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Background
High throughput (or “next-generation”) sequencing has uncovered the hidden com-
plexity of microbial communities living within and upon the human body, as well as 
the link between the human microbiome and health [1–4]. The taxonomic composi-
tion of a microbial community can be inferred by sequencing PCR amplicons span-
ning variable regions of a taxonomically informative gene (i.e. the 16S rRNA gene 
or the CPN60 gene) [5–8]. Alternatively, DNA recovered from a sample can be put 
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through whole-genome sequencing (WGS), which samples the complete genomic 
content of a sample via random fragmentation and sequencing [9]. WGS differs from 
amplicon sequencing by (1) providing genomic data from all organisms in a sam-
ple—not limited to any single domain of life; (2) enabling a high degree of taxonomic 
resolution which identifies the subspecies and strains present in a sample; and (3) 
generating a "functional" metagenomic profile of the protein coding sequences (CDS) 
that are present in a sample in addition to the organisms which contain those genes 
[10]. While the term “functional” can often be used to describe predicted metabolic 
pathways, in this case are limiting our scope to the identification of CDS without pre-
supposing knowledge of any annotations.

There are three broad computational approaches used to generate an estimate of the 
functional metagenome (CDS content) of a microbial community from WGS reads: 
(1) The inferred taxonomic composition can be used to construct a custom database 
of protein-coding genes from the set of reference organisms detected in the sample 
(e.g. HUMAnN2, MIDAS) [11, 12]. (2) De novo assembly, in which the WGS reads 
are combined into contigs, which can be further used to identify open reading frames 
(e.g. metaSPAdes, IDBA-UD) [13, 14]. (3) The WGS reads can be directly mapped 
(aligned) to a closed reference of protein coding sequences (which is also a down-
stream component of HUMAnN2 and MIDAS).

Proteins can evolve by duplication events, truncation, homologous recombination, 
and other means that result in the sharing of highly conserved domains between oth-
erwise distinct CDS [15]. As a result, mapping of reads to a closed reference of CDS is 
challenged by the fact that some reads may align equally well to multiple references: 
“multi-mapping” reads.

Metagenomic tools have been benchmarked extensively for their ability to deter-
mine the taxonomic composition of a microbial community [16–19]. The relative 
ability of metagenomic analysis approaches and tools to accurately infer the CDS 
catalog of a microbial community has yet to be established. Additionally, benchmark-
ing efforts are often limited in their long-term utility by the practical challenges of 
repeating the computational analysis with the addition of newly available tools. We 
address this core challenge of benchmarking by implementing our analysis within a 
workflow management tool, Nextflow [20], which achieves a high degree of reproduc-
ibility by executing each component task within Docker containers, a portable and 
fixed computational environment. By providing this computational resource along-
side this manuscript, we hope to enable other researchers to reproduce and expand 
upon our benchmarking efforts.

Here we establish sensitivity and positive predictive value (PPV) of computational 
tools for determining the CDS content of a microbial community metagenome, using 
synthetic communities and reads generated in silico for which we know the true CDS 
content of the community. We establish that assembly-based approaches achieve a near-
perfect PPV, but struggle with sensitivity for CDS at a low sequencing coverage depth. 
Mapping-based approaches are more sensitive, particularly at low coverage depths, but 
struggle with PPV. We introduce an expectation–maximization based approach for 
mapping based metagenomics that retains the sensitivity and improves the PPV of CDS 
calls close to that of assembly-based approaches.
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Methods
Evaluating computational tools

All of the analytical steps for analyzing computational tools for CDS detection from 
metagenomes were executed within a single analytical workflow (‘evaluate-gene-
detection.nf ’) which can be downloaded from https​://githu​b.com/FredH​utch/evalu​
ate-gene-level​-metag​enomi​cs-tools​ and executed via Nextflow. Our goal is that other 
researchers will be able to use this Nextflow-based workflow to reproduce and expand 
upon the benchmarking results presented in this manuscript. That analytical work-
flow follows this approach:

1	 Simulate metagenomes (n = 100)

a	 Randomly select host-associated genomes from NCBI/RefSeq (n = 20). (A list of 
genomes from host-associated organisms is available in Additional file 1)

b	 Make a file with all of the CDS records from those genomes
c	 Assign sequencing depths for each genome from a log-normal distribution 

