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Abstract

During animal development, cellular morphogenesis plays a fundamental role in determining the shape and function of
tissues and organs. Identifying the components that regulate and drive morphogenesis is thus a major goal of
developmental biology. The four-celled tip of the Caenorhabditis elegans male tail is a simple but powerful model for
studying the mechanism of morphogenesis and its spatiotemporal regulation. Here, through a genome-wide post-
embryonic RNAi-feeding screen, we identified 212 components that regulate or participate in male tail tip morphogenesis.
We constructed a working hypothesis for a gene regulatory network of tail tip morphogenesis. We found regulatory roles
for the posterior Hox genes nob-1 and php-3, the TGF-b pathway, nuclear hormone receptors (e.g. nhr-25), the heterochronic
gene blmp-1, and the GATA transcription factors egl-18 and elt-6. The majority of the pathways converge at dmd-3 and mab-
3. In addition, nhr-25 and dmd-3/mab-3 regulate each others’ expression, thus placing these three genes at the center of a
complex regulatory network. We also show that dmd-3 and mab-3 negatively regulate other signaling pathways and affect
downstream cellular processes such as vesicular trafficking (e.g. arl-1, rme-8) and rearrangement of the cytoskeleton (e.g.
cdc-42, nmy-1 and nmy-2). Based on these data, we suggest that male tail tip morphogenesis is governed by a gene
regulatory network with a bow-tie architecture.
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Introduction

Morphogenesis involves the coordinated change in the shape of

cells and tissues during development, eventually giving rise to

functional structures in the adult animal. Such coordinated change

must occur at the correct time and in the proper position. In the

case of structures that differ between the sexes, this process must

also be regulated sex-specifically. While many genes and pathways

are known that regulate development, the identity of genes that

link regulation to the execution of morphogenesis have been more

difficult to ascertain [1]. The many different cues and signals that

must be integrated to control morphogenesis, combined with the

complexity of the molecular machinery associated with this

process, suggest that a large number of genes and gene products

are involved.

To elucidate the molecular mechanisms underlying morpho-

genesis, the first step is thus to determine what components are

involved in its regulation and execution and to determine how they

interact in a network. In the pursuit of such an aim, it is

advantageous to use a simple model structure that still demon-

strates all the properties of cellular morphogenesis. The model we

use is the male tail tip of Caenorhabditis elegans. This structure is

made up of four epithelial ("hypodermal") cells, hyp8–hyp11,

which are born during embryogenesis. Embryonic morphogenesis

of hyp8–hyp11 leads to the formation of a pointed, whip-like tail

tip. The tail tip retains this shape throughout the lifespan of the

hermaphrodite. However, during the last larval stage (L4) of

males, these conical cells are dramatically remodeled to form the

rounded tip of the adult [2–4]. Male tail tip morphogenesis begins

when hyp8–11 fuse to form a syncytium; fusion is followed by

detachment of the cells from the overlying cuticle. Towards the

middle of the L4 stage, the syncytium changes its shape from

conical to round and moves anteriorly; these morphogenetic

events cease at the end of the L4 stage (Figure 1A). In

hermaphrodites, the tail tip cells do not fuse and do not change

shape. The tail tip model thus allows the study of a sexual

dimorphism at the cellular level. Another advantage of this model

is that male-specific mutations in C. elegans can be propagated

through the self-fertile hermaphrodites, even if the mutations affect

male fertility, mating ability, or viability.

A few mutations in genes involved in the regulation of tail tip

morphogenesis have been described previously [5–7]. Some of

these mutations impede or completely block tail tip morphogen-

esis, resulting in the retention of the pointed larval tail tip in the

adult male, a phenotype that we call "Lep" (Figure 1C). This

phenotypic designation is derived from the term "leptoderan,"
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which—in the taxonomic literature—describes the unretracted,

pointed male tail tip in some nematodes related to C. elegans [8,9].

Other mutations cause precocious onset of (and thus an extended

total period for) tail tip retraction, which results in over-retracted

("Ore") and thus abnormally shortened adult male tails [6]

(Figure 1C). Studies of these mutants have revealed a few of the

important regulatory components for tail tip morphogenesis.

DMD-3 was suggested to be a central regulator of tail tip

morphogenesis, as it is required for tail tip retraction in males and

is sufficient for inducing ectopic morphogenesis in hermaphrodite

tail tips [7]. The gene encoding this DM-domain transcription

factor, dmd-3, is a homolog of dmrt1 in vertebrates and doublesex in

Drosophila [10,11]. DMD-3 functions cooperatively and partially

redundantly with a closely related factor, MAB-3 [7], also involved

in somatic sex determination [12]. TRA-1, the most downstream

global regulator in the sex-determination pathway, inhibits the

expression of these genes in hermaphrodites [7,13,14]. The

initiation of dmd-3 expression at the proper developmental stage

is controlled by the "heterochronic" pathway [7]. Finally,

maintenance of dmd-3 expression levels is regulated by Wnt

signaling and a feedback loop involving both MAB-3 and DMD-3

[7].

