prototype sensing kit, encourage further
applications in a variety of fields.

Keywords: molecular probe; reaction-based probe; diethylcyanophosphonate; nerve agent;
real-time detection

1. Introduction

Nerve agents are a class of organic chemicals that disrupt the central nervous system
(CNS) by blocking acetylcholinesterase (AChE), an enzyme that regulates the acetylcholine,
a neuro-transmitter [1]. Among them, G-series organophosphonate derivatives [R;O(P=0)R,OR3]
such as Sarin (GB), Soman (GD), and Tabun (GA) showed extreme toxic potency, even at very low
concentrations (Figure 1a) [2]. G-series nerve agents are historically notorious when used by military
regimes and terrorist organizations. Accordingly, analytical tools that can selectively and sensitively
detect these kinds of chemical weapons have been developed for the defense, detoxification, and safe
management [3-5]. Instrument-based methods, such as mass spectrometry, ion-mobility spectroscopy,
and photonic crystals, have been used for the sensing, but these methods have several limitations,
such as low sensitivity, limited selectivity, time-consuming process, operational complexity, additional
sample pre-treatment steps, and non-portability for real-time on-site application [6-11]. In this
aspect, fluorogenic and chromogenic molecular sensing systems have gained attention due to their
advantages for overcoming the limits of current methods [12-15]. To date, a few fluorescence probes
for the detection of diethylcyanophosphonate (DCNP) have been reported, mostly based on chemical
reactions (Figure 1b, Figure S1, Table 1): (i) phosphorylation within the moieties such as alkyl-alcohol,
phenolic-alcohol, pyridine, and amine and (ii) conversion of hydroxy-imine functional group to nitrile.
Some known probes, however, showed drawbacks including low sensitivity and selectivity, complex
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sensing conditions, and lack of applications (Table 1). In this study, we disclosed a fluorescence turn-on
probe based on excited state intramolecular proton transfer (ESIPT)-suppression for the detection of
DCNP that showed high sensitivity and selectivity and potential for practical applications. The design
of a new sensing platform for the selective detection of DCNP is very challenging due to the similar
reactivity of nerve agent simulants.

Recently, we have focused on the development of naphthalene-based electron donor (D)-bridge-
acceptor (A)-type dipolar fluorophore and its applications as molecular probes [13,16-18]. Within
this research process, we found a superior sensing ability of 6-(dimethylamino)-3-hydroxy-2-
naphthaldehyde (DMHN1) toward DCNP (Figure 1c). The ESIPT causes the fluorescence quenching
of DMHNT1 [19] and the nucleophilic substitution reaction between naphthol and DCNP, which may
suppress this pathway. Thus, the reaction would be accompanied by emission enhancements as a
turn-on type probe. With the discovery of this unique sensing property of DMHN1 toward DCNP,
we systematically analyzed the photophysical properties and demonstrated its applications. Newly
developed DMHNT1 showed high sensitivity (8.16 ppm) and selectivity (only DCNP), fast-response
time (<3 min), and wide practical applicability, such as in real-time monitoring of DCNP in soil samples.
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Figure 1. (a) G-series nerve agents for chemical warfare and their simulants. (b) Representative sensing
mechanism of known probes for diethylcyanophosphonate (DCNP). See Table 1 for detail structure and
information. (c) Sensing mechanism of 6-(dimethylamino)-3-hydroxy-2-naphthaldehyde (DMHNT1)
and DCNP. Schematic illustrations of sensing mode, excited state intramolecular proton transfer (ESIPT)
product, merits, and practical applicability. Inset: photos of DMHNT1 in the solution before and after
treatment with DCNP under UV light (365 nm).

2. Materials and Methods

The chemical reagents were purchased from Aldrich (St. Louis, MO, USA), TCI (Tokyo, Japan),
Alfa Aesar (Ward Hill, MA, USA), and Acros Organics (Morris Plains, NJ, USA). Species used to perform
the screening of nerve agent simulants: DCNP, DCP, DMMP, TPP, TEP, CH3CO,H. An aluminum dish
(Hanil, Seoul, Korea) and soils (Sand, Clay and Field; Science Love, Goyang, Korea) were purchased
for applications. Commercially accessible reagents and anhydrous solvents were used without further
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purification. Chemical reactions were carried out under argon atmosphere. Thin-layer chromatography
(TLC) was performed using pre-coated silica gel 60F-254 glass plates (Merck KGaA, Darmstadt,
Germany).