(mean = 5x, std = 1 log), with a maximum possible depth of 100x
d	 Make a file with the depth of sequencing for each CDS from step (1b) above
e	 Simulate reads from whole genome sequences via ART (paired-end read length 

250 bp, mean fragment length 1 kb ± 300 bp)
f	 Interleave paired end FASTQ data

2	 Run tools

a	 For assembly-based tools, perform assembly from paired end FASTQ data and 
predict CDS records from the resulting contigs

b	 For mapping-based tools, run the tool and then extract the FASTA for all 
detected CDS records

3	 Perform evaluation

a	 For each tool, align the FASTA with all detected CDS records against the set of 
truly present CDS records (from step 1b)

(1)	 Prior to alignment, both sets of FASTAs are clustered at 90% amino acid 
identity to account for sets of homologous genes in the simulated metagen-
ome

b	 Filter to the top hit for each detected CDS
c	 Assign each detected CDS as:

(1)	 True positive: the detected CDS is the mutual best hit for a truly present 
CDS

(2)	 False positive: the detected CDS does not align against any truly present 
CDS

https://github.com/FredHutch/evaluate-gene-level-metagenomics-tools
https://github.com/FredHutch/evaluate-gene-level-metagenomics-tools
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(3)	 Duplicate: the detected CDS aligns against a truly present CDS, but is not 
the best hit (i.e. there are multiple non-overlapping detected CDS records 
that each align against a single truly present CDS).

d	 Calculate accuracy metrics:

(1)	 Sensitivity is calculated as the number of true positives (TP) divided by the 
number of true positives and false negatives (FN): TP/(TP + FN)

(2)	 Positive predictive value is calculated as the number of true positives 
(TP) divided by the number of true positives and false positives (FP): TP/
(TP + FP)

(3)	 Uniqueness is calculated as the number of true positives
(4)	 (TP) divided by the number of true positives and duplicates (DUP): TP/

(TP + DUP)

FAMLI implementation

FAMLI is available as an open source software package on GitHub at https​://githu​
b.com/FredH​utch/FAMLI​. In addition, Docker images are provided at https​://quay.io/
repos​itory​/fhcrc​-micro​biome​/famli​ to facilitate easy usage by the research community 
with a high degree of computational reproducibility. FAMLI can be run with the single 
executable "famli", which encompasses:

1	 Downloading reference data and query FASTQ files (supporting local paths, FTP, 
and Amazon Web Service (AWS) object storage)

2	 Aligning query FASTQ files in amino acid space with DIAMOND
3	 Parsing the translated alignments
4	 Running the FAMLI algorithm to filter unlikely reference peptides and assign multi-

mapping query reads to a single unique reference.
5	 Summarizing the results in a single output file
6	 Copying the output file to a remote directory (supporting local paths, FTP, and AWS 

object storage)

The help flag (“-h” or “—help”) can be used to print a complete list of options, includ-
ing the flags used to run the filtering process starting from step 4 above..

FAMLI overall approach

1	 Align all input nucleotide reads in against a reference database of peptides; UniRef 90 
was used for this study [21].

2	 Calculate the coverage depth (CD) across the length of each reference, representing 
the number of reads aligning to each amino acid position of the reference.

3	 Filter out any reference sequences with highly uneven coverage:

(1)
CDSTD

CDMean

> 1.0

https://github.com/FredHutch/FAMLI
https://github.com/FredHutch/FAMLI
https://quay.io/repository/fhcrc-microbiome/famli
https://quay.io/repository/fhcrc-microbiome/famli
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where STD is standard deviation of per-base coverage values.
4	 Calculate initial score for a given query coming from a subject using the alignment 

bitscores to weight the relative possibilities for a given query, normalizing the scores 
to total to 1 for a given query.

5	 Iteratively, until no further references are pruned or a maximum number of itera-
tions is reached:

(1)	 WEIGHTING and RENORMALIZING: The score of queries being from a 
subject from the prior iteration are weighted by the sum of scores for a given 
subject, and then renormalized to sum to 1 for each query.

(2)	 PRUNING. Determine the maximum likelihood for each query. Prune away all 
other likelihoods for the query below a threshold.