Only one effector of a cellular process is known to be

downstream of DMD-3 and MAB-3, namely the fusogen-encoding

gene eff-1, which is important for the many fusions that occur

between epithelial cells in C. elegans [15,16]. DMD-3 and MAB-3

induce expression of eff-1 through an unknown post-transcriptional

mechanism [7].

To find additional genes with roles in tail tip morphogenesis, we

carried out a genome-wide, post-embryonic RNAi-feeding screen.

This screen identified 212 candidates. Starting with these

candidates, we used network model-building [17], transgenic

reporter lines and expression epistasis analysis to construct a first

draft of the gene regulatory network for tail tip morphogenesis. We

found that dmd-3 expression is regulated by a nuclear hormone

receptor (NHR-25), a new heterochronic gene, Hox anteroposterior

patterning factors, and GATA transcription factors. NHR-25 is in

turn negatively regulated by dmd-3 and mab-3. In addition, dmd-3

and mab-3 negatively regulate other signaling modules, including the

TGF-b pathway. We also found that DMD-3 and MAB-3 regulate

the localization or expression of genes involved in vesicular

trafficking/endocytosis, cell polarity and cytoskeletal organization.

Our data thus strongly support the hypothesis that DMD-3, MAB-3

and NHR-25 are central regulators of tail tip morphogenesis.

The genetic architecture for tail tip morphogenesis which

emerges from this analysis closely resembles the "bow-tie"

architecture, a possibly universal characteristic of robust, evolvable

systems [18]. A bow-tie network has many inputs and outputs that

are connected through a conserved core. Versatile weak linkages

form the interface between the core and the input and output. In

such a network, there is not a simple flow of information from

input to output through the core; instead, there is extensive global

and local feedback regulation found at every level [19].

A bow-tie architecture has been found to underlie a variety of

biological networks: metabolic networks [20,21], the Toll-like

receptor signaling network [22], the epidermal growth factor

receptor signaling network [23], the osmolarity glycerol signal-

transduction pathway in yeast [24], stress response networks [25]

and the immune system [26,27]. In fact, it has been proposed that

the bow-tie architecture of regulatory networks is ubiquitous

because this structure ensures not only robustness but also

evolvability [18,19].

We found evidence for the existence of each aspect of a bow-tie

architecture in the gene network governing tail tip morphogenesis.

To our knowledge, this is the first time that this kind of network

architecture has been explicitly identified in the context of

development and morphogenesis. However, we believe that other

developing systems are also governed by bow-tie genetic networks,

supporting the proposition that this network architecture is universal.

Results

Genome-wide RNAi screen identifies 212 candidate
genes involved in male tail tip morphogenesis

To identify tail tip morphogenesis genes, we cultured animals on

dsRNA-expressing bacteria from L1 to adult and looked for

evidence of defective morphogenesis. Using the Ahringer RNAi-

feeding library [28], we screened 16,131 genes, approximately

83% of the genome. Genes that gave a positive Lep or Ore

phenotype were screened again; only repeatable positives were

kept as candidates. We identified 212 genes, of which 190

produced Lep phenotypes, 14 produced Ore phenotypes, and 8

produced both Lep and Ore phenotypes in a single experiment

(Figure 1D). Positives in each category were analyzed for GO-

attribute enrichment using FuncAssociate [29]. Relative to the

genome, Lep positives showed enrichment of GO-attributes

associated with components or processes involved in morphogen-

esis, such as anchoring junctions and cell migration. However, Ore

and Ore/Lep positives were enriched for genes involved in cell

division/cytokinesis, and nuclear/chromosome organization

(Figure 1D). The 212 candidates are listed and categorized by

developmental pathway or annotated cellular process (if known) in

Table S1. Raw RNAi data are publicly available along with

representative images via the "Male Tail Tip Database" (MTTdb,

at http://wormtails.bio.nyu.edu).

We identified components of conserved and widely studied

developmental regulatory pathways (e.g. Hox anteroposterior

patterning factors, TGF-b signaling module, heterochronic

pathway, and GATA transcription factors). Importantly, the

screen also identified components of fundamental cellular

structures and processes that are likely to be important for the

Author Summary

Morphogenesis is a process in which cells change their
shape and position to give rise to mature structures.
Elucidation of the molecular basis of morphogenesis and
its regulation would be a major step towards understand-
ing organ formation and functionality. We focus on a
powerful model for morphogenesis, the four-celled tail tip
of the C. elegans male, which undergoes morphogenesis
during the last larval stage. To comprehensively determine
the components that regulate and execute male tail tip
morphogenesis, we performed a genome-wide RNAi
screen. We identified 212 genes that encode proteins with
roles in fundamental processes like endocytosis, vesicular
trafficking, cell–cell communication, and cytoskeletal
organization. We determined the interactions among
several of these genes to reconstruct a first draft of the
genetic network underlying tail tip morphogenesis. The
structure of this network is consistent with the "bow-tie
architecture" that has been proposed to be universal and
confers evolvability and robustness to biological systems.
Bow-tie networks have a conserved core which is linked to
numerous input and output components. Many compo-
nents of the network underlying tail tip morphogenesis in
C. elegans are conserved all the way to humans. Thus,
understanding tail tip morphogenesis will inform us about
morphogenesis in other organisms.