2.1. Synthesis

DMHN1 was synthesized by following the reported method by our group (see Figure 2) [20].
The directed lithiation and formylation are key steps in this synthesis. 'H NMR data of synthesized
DMHNT1 was compared with the reported result. Important points: (i) Slowly and dropwise add
t-BuLi (1 drop every 5 s). Fast t-BuLi adding generates the isomer and dimer of formylated products
which are difficult to separate in column chromatography. (ii) Fresh t-BuLi and DMF should be used.
(iii) Add t-BulLi at a temperature of —20 °C. Caution: {-Buli is very reactive and fragile. Keep the
appropriate PPE (personal protective equipment).

@ © LN OO N
— —
HO OH Me,N OH Me,N OMOM Me,N OMOM
1 2 3 4
l(d)

DMHN1

Figure 2. A synthetic scheme for DMHNT1. (a) Na,S,05, Me,NH, DI H;0, 150 °C, 3 h, 60%; (b) NaH,
THF, CH30CH,Cl, —15 °C, 7 h, 95%; (c) t-BuLi, diethyl ether, DMEF, —15 °C, 2 h, 52 %. (d) iPrOH, HC],
25°C, 3 h, 90%.

Table 1. Summary of known fluorescent probes for DCNP. * n.r. not reported; DFP:
diisopropylfluorophosphate; DCP: diethyl chlorophosphate; DEMP: diethyl methylphosphonate;
DMSO-TEA: Dimethyl sulfoxide-triethylamine; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid; THF: tetrahydrofuran; PBS: phosphate-buffered saline; MES: 2-(N-morpholino)ethanesulfonic
acid; DMAP: 4-dimethylaminopyridine.
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2.2. UV/Vis Absorption and Fluorescence Assay

UV/Vis absorption and fluorescence spectra were acquired by a spectrophotometer (Agilent
Technologies Cary 8454, Santa Clara, CA, USA) and spectro-fluorophotometer (SHIMADZU CORP.
RF-6000, Kyoto, Japan) with a 1 cm standard quartz cell (internal volume of 1 mL, 108-000-10-40
(10 mm), 108-F-10-40 (10 X 4 mm); Hellma Analytics, Miillheim, Germany) each. The absorption
and fluorescence spectra were recorded at the following condition; 10 uM of DMHNI in acetonitrile
(CH3CN, 1% Et3N) at 25 °C. Solvent screening was conducted within acetonitrile (ACN), ethanol,
isopropanol, dimethylformamide (iPA), dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF),
ethyl acetate (EtOAc), deionized water (DI H,O), and dichloromethane (DCM, Figures S2 and S3).
Photostability of DMHN1 was monitored under continuous UV light exposure (365 nm, 3 W, Model
RM104, Rayman, Goyang, Korea) in CH3CN (1% Et3N) for 60 min at 25 °C. During the light exposure,
UV/Vis absorption and fluorescence change spectra were recorded according to the given time lapse
(10 min interval). The maximum absorption wavelength was used for the emission spectra acquirement.
High-resolution mass spectra were obtained by a JEOL JMS-700 spectrometer (JEOL, Tokyo, Japan) at
the Korea Basic Science Center, Kyung-Pook National University, and the values are reported in units
of mass to charge (m/z).

2.3. Sensing Application for DCNP-Moistened Soils

A spoon of each soil (1 g, sand soil, clay soil, and field, respectively; Science Love, Republic of
Korea) was transferred to an aluminum dish (Hanil, 52807, China). Two milliliters of DCNP solution
(100 mM) in acetonitrile was poured into an aluminum dish under room temperature (25 °C). Soils were
incubated for 2 min at 25 °C. After incubation, each soil sample was transferred into 3 mL. of DMHN1
solution (10 uM) in CH3CN (1% Et3N). The fluorescence changes of the solution were investigated for
0-120 min by a digital camera (Sony, Alpha A5100, Tokyo, Japan) under UV light (365 nm). The relative
fluorescence intensity and standard deviation were calculated by Image-J software (NIH, Bethesda,
Rockville, MD, USA) in the specific fluorescence signal region.