6	 Repeat filtering steps 2–3 using the set of deduplicated alignments resulting from 
step 4.

Here are some examples:

For reference A and reference B that both have some aligning query reads, if there 
is uneven depth for reference A but relatively even depth across reference B, then 
reference A is removed from the candidate list while reference B is kept as a can-
didate.
If query read #1 aligns equally-well to reference A and reference C, but there is 
2× more query read depth for reference A as compared to reference C across the 
entire sample, then reference C’s alignment is removed from the list of candidates 
for query read #1.

A more detailed description of the method is available in Additional file 1. An inter-
active demonstration of our algorithm is available as a Jupyter notebook is available at 
https​://githu​b.com/FredH​utch/FAMLI​/blob/maste​r/schem​atic/FAMLI​-schem​atic-figur​
e-GB.ipynb​

Comparison of FAMLI to HUMAnN2, SPAdes, top hit, and top 20

Simulation of microbial communities

Synthetic microbial communities were simulated using ART (https​://quay.io/repos​itory​
/bioco​ntain​ers/art) 2016.06.05–h869255c_2 (sha256:1cd93ed9f680) with paired-end 
reads, a read length of 250, mean fragment length of 1000, and fragment size standard 
deviation of 300. The abundance of each member of a given community was simulated 
from a log-normal distribution with a mean of 5x, standard deviation of 1-log, and maxi-
mum of 100x. Each community contains 20 distinct genomes, drawn from the genomes 
listed in Additional file 1: “Host associated genomes”. While this total number of organ-
isms may be lower than what can be observed in some environments using metagenomic 
sequencing, we encourage other researchers to repeat this benchmarking effort using the 
provided Nextflow-based workflow if they have a particular interest in a specific level of 
community complexity. The genomes used for simulation were selected from the set of 
complete microbial genomes present in the NCBI Genome portal as of Feb. 5th, 2019, 

https://github.com/FredHutch/FAMLI/blob/master/schematic/FAMLI-schematic-figure-GB.ipynb
https://github.com/FredHutch/FAMLI/blob/master/schematic/FAMLI-schematic-figure-GB.ipynb
https://quay.io/repository/biocontainers/art
https://quay.io/repository/biocontainers/art
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while the reference databases used for mapping-based methods were generated on Dec. 
19th, 2018. As a result, approximate 4% of the genomes available for simulation were not 
a part of the reference database

Results
Sensitivity and specificity of metagenomics approaches

For each synthetic community, we cataloged the CDS present and compared these true 
positives to the reported CDS by each analytic method. For mapping-based methods, 
we allowed for duplicate calls (i.e. similar but distinct CDS sequences determined by the 
method to be roughly equally likely to be present). Comparing these CDS catalogs (true 
and inferred) we were able to calculate a positive predictive value (PPV; true positive 
/ true positive + false positive), sensitivity (true positive/true positive + false negative), 
and uniqueness (true positive/true positive + duplicates). As shown in Fig. 1, mapping-
based approaches were more sensitive, particularly when the CDS has low coverage 
depth, at a cost of PPV and uniqueness.

The mapping all-hits approach is the simplest approach, accepting as present any CDS 
that had at least one aligning short-read sequence. While very sensitive, this approach 
had dismal PPV and uniqueness. A related mapping method is to restrict to CDS with 
at least one short read that maps uniquely to that CDS: Mapping—unique hits; this 
approach yielded balanced sensitivity and PPV. FAMLI uses an expectation maximi-
zation-based iterative approach (considering evenness of coverage and total coverage 
depth) and achieves somewhat superior sensitivity and PPV as compared to the Map-
ping—unique hit approach.

HUMAaN2 uses a hybrid approach, combining taxonomic identification, mapping of 
reads to reference genomes, and then using a mapping—all-hits like approach for the 
remainder of short reads that do not map to a genome. Our experimental set-up biases 
in favor of organisms with reference genomes. In this favorable set of circumstances, 
HUMAaN2 performs well with regards to PPV (superior to any of the tested mapping 
based approaches), sensitivity (similar at all depths and low-coverage depths, slightly 
inferior to mapping approaches) and with uniqueness.

Assembly based approaches have the advantage of near perfect uniqueness (with the 
assembly process itself resulting in convergence on a single CDS), and the best PPV. Sen-
sitivity was inferior to mapping-based approaches, and varied by the coverage depth for 
a given CDS (Fig. 2).