Genetic Architecture of C. elegans Morphogenesis
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execution of morphogenesis. These include vesicular trafficking/

endocytosis, cellular polarity, cytoskeleton, cell junctions, and

nuclear export/import. Genes with the most severe and/or most

penetrant RNAi phenotypes were selected for further study

(Table 1).

Regulatory modules
Hox genes play central roles in shaping animal body plans by

distinguishing different fields of cells along the anteroposterior axis

[30]. Hox proteins regulate not only the expression of other

transcription factors, but also of genes involved in specific

processes such as morphogenesis [31]. Our screen has shown that

posterior Hox patterning is crucial for tail tip morphogenesis.

RNAi knockdowns of the Abd-B homologs php-3 and nob-1

postembryonically cause Lep phenotypes (Figure S1A, Tables S1

and S2). Likewise, a php-3 null allele, ok919, results in a 100%-

penetrant Lep phenotype of moderate severity (Figure S1B, Table

S2). The severity of the php-3(ok919) phenotype is increased with

nob-1 RNAi treatment (Table S2). A nob-1::gfp translational fusion

construct (containing a genomic fragment with the nob-1 gene and

Figure 1. Overview of tail tip morphogenesis and the experimental design for the genome-wide RNAi screen for tail tip defects in
male C. elegans. (A) Schematic of tail tip morphogenesis: the tail tip cells hyp8–hyp11 fuse and then detach from the overlying cuticle. The newly
formed syncytium changes shape—becoming rounded—and migrates anteriorly. By the adult stage, the male tail has flattened out ventrally. (B)
Screening methodology: L1 larvae were fed dsRNA-producing bacteria on thin films of nutrient agar and grown to adulthood. A square of agar
containing worms was mounted on a slide and scored at 4006magnification. (C) The phenotypes scored included WT (wild type), Lep (leptoderan),
and Ore (over-retracted). Additional phenotypes scored but not reported here were spicule morphology and general male tail defects (see http://
wormtails.bio.nyu.edu). (D) Distribution of the phenotypes among the 212 positive genes; for 8 genes, Lep and Ore tails were observed in the same
experiment. GO attribute enrichment via FuncAssociate [29] for genes causing Lep, Ore and Lep+Ore phenotypes upon RNAi. For each phenotype,
the top six categories that were over-represented are indicated with bar graphs depicting the LOD scores, i.e. the log of the odds that the frequency
of a GO category is no different than that for all genes in the genome.
doi:10.1371/journal.pgen.1002010.g001
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9 Kb of the 59-regulatory region) is expressed in the tail tip cells

hyp8–11 throughout larval development in both sexes (Figure 2A

and data not shown). A php-3::gfp translational fusion driven only

by the short 500-bp intergenic region between nob-1 and php-3

shows variable expression in the nuclei of hyp8–11 during tail tip

morphogenesis (data not shown). This latter transgene only

partially rescues the tail tip phenotypes of php-3 mutants (Table

S2), suggesting that regulatory elements upstream of both php-3

and nob-1 are required for appropriate expression of php-3. Using a

tail tip-specific promoter (from the gene lin-44 [32]), we observed

that expression of the PHP-3::GFP fusion protein product in

hyp8–11 is sufficient to rescue the php-3(ok919) Lep phenotype

(Figure S2A and Table S2). Mosaic animals that only express

PHP-3::GFP in a subset of tail tip cells do not show rescue (Figure

S2B). These data suggest that Hox-mediated patterning by PHP-3

and NOB-1 is carried out cell-autonomously and is required in all

tail tip cells (hyp8–11) for proper morphogenesis.

GATA transcription factors play important regulatory roles

during the differentiation of multiple cell types in normal

development [33,34] and during tumorigenesis [35]. RNAi

knockdown of the gene for the GATA factor egl-18 resulted in

Lep phenotypes (Figure S1C, Tables S1 and S2). An egl-18 null

allele, ok290, causes Lep phenotypes of varying severity with 45%

penetrance (Figure S1D, Table S2). Another GATA transcription

factor that was missed in our RNAi screen, elt-6, shares an operon

with egl-18 [36]. We repeated the RNAi treatment against elt-6 and

observed low-penetrance, low-severity tail tip defects (Table S2).

RNAi treatment for elt-6 in the egl-18(ok290) mutant strain,

Table 1. Genes identified in the RNAi screen that caused the most severe and/or penetrant tail tip morphogenesis defects.