2.4. Sensing Kit Application

DMHNT1 solution (10 uM, CH3CN (1% Et3N), 1 mL) was placed in a screw-cap HPLC vial (2 mL
size, YL Science, YL-VO1236, Guri, Korea) as a prototype sensing kit. A drop of the original DCNP
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solution was collected and transferred to the vial by using a capillary tube (Marienfeld, Non-heparinized,
Lauda-Konigshofen, Germany). The fluorescence changes of the kit were monitored for ~40 s with a
digital camera (Sony, Alpha A5100, Tokyo, Japan) under UV light (365 nm). The relative intensity and
standard deviation were calculated by Image-] software (NIH, Bethesda, Rockville, MD, USA) in the
fluorescence signal region from video.

3. Results and Discussion

3.1. Sensing Ability of DMHNT1 for DCNP

A solution of DMHNT1 in sensing media (acetonitrile, 1% Et3N; activator of naphthol moiety)
exhibited weak fluorescence due to the ESIPT quenching. However, after being treated with DCNP,
it showed significant fluorescence enhancement at an emission maximum of 485 nm (Figure 3a) upon
excitation at 388 nm. In the screening of sensing media, acetonitrile gave the best response: (i) negligible
fluorescence of DMHNT1 itself by ESIPT effect, (ii) significant fluorescence recovery (>20-fold) after
reaction with DCNP (Figures S2, S3 and Table S1). In the pH screening (pH 4, 5, 6,7,7.4, 8,9), DMHN1
showed sensing ability in basic pHs (pH 8, 9), but the signal was not high enough to detect it, compared
with the acetonitrile condition (Figure S4). The reasons of these results seem to be (i) activation of
naphthol moiety at basic pHs via deprotonation and (ii) decomposition of reactive DCNP in aqueous
media. The computational calculation data clearly show the intramolecular H-bonding between the
aldehyde and ortho-hydroxyl group in the most stable conformational structure of DMHNT1 (Figure S5).
The HOMO-LUMO energy differences, 338.11 nm (AE = 3.67 eV, condition: vacuum), represent the
absorption of DMHNT1 in the short wavelength region, and they are corresponding to the experimental
results of UV/Vis absorbance; absorption maximum around 350-400 nm (Table S1, condition: within
various solvents).

A good linear relationship between the fluorescence intensity of DMIHN1 and DCNP concentration
was observed in both high (0-1 mM, Figure 3b, Figure S6) and low concentration ranges
(0-10 uM, Figure 3c), and it displayed a high sensitivity; detection limited to 8.16 ppm based
on a S/N (signal-to-noise) criteria ratio of more than 3. This value is comparable with the known
organophosphorus probes (Table 1). Within the time-course study, we monitored a significant
fluorescence enhancement of DMHN1 with addition of DCNP within 3 min, and it appeared to show
further saturation over 20 min (Figure 3d, Figure S7).

The selectivity of DMHN1 toward DCNP with structurally similar nerve gases including
DCP (diethyl chlorophosphate), DMMP (dimethyl methylphosphonate), TPP (tripropyl phosphate),
TEP (triethyl phosphate), and acid (acetic acid in this study) was then evaluated (Figure 3e, Figure S8).
The nitrile (-CN) leaving group containing DCNP only induced fluorescence enhancement of DMHNT1,
and most of the other simulants showed no change despite the possibility of a SN, type reaction. This
superior selectivity is one of the advantages compare with known DCNP probes. To understand the
selectivity and sensing mechanism, we analyzed the product using a high-resolution mass spectrometry
(HR-mass) and *'P NMR. What we mainly observed was the only phosphorylation production
(m/z = 351.1236, calc. = 351.1236, Figure 3f) (*'P-NMR in Figure 59), and this result represents that
intramolecular H-bonding containing naphthol moiety in DMHN1 has limited nucleophilicity to
attack the electrophilic phosphorous center, in the case of a more reactive cyanide anion bonded DCNP,
in comparison to other simulants.
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Figure 3. (a) Fluorescence change spectra of DMHNT1 (10 uM) measured immediately after adding
DCNP (0-100 eq; 0-1 mM) gradually in CH3CN (1% Et3N) at 25 °C. (b) A plot of fluorescence intensity
(peak height at 486 nm) changes of DMHN1 (10 pM) with various concentrations of DCNP (0-1 mM).
(c) Fluorescence intensity plot of DMHN1 (10 uM) with a low concentration of DCNP (0.5-10 pM).
The emission spectra in the graph (a—c) were measured after 1 min under excitation at the maximum
absorption wavelength. (d) A plot of fluorescence intensity (peak height at 486 nm) of DMHNT1 (10 uM)
after adding DCNP (1 mM) in CH3CN (1% Et3N), measured for 60 min at 25 °C. (e) Fluorescence
changes (peak height at 486 nm) of DMHN1 (10 uM) measured immediately after adding various
organophosphorus compounds (100 eq) in CH3CN (1% Et3N) at 25 °C. (A) DMHNT1, (B) DCNP: diethyl
cyanophosphonate, (C) DCP: diethyl chlorophosphate, (D) DMMP: dimethyl methylphosphate, (E) TPP:
triphenyl phosphate, (F) TEP: triethylphosphate, (G) CH3COOH: acetic acid. (f) HR-mass spectra of
DMHN1+DCNP.