Short reads align equally well to multiple CDS

To better understand why mapping approaches, particularly mapping with acceptance of 
all hits, has poor sensitivity, we explored the role multi-mapping reads may be playing. 
To do so, three random unique CDS were selected and 120 simulated reads were gener-
ated for each CDS, resulting in a total of 360 simulated reads. These simulated reads 
were aligned against the UniRef100 database. Each read has only one true origin CDS.

To account for sequencing errors and poor representation in the reference database, 
we accepted alignments within a certain percentage of the best alignment for a given 
read. When we accept all CDS with an alignment within 10% identity (‘top-10’) of the 
best alignment for a read, 100,468 CDS are recruited for the 360 reads, an average of 279 
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Fig. 1  Positive predictive value (PPV), sensitivity, and uniqueness of CDS calls by metagenomic analysis 
approaches. The positive predictive value (true positive over true positive plus false positive), sensitivity 
(true positive over true positive plus false negative) both overall and subsetted to CDS with 0–5x coverage, 
and uniqueness (true positive over true positive plus duplicates) on a per-CDS basis with different analysis 
approaches
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(median of 268, minimum of 77 and maximum of 537) CDS recruited from UniRef100 
per read (figure XXX D, Start).

When taking a more restricted approach, only recruiting CDS with an alignment to 
a read equivalent to the best hit, a total of 57,983 CDS are recruited, an average of 161 
(median of 165, minimum of 1 and maximum of 384) equally well aligning reference 
CDS for each simulated read.

The FAMLI approach can successfully cull multi‑mapped reads

To establish the extent of the multimapping read problem, three random CDS were 
selected from UniRef100. One hundred and twenty simulated reads were generated from 
each CDS, and combined into one set of 360 paired reads; each of these reads had one 
true origin coding sequence.

We then used Diamond to align these 360 reads against UniRef100. Even after limiting 
to only alignments within equal in quality to the best hit, there were an average of 161 
(median 165, min 1, and max 384) reference sequences tied with the best hit per read 
pair; when limited to alignments within 10% of the best identity, there was a mean of 
279, median 268, minimum 77, and max 537 aligning subjects (references) per read pair.

To filter these alignments, we developed an iterative expectation maximization-based 
approach that considered both the evenness of coverage and total depth of coverage 
(weighted by alignment quality) of a candidate CDS in order to cull the vast excess of 
recruited CDS by the mapping approach, the FAMLI algorithm (algorithmic details 
shown in Additional file  2: “FAMLI Details”). Figure  3 shows the FAMLI algorithm 
applied to the top-10 alignments. Figure 3a shows the coverage (or read depth by base 
pair) for the three true positive CDS. After filtering for coverage evenness, Fig. 3b shows 
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approaches are both more sensitive, and achieve a plateau of sensitivity at a lower coverage depth as 
compared to assembly-based methods
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Fig. 3  The problem of multiply-mapping short-reads, and the FAMLI algorithm schematized. Three hundred 
and sixty simulated reads were generated from three CDS. These simulated read was aligned against the 
UniRef100 database, and all CDS with an alignment within 10% identity of the best match were retained. a 
The read-depth coverage of the three true peptides (top) b evenness filtering is used to remove the least 
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the read-depth of some successfully filtered away references, as well as some references 
not present in the simulated sample that pass this evenness test. Figure 3c depicts the 
iterative pruning of alignments by likelihood, showing the candidate references for one 
query being successfully filtered down over ten iterations to a single reference CDS for 
the read (the true origin reference for this read).

By the conclusion of the first evenness filtering, 908 references remain (for the true 
three); the 360 reads remain with an average of 271 (median of 267, minimum of 77, and 
maximum of 398) equally-well aligning reference CDS. By the conclusion of ten iter-
ations, all reads are successfully assigned now to their true origin CDS (one reference 
CDS per read) (Fig. 3d).

Discussion
Here we introduce and employ an approach for benchmarking the performance of dif-
ferent metagenome analysis tools for determining the CDS content of the metagenome. 
This benchmarking approach is implemented within a reproducible Nextflow workflow, 
and therefore should be relatively straightforward for other researchers to reproduce 
and augment as additional tools for CDS detection become available.