Gene Sequence name Gene function/domain
Closest human
ortholog? RNAi phenotype1 Mutant alleles2

abcx-1 C56E6.1 ABC-transporter ABCG5 Lep - 3

arl-1 F54C9.10 ADP-Ribosylation Factor ARL1 Lep - 3

blmp-1 F25D7.3 Zinc finger and SET domain containing protein BLIMP1 Ore & Lep tm548

bub-1 R06C7.8 Serine/threonine kinase BUB1 Ore & Lep - 3

cdc-42 R07G3.1 Rho-GTPase CDC42 Lep - 3

cdt-1 7 Y54E10A.15 DNA-replication licensing factor CDT1 Ore & Lep - 3

daf-4 C05D2.1 TGF-b Receptor ACVR2B Lep - 3

egl-18 F55A8.1 GATA Transcription factor GATA1 Lep ok290

inx-12 ZK770.3 Innexin - 4 Lep - 3

inx-13 Y8G1A.2 Innexin - 4 Lep - 3

mix-1 M106.1 Chromosome condensation complex, condensin SMC2 Ore - 3

nhr-25 F11C1.6 Nuclear hormone receptor NR5A2 Lep ku217

nmy-2 F20G4.3 Non-muscle myosin MYH11 Lep - 3

nob-1 Y75B8A.2 Abd-B Homeodomain transcription factor HOXD12 Lep - 3

npp-3 K12D12.2 Nucleoporin NUP205 Ore - 3

npp-6 7 F56A3.3 Nucleoporin NUP160 Ore - 3

php-3 Y75B8A.1 Abd-B Homeodomain transcription factor HOXA11 Lep ok919

plk-1 C14B9.4 polo-like serine/threonine kinase PLK1 Ore & Lep - 3

pri-2 7 W02D9.1 Eukaryotic-type DNA primase PRIM2A Ore - 3

ptl-1 F42G9.9 Tau-like microtubule binding protein MAP2;MAP4 Lep ok621

ran-3 C26D10.1 Nuclear export/import, RCC1 domain HERC2;RCC1 Ore - 3

rcn-1 F54E7.7 Calcipressin, negative regulator of calcineurin RCAN1/DSCR1 Lep tm2021 5

rme-8 F18C12.2 Receptor-mediated endocytosis-defective DNAJC13 Lep b1023

rpa-1 F18A1.5 DNA-binding replication protein RPA1 Ore - 3

sma-3 R13F6.9 SMAD SMAD5 Lep e491

smc-4 F35G12.8 Chromosome condensation complex, condensin SMC4 Ore & Lep - 3

wht-5 F19B6.4 ABC-transporter ABCG1 Lep ok806 6

xpo-2 Y48G1A.5 Nuclear export factor CSE1L Ore & Lep - 3

The CGC (Caenorhabditis Genetics Center) gene name, the cosmid-based "GenePairs" name, a brief description and/or predicted human ortholog, and the tail tip
phenotype produced by RNAi via feeding are provided for each gene. For some genes, mutants were analyzed and the phenotypes observed in the screen were
validated.
1For phenotypes see text.
2Tested mutant alleles that show tail tip phenotypes similar to the RNAi phenotype (see Table S2 for details).
3Not tested or the mutant was not available.
4INX-12 and INX-13 are innexins, invertebrate-specific gap junction proteins, apparently unrelated to vertebrate connexins.
5Mutants were not crossed to the him-5(-) background and thus Lep phenotypes were not quantified. However, a few males (N = 2) were observed with tail tip, ray, and
spicule defects.
6Mutants did not show Lep phenotypes but did display more widespread male tail defects (i.e. truncated posteriors, missing rays and fan).
7Identified as a let-7 suppressor by Ding et al. (2008) [44].
doi:10.1371/journal.pgen.1002010.t001
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however, dramatically increased the penetrance and severity of the

tail tip defects, such that tail tip morphogenesis failed altogether in

some individuals (Table S2). Interestingly, an egl-18::gfp transla-

tional fusion is expressed in the nuclei of the main body epidermal

syncytium hyp7, but appears to be excluded from the tail tip cells

hyp8–11 (Figure 2B). This observation suggests that EGL-18 and

ELT-6 function in cells adjacent to the tail tip to regulate tail tip

morphogenesis cell-nonautonomously. Furthermore, transforming

wild-type animals with the egl-18/elt-6 operon regulated by the lin-

44 promoter disrupted morphogenesis (data not shown), suggesting

that morphogenesis requires exclusion of these GATA factors from

hyp8–11. In other epidermal cells, it has been observed that EGL-

18 and ELT-6 repress cell fusion [37]. Thus, their exclusion from

the tail tip cells may be required to allow tail tip cell fusion and

subsequent morphogenesis.