3.2. Sensing Application of DMHN1 for DCNP-Moistened Soils

Given that DMHN1 is highly selective and sensitive towards DCNP, we demonstrated the practical
applicability of DMHN1. For the first demonstration, we used DMHN1 within various soil samples
(sand, clay, and field) for the detection of DCNP, because chemical warfare nerve gas is usually sprayed
on the field during wartime or a terrorist attack. The protocol: step 1, put 1 g of each soil (sand, clay,
and field, respectively) into an aluminum dish; step 2, treat the DCNP solution (100 mM in CH3CN);
step 3, pour DCNP-pretreated soils (1 g) into the solution of DMHNT1 (10 uM, 3 mL in CH3CN, 1% TEA);
and step 4, monitor fluorescence changes at the ambient temperature (25 °C) (Figure 4a,b). Within a few
seconds, a significant fluorescence emission was observed in all soil samples under UV light (365 nm)
(Figure 4c, Figure 510), and the signal response became saturated within 60 min (Figure 4d—f). The sand
soil showed dramatic changes within a few seconds, and the others showed sulfficient responses within
10 min. In the concentration-dependent sensing assay of DCNP in the soil samples, DMHN1 (10 uM)
represented the detection limits as 3.125 mM for sand soil and 6.25 mM for the other soils (Figure S11).
These differences were derived from the character of soils; surface area, particle size, dispersity, and a
light scattering in the given solvent. These practical application results provide that the DMHN1 can
be applied in the detection of DCNP in environmental samples, particularly within soils.



Materials 2019, 12, 2943 8 of 12

(b)

Sand Soil Clay Soil
(ki

N DCNP in soil

Field Soil

——
Y
—
= pmhNt L\T/ 2N

solution —

(c) §EEL [Clay] [Field] (d)3
+ DMHN1 DMHN1 + DMHN1 81.0

o
©

Normalized FI. Intensity (;
o
o

UV lamp / ={)=Sand soil
(365 nm) 0.4 =)= Clay soil
_O.Field soil
[DCNP in Sand soil] [DCNP in Clay soil] [DCNP in Field soil] -
+ DMHN1 + DMHN1 + DMHN1 “ o 500 1000 1500 2000
Time (sec)

() [DMHN1 only]

0
Sand soil Clay soil Field soil

Figure 4. (a) Photos of DCNP moistened soils under natural light. (b) Schematic illustration of the
soil test. DCNP muoistened soils transferred to a vial of CH3CN (1% Et3N) (3 mL) containing DMHN1
(10 uM). (c) Photos of DMHN!T1 (top, 10 uM) in CH3CN (1% Et3N) and after adding DCNP moistened
soils (bottom, 1 g, DCNP content: 100 mM). These photos were taken after 10 min at 25 °C. (d) The
fluorescence emission changes of solutions are shown in panel (c) after the soil settled. The relative
intensity was calculated by Image-J software. (e) Photos of DMHN1 (10 uM) after adding each soil
(1 g) moistened with DCNP (100 mM) in CH3CN (1% Et3N) under UV light (365 nm). (f) Fluorescence
intensity plot of solutions as shown in panel (e) after the soil settles. The relative intensity was obtained
by Image-J software.