We found that assembly-based tools are limited by sensitivity, particularly at low read 
coverage. The association between the sensitivity to detect a CDS and the read cover-
age depth of the CDS is worrisome; the ability of these tools to detect a protein coding 
sequence is dependent upon community factors, including the relative abundance of the 
hosting organism, more so than other approaches.

Mapping-based approaches must address the problem of short-reads from metagen-
omes aligning equally well to large numbers of distinct CDS sequences. As evident in our 
simulated communities, the ratio of true to false positive alignments can be in the hun-
dreds to one, resulting in dismal precision unless the alignments are culled or filtered. 
We suspect some of the limitations experienced by software attempting to use short 
reads to identify the functional genes encoded by microbial communities, described by 
[22], may be due to this multi-mapping read problem.

Here we demonstrate the magnitude of the problem of multiple-mapping of short 
reads to peptides, revealing a large number of equally-scored alignments; if one simply 
includes all peptides for which there is at least one short read that aligns equally as well 
as to any other peptide, the false positives outnumber true positives by an average of 
about 160:1.

We describe an algorithmic approach to correctly assign these multiply aligned WGS 
reads to the proper reference sequence, implemented as the open source software 
package FAMLI (Functional Analysis of Metagenomes by Likelihood Inference). With 
FAMLI, we are able to improve our precision (number of true positives divided by the 
sum of false and true positives) to about 80%; this performance is consistent over a 
range of community types. FAMLI is more efficient than de novo assembly at identifying 
protein-coding sequences present in a community with regards to both read depth and 
computational time. While FAMLI can be used as a standalone tool to identify protein-
coding genes, it could also easily be used to enhance the precision of existing bioinfor-
matics tools (e.g. HUMAnN2).
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The hybrid approach of establishing which taxa are present and first mapping to 
reference genomes (e.g. HUMAnN2, MIDAS) has merit, and performed well from a 
sensitivity and positive predictive value perspective in our benchmarking approach. 
We note that our approach limits our synthetic communities to being those with ref-
erence genomes. This biases in favor of this hybrid approach. In the context of micro-
bial communities with a high degree of novelty, we suspect performance would be 
poorer.

Many of the computational methods which were benchmarked in this effort can be 
run with a number of parameters for different aspects of the analysis. We used the 
default parameters for all tools as a proxy for the most common approach for new 
users, but are fully aware that the performance of any tool may change as a func-
tion of these parameters. Our simulated populations are relatively simple compared 
to many real microbial communities of interest to scientists using metagenomics. In 
order to enable other researchers to test a wider range of parameters, or to evaluate 
a particular set of reference genomes, we have provided the complete benchmarking 
computational workflow in the community supported Nextflow syntax. We encourage 
other researchers with a particular interest in one area of parameter space, commu-
nity structure, or taxonomic diversity to download and execute this benchmarking 
approach using this reproducible and containerized computational workflow.

Beyond the scope of this manuscript, but an important question to answer in future 
benchmarking studies of metagenomic analysis approaches, is how each approach 
varies when attempting to identify core genes, phylogenetically restricted genes, hori-
zontally transferred genes, and genes on mobile genetic elements.

Thinking about the relative merits of reference-based (e.g. UniRef90) or reference-
free (e.g. de novo assembly) analysis methods, one of our primary considerations was 
the efficiency of comparing results across large numbers of samples. While reference-
free approaches are free by definition from the bias inherent in reference databases, 
that lack of common reference makes it extremely challenging to compare results 
between samples. For example, comparing a set of genes between N samples is an 
O(N^2) problem that scales exponentially with the number of samples. In contrast, 
by identifying proteins from a reference database (UniRef90), all results are inherently 
comparable without any additional computation (e.g. sequence alignment), in other 
words the complexity is O(1). Put simply, with de novo assembly (SPAdes) it is much 
more difficult to compare the results for 1000 samples in contrast to just 10 samples, 
while for FAMLI or HUMAnN2 it is about the same.

Conclusion
Randomly fragmented shotgun sequencing of the metagenome of a microbial com-
munity offers the promise of inferring the functional capacity of the community 
by establishing the protein coding sequencing (CDS) present. CDS or gene-level 
metagenomics offers a more reproducible and mechanistic means of associating the 
state of the microbiome with functional outcomes in a host or environment [23]. 
Realizing this promise is predicated on having a reliable set of analytic tools for deter-
mining the CDS catalog of a microbial community.
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