TGF-b signaling is a major conserved cell-signaling module

which regulates multiple processes during the development of all

animals and also during the progression of cancer [38]. The screen

identified two components of this pathway. RNAi treatment

against sma-3, which encodes a Smad protein, and daf-4, encoding

the TGF-b receptor, resulted in Lep phenotypes (Figure S1E,

Tables S1 and S2). A sma-3 null allele, e491, resulted in a 57%-

Figure 2. Expression patterns of sample regulatory genes identified in the RNAi screen. Fluorescent micrographs for early, middle and
late L4 larvae and schematic drawings for early and late L4 larvae are shown in the upper and lower portions of each panel, respectively. (A) NOB-
1::GFP is expressed in hyp8–11 throughout larval development. (B) EGL-18::GFP is expressed in the male tail but not in hyp8–11. (C) SMA-3::mCherry is
cytoplasmic in early L4 and begins to accumulate in the nuclei of the tail tip cells. It then remains nuclear and cytoplasmic throughout tail tip
morphogenesis. (D) DAF-4::YFP localizes to the membranes of hyp8–11 prior to and during morphogenesis. (E) An nhr-25 transcriptional reporter
shows expression in hyp8–11 at the beginning of morphogenesis, followed by a rapid shutoff. (F) BLMP-1::GFP is expressed in the cytoplasm and
nuclei of hyp8–11 throughout larval development.
doi:10.1371/journal.pgen.1002010.g002
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penetrant low-severity Lep phenotype (Figure S1F, Table S2). Of

the other known components of the TGF-b pathway, only sma-2

showed any RNAi phenotype: RNAi against sma-2 significantly

enhanced the penetrance of the Lep phenotype of sma-3(e491)

(Table S2). A transgenic strain expressing a sma-3::mCherry

translational reporter shows expression at low levels in the

cytoplasm of the tail tip of both sexes at the beginning of the L4

stage. In males, the SMA-3::mCherry fusion protein enters the

nuclei of hyp8–11 prior to tail tip morphogenesis and remains in

both the cytoplasm and nuclei during morphogenesis (Figure 2C).

In hermaphrodites, SMA-3::mCherry remains cytoplasmic

throughout L4 and never enters the nuclei (data not shown).

The dynamic localization pattern of SMA-3::mCherry suggests

that TGF-b-mediated gene expression occurs concurrently with

tail tip morphogenesis. Consistent with this hypothesis, DAF-

4::YFP fusion protein localizes to the plasma membranes of hyp8–

11 during tail tip morphogenesis (Figure 2D). Taken together, the

RNAi results, loss-of-function mutant phenotypes and expression

patterns of sma-3 and daf-4 suggest that TGF-b signaling is

required during tail tip morphogenesis.

Previous work has shown that Wnt signaling plays a crucial role

in the regulation of tail tip morphogenesis [5]. Consistent with

those findings, the RNAi screen identified additional genes that are

in or interact with the Wnt pathway. RNAi treatments against sys-

1 (b-catenin) and lit-1 (Nemo-like kinase) each resulted in Lep

phenotypes (Table S1, Figure S3C, S3D). A transgenic strain

expressing a SYS-1::GFP fusion protein shows faint cytoplasmic

expression in hyp8 and hyp11 but not in hyp9 or hyp10 (Figure

S3C). A strain expressing a LIT-1::GFP fusion protein shows

nuclear expression in hyp9 and hyp10 but not in hyp8 or hyp11

prior to morphogenesis (Figure S3D).

We identified multiple nuclear hormone receptor genes in our

screen: nhr-9, nhr-23, nhr-25 and nhr-165. NHR-25 is the C. elegans

homolog of FTZ-F1 [39] which is a highly conserved protein with

diverse functions regulating embryonic patterning [40,41], and

ecdysone-mediated molting in Drosophila [42]. Both nhr-25 RNAi

and a hypomorphic allele, ku217, showed Lep phenotypes (Figure

S1G and S1H, Tables S1 and S2). Furthermore, nhr-25 RNAi

treatments on the ku217 strain showed a complete lack of male tail

morphogenesis in 33% of the animals (N = 24, Table S2), a

phenotype reminiscent of the mab-3(e1240);dmd-3(ok1327) double

mutant [7]. We were not able to produce transgenic lines

expressing NHR-25 fusion proteins due to lethality, as previously

reported [43]. Instead, we made a transgenic strain expressing a

transcriptional reporter containing the 59- and 39-regulatory

regions for nhr-25. This reporter shows a dynamic expression

pattern in which expression in hyp8–11 is intense prior to and at

the beginning of morphogenesis, rapidly shuts off in late L4, and is

never on in adult animals (N = 34 adults) (Figure 2E). RNAi

against another nuclear hormone receptor gene, nhr-165, showed a

low-penetrant, mild, yet reproducible Lep phenotype upon RNAi

treatment (Table S1, and Figure S3A). An nhr-165::gfp translational

reporter shows nuclear expression in the lateral hypodermis (hyp7,

but not hyp8–11) near the time of larval molts. This expression is

highest and seen in the largest number of cells in the tail prior to

the L3–L4 molt (Figure S3A).

New genes that temporally control morphogenesis
The heterochronic pathway ensures that tail tip morphogenesis

is initiated precisely at the beginning of the L4 stage [6]. We

identified genes in this pathway: the zinc-finger transcription factor

gene blmp-1, and known suppressors of the miRNA let-7 [44].