3.3. Sensing Kit Test for Real-Time Detection of DCNP

To utilize the potential of DMHN1, we prepared a prototype DCNP sensing kit for real-time
on-site application. Prior to the kit development, a high photostability of DMHN1 was verified
under strong light irradiation (365 nm, 3 W, 1 h) (Figure S12). The components of the DCNP sensing
kit were: (i) DMHNT1 solution (10 uM in CH3CN, 1% Et3N), (ii) DCNP crude solution for positive
control, and (iii) capillary (diameter: 1.2 mm) for the liquid sample collection (boiling point of GA:
247.5 °C at 477.5 °F, DCNP: 104 °C/19 mm Hg (lit.)) (Figure 5a). The protocol: step 1, sampling the
solution, which contain DCNP, by using a capillary; step 2, put the capillary into the vial through
the polytetrafluoroethylene (PTFE)/silicon rubber screw cap and shake (by hand) after removing the
capillary; and step 3, monitor the fluorescence changes with a hand-held 365 m UV lamp (Figure 5b).
In order to verify these changes, we added the DCNP-positive control solution to the DMHNT1 solution
using the capillary (approximately 20 pL) and analyzed the fluorescence responses. Surprisingly,
the bright blue fluorescence was monitored from 9 s and it became saturated within 21 s (Figure 5c,
Figure 513, and SI Movie 1). With the current state of our prototype sensing kit, we could selectively
and sensitively detect DCNP without sample pre-treatment in a real-time on-site situation. The next
step of this study is to test the kit in a situation that requires handling the actual nerve agent, GA.



Materials 2019, 12, 2943 90f12

@) S Kit (b) sTepu: STEP2: p—
sensing Ki Sampling Put to the vial \ Monitoring with UV light (365 nm)
- e 3 ) /A |\ ~sec
pmunt DCNPHIE < 4 w ,@
(in ACN with . __ =
1% TEA) \ :
: DCNP containing DMHN1 O
Capillary solution solution |

[DMHN1 solution] Put the capillary (DCNP) to vial Under UV 365 nm
e — = >

Figure 5. (a) Photos of DCNP sensing kit under natural light. (b) Schematic illustration of the DCNP
sensing kit. (c) Photos of DMHNT1 (10 uM) in CH3CN (1% Et3N) and the progression after adding
DCNP. Photos were taken from the video clip (Movie S1) at 2,9, 11, 14, and 21 s at 25 °C.

4. Conclusions

In conclusion, we developed a selective fluorescence turn-on probe, DMHN]1, that allows the
tracing of DCNP, a simulant of GA nerve gas. As a next-generation fluorescence probe, DMHN1 showed
superior sensing ability of DCNP with high selectivity and sensitivity (8.16 ppm) and fast response
time (<3 min), and it can be used in a real-time on-site situation. The sensing application of DMHN1
in the DCNP-moistened soils and the development of a proto-type sensing kit proved its potential for
further studies. Within this study, the first new sensing approach was disclosed; fluorescent turn-on
by reaction-based suppression of ESIPT fluorescence quenching in the intramolecular H-bonding
containing D-A-type fluorophore. The fast and selective sensing abilities of DMHN1 encourage further
applications in basic science as well as at war zone and crime scenes.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/18/2943/s1,
Supplementary Figures: representative sensing mechanism of known DCNP probes, synthetic scheme, UV/Vis
absorption and fluorescence spectra, quantum chemical calculation, NMR analysis, and HR-mass spectra.
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Abbreviations

DCNP Diethylcyanophosphonate
DCP Diethyl chlorophosphate
DMMP Dimethyl methylphosphonate
TPP Tripropyl phosphate

TEP Triethyl phosphate

GA Tabun

GB Sarin

GD Soman


http://www.mdpi.com/1996-1944/12/18/2943/s1

Materials 2019, 12, 2943 10 of 12

CwW Chemical warfare

ESIPT Excited state intramolecular proton transfer

CNS Central nervous system

AChE Acetylcholinesterase

ACN Acetonitrile

EtOH Ethanol

iPA Isopropanol

DMSO Dimethyl sulfoxide

DMF N,N-dimethylformamide

EtOAc Ethyl acetate

DI H,O Deionized water

DCM Dichloromethane

PTFE Polytetrafluoroethylene
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