BLIMP-1 is a transcriptional repressor that regulates ecdysone-

mediated molts in Drosophila [45] and differentiation of multiple

cell types in humans and mice, such as lymphocytes [46] and

primordial germ cells [47,48]. Intriguingly, BLIMP-1 is a target of

let-7-mediated degradation in Reed-Sternberg cells, a Hodgkin-

lymphoma cell line, suggesting a possibly conserved interaction

with the heterochronic pathway, of which let-7 is a member

[49,50]. RNAi treatments directed against blmp-1 produced Ore

phenotypes (Table S1). A deletion allele, tm548, produces an Ore

phenotype with 100% penetrance (Table S2) due to precocious

initiation of tail tip morphogenesis during the L3 stage (N = 26,

data not shown). A transgenic line expressing a BLMP-1::GFP

fusion protein shows both nuclear and cytoplasmic expression in

hyp8–11 throughout development, although cytoplasmic expres-

sion is most intense during tail tip retraction (Figure 2F).

Of the 41 suppressors of let-7 lethality identified by Ding et al.

[44], six were positives in our screen. RNAi knockdown of two (pri-

2, npp-6) resulted in the Ore phenotype, of two others (spg-7, smo-1)

in the Lep phenotype and of two further genes (cdt-1, xpo-2) in both

phenotypes in a single experiment. Four of these genes—pri-2, npp-

6, cdt-1, and xpo-2—are predicted by N-Browse [17] to interact in

a subnetwork that includes other genes for which RNAi

knockdown also produced Ore phenotypes (Figure 3). It is thus

possible that these additional genes also influence the timing of tail

tip morphogenesis. It is still unclear why both Ore and Lep

phenotypes are observed in a single experiment. One possible

explanation is that precision in timing of tail tip morphogenesis is

lost when certain gene-products are removed. In this case,

morphogenesis might begin too early in one animal and too late

in another, leading to Ore tails and Lep tails, respectively.

Post-transcriptional regulation is important for tail tip
morphogenesis

Post-transcriptional regulation appears to play an important role

during the coordination of tail tip morphogenesis, as our screen has

identified multiple genes that encode RNA splicing factors, kinases,

phosphatases and ubiquitinating enzymes. One such gene is ubc-12,

which is a part of the NED-8 conjugating system and has been shown

to be important in epidermal differentiation during embryogenesis in

C. elegans [51]. RNAi-knockdown of ubc-12 resulted in larval lethality

in the RNAi hyper-sensitive rrf-3(-) background (Table S4). However,

we identified ubc-12 in a pilot screen which was carried out in the

wild-type background; ubc-12 RNAi treatments produced a highly

penetrant and severe tail tip defect (Figure S3B). UBC-12::GFP

expresses intensely in the cytoplasm of hyp10 just prior to and during

tail tip retraction (Figure S3B).

Components of junctions, organelles, and the
cytoskeleton required for tail tip morphogenesis

We identified many genes known to play central roles during

the execution of morphogenesis. Such genes encode proteins

involved in vesicular trafficking, endocytosis, cell-cell communi-

cation, cytoskeletal rearrangement, establishment of cellular

polarity and cell-cell transport.

Vesicular trafficking/endocytosis machinery. Several

genes identified in our screen are predicted to function in

endocytosis or vesicular trafficking, including arl-1, agef-1, rme-8,

rab-6.2, dab-1 and rab-14. We focused our attention on rme-8 and arl-

1 because of their strong RNAi phenotypes. RNAi-knockdown of

rme-8, a gene essential for receptor-mediated endocytosis [52],

produces a dramatic disruption in tail tip retraction and male tail

morphogenesis in general. Adult males lack rays and a fan and the

tail tip is completely unretracted; however, spicules are present

(Figure 4A). The same phenotype was seen in the temperature-

sensitive lethal allele, rme-8(b1023ts), at the permissive temperature

Genetic Architecture of C. elegans Morphogenesis
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(Table S2). RME-8::GFP is localized in small round structures

(which we interpret as vesicles) that form at the apical surfaces of the

detaching tail tip cells and are concentrated at the cell surfaces

during retraction (observed in 50/52 cases) (Figure 4A). Tail tip

retraction is also disrupted upon knocking down arl-1, encoding an

ADP-ribosylation factor-like protein (Figure 4B). Expression of

ARL-1::GFP is cytoplasmic and extremely faint in hyp8–11 during

early L4, prior to tail tip retraction (28/32 animals) (Figure 4B).

Occasionally, bright expression is seen in hyp10 (4/32 animals).

ARL-1::GFP becomes more intense and localizes to puncta

(possibly vesicles) after rounding of the cells has occurred

(Figure 4B). In adult animals, hypodermal expression is absent,

but neuronal expression (e.g., in PHCL and PHCR) is apparent in

all animals (N = 35).

Gap junctions. Transmission electron microscopic recons-

truction of the tail tip revealed the presence of gap junctions

between the hyp cells in the tail [3]. The gap junction protein-

encoding genes, inx-12 and inx-13 show Lep phenotypes of varying

severity upon RNAi treatment (Figure 4C, 4D and Table S1).

Transcriptional reporters for both inx-12 (YFP) and inx-13 (CFP)

are expressed at a low level in hyp8–11 prior to tail tip

morphogenesis but more highly during retraction (Figure 4C,

4D). Because this increase in expression occurs after the tail tip

cells have fused with each other, we predict that these innexins

establish new junctions between the tail tip syncytium and other

cells, although it is also possible that they form hemichannels.

Cell polarity and cytoskeleton. Our data suggest that

morphogenesis of the tail tip is carried out by an asymmetric

cytoskeletal rearrangement that drives the anteriorly directed

"retraction". The RNAi screen identified a role for the Rho-

GTPase encoded by cdc-42, for non-muscle myosins encoded by

nmy-1 and nmy-2, for a Rho-GEF encoded by ect-2, for an

intermediate filament protein encoded by ifc-2, and for a

microtubule binding protein encoded by ptl-1 (Table S1). RNAi-

knockdown of cdc-42 results in a highly penetrant and severe Lep

phenotype (Figure 4E, Table S1). A CDC-42::GFP fusion protein is

diffusely distributed in the cytoplasm of the tail tip cells at the early

L4 stage and then localizes to foci at the apical surfaces of the tail tip

cells just before retraction begins at mid-L4 (Figure 4E). During

retraction, CDC-42::GFP again becomes diffuse in the cytoplasm.

RNAi-knockdown of nmy-2 also resulted in tail-tip retraction defects

(Figure 4F and Table S1). Using confocal microscopy and 3-

dimensional reconstruction of L4 males expressing nmy-2::gfp, we

observed a cap of NMY-2::GFP that forms at the posterior end of

the rounding, retracting tail tip (Video S1 and Figure S4) and along

the ventral surface where the tail tip cells begin to pull away from

the larval cuticle. Also, foci of NMY-2::GFP form at the apical

surfaces with fibrous projections from these foci into the cells (Figure

S4). Later, NMY-2::GFP becomes very intense in the region where

the ray tips will form (Video S2). A strain expressing NMY-

2::mCherry shows the same pattern (Figure 4F).

ABC-transporters. ATP-binding cassette (ABC) transporters

play central roles in bacterial drug resistance, and mammalian

metabolism and immune responses [53]. The C. elegans ABC

transporter-encoding gene, abcx-1, showed a Lep phenotype upon

RNAi (Figure 4G and Table S1). An ABCX-1::GFP fusion protein

shows male-specific expression during the transition from L3 to L4

both on the membrane and in the cytoplasm in hyp8, 9 and 11,

but not in hyp10. This expression fades and becomes extremely

faint during tail tip retraction (Figure 4G).

Genes expressed in the PHC neurons
Adjacent to the tail tip cells lie the dendritic projections of the

PHC neurons. Two genes that produced Lep phenotypes upon

Figure 3. Genes with Ore-like phenotypes. (A) DIC images of male
tails: RNAi of smc-4 resulted in Ore (arrow) and Lep (arrowhead)
phenotypes. npp-3 RNAi resulted in severe Ore tails (arrow). (B)
Subnetwork of genes that produce the Ore phenotype as reconstructed
by N-Browse [17]. Thirteen of the 22 genes with an Ore phenotype are
tightly clustered: purple, Ore RNAi phenotype; green, Lep RNAi
phenotype; black edges: predicted genetic interactions; orange edges:
expression correlation; blue edges: phenotypic correlation in the
embryo; green edges: protein-protein interaction (multiple data
sources, see [17]).
doi:10.1371/journal.pgen.1002010.g003
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Figure 4. Effectors of morphogenesis identified in the RNAi screen. DIC images of RNAi phenotypes in adult males (top of each panel),
expression patterns in the male tail of early L4 (eL4), mid L4 (mL4) and/or late L4 (lL4) (middle of each panel), and schematic of expression/localization
patterns (bottom of each panel). Arrows in the DIC images indicate Lep tail tips; arrows in the fluorescent images indicate localization patterns of
interest. (A) rme-8(RNAi) results in a total failure of tail tip morphogenesis. RME-8::GFP localizes to the edge of detaching and retracting tail tip cells as
puncta (depicted as dark green dots in the schematic). (B) arl-1(RNAi) causes a disruption of tail tip retraction. ARL-1::GFP is expressed cytoplasmically
at extremely low levels in hyp8–11 prior to morphogenesis (eL4); during morphogenesis (lL4), it localizes to distinct puncta (dark green dots in the
schematic). (C, D) inx-12(RNAi) and inx-13(RNAi) result in subtle Lep phenotypes. Reporters for inx-12 and inx-13 are expressed in tail tip cells prior to
and during morphogenesis. (E) cdc-42(RNAi) results in a Lep phenotype. CDC-42::GFP is cytoplasmic prior to tail tip retraction, localizes to the
membranes and discrete puncta during retraction (arrow), and becomes cytoplasmic again in late L4 and adults. (F) nmy-2(RNAi) results in Lep
phenotypes. NMY-2::mCherry localizes to the posterior end of retracting tail tip cells and to the ventral surface of the male tail (arrowheads). (G) abcx-
1(RNAi) results in Lep phenotypes. ABCX-1::GFP is expressed in hyp8, 9 and 11 prior to but not during morphogenesis. Expression is absent from
hyp10 (arrowhead). (H) rcn-1(RNAi) causes Lep phenotypes. RCN-1::GFP is expressed in PHCL and PHCR (arrows), as well as in other more anterior
neurons during tail tip morphogenesis. After morphogenesis, expression is intense in the phasmid socket cells (arrowhead).
doi:10.1371/journal.pgen.1002010.g004
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RNAi treatment are expressed in these neurons but not in the tail

tip cells: the calcipressin-encoding gene rcn-1 [54] and ptl-1, a gene

encoding a tau-like microtubule-associated protein [55,56]. A null

allele of ptl-1, ok621, produced Lep phenotypes with 23%

penetrance (Table S2). PTL-1::GFP and RCN-1::GFP fusion

proteins are expressed in the PHC neurons prior to and during

hypodermal morphogenesis. In adults, PTL-1::GFP is expressed in

most neurons of the tail (data not shown). RCN-1::GFP is

expressed in most tail neurons and in the support cells of the

phasmid neurons (socket cells, Figure 4H). This pattern is

consistent with the previously described adult expression pattern

of RCN-1 [54].

A genetic architecture of tail tip morphogenesis
With a list of genes required for tail tip morphogenesis, we next

sought to characterize the interactions between these genes. We

constructed a working hypothesis for these interactions using N-

Browse, a publicly available database which integrates the

information from numerous genome-wide studies to build gene

networks [17]. We manually entered our candidate genes into N-

Browse, excluding those that did not have predicted functions or

known interactors. N-Browse produced a genetic network that

included not only our candidate tail tip morphogenesis genes, but

additional genes predicted to be nearest-neighbor interactors. To

the resulting N-Browse network, we manually added gene

interactions (edges) based on published work not represented in

N-Browse [6,7,44,51,57–61] (Figure 5). This analysis predicts the

involvement of genes not identified in our screen. We tested two of

these predictions by repeating RNAi knockdown with different

methods and/or by scoring larger numbers of males. We could

thus validate roles in morphogenesis for elt-6 and vav-1. elt-6 has

genetic interactions with egl-18 (positive in our screen) in other

contexts. It showed a low-penetrance Lep phenotype when the

RNAi experiment was repeated and more males were scored. In

addition, elt-6(RNAi) enhances the Lep phenotype of egl-18(ok290)

mutants (Table S2). Also, the network model predicts that vav-1

has interactions with php-3, cdc-42 and inx-12 (all positives in our

screen, Figure 5). Although vav-1 treatment by RNAi via feeding

did not result in detectable phenotypes, administering RNAi

against vav-1 by soaking did cause tail tip defects (data not shown).

We next asked whether the network model—developed from

information in other systems—has biological relevance for tail tip

morphogenesis. To this end, we tested a selection of the predicted

interactions by genetic and expression epistasis analyses. The

results are detailed below.

Components upstream of dmd-3 and mab-3. Previous

work [7] proposed that dmd-3 and mab-3 play a central role in the

regulation of tail tip morphogenesis. If so, we would predict that

many regulatory pathways interact with these genes. To test this

prediction, we compared dmd-3 expression in various mutant

backgrounds to that in wild-type males. In wild type, the expression

of a dmd-3.yfp transcriptional reporter coincides with the

morphogenesis of the male tail tip, as previously reported [7]

(Figure 6A). Expression of dmd-3.yfp is reduced in the php-3(ok919)

mutant background (N = 32) and upon treatment with nob-1 RNAi

(N = 24) (Figure 6B, 6C). Removing nob-1 by RNAi in the php-

3(ok919) background results in a further reduction of dmd-3.yfp

expression (N = 26) (Figure 6D). Removing egl-18 and elt-6 results in

a reduction of dmd-3.yfp expression as well (N = 16) (Figure 6E). In

each case, dmd-3.yfp expression is initiated at the correct time, but

the levels of expression are reduced, suggesting that php-3, nob-1, egl-

18, and elt-6 are positive regulators of dmd-3, but are not required for

initiation of dmd-3 expression. In the nhr-25(ku217) mutant

background, dmd-3.yfp expression is completely blocked in hyp8–

11, while expression in the PHCL/R neurons is not affected (N = 22;

Figure 6F). Thus, nhr-25 is required for the initiation of dmd-3. In the

blmp-1(tm548) mutant background, dmd-3.yfp is activated

precociously in hyp(8,9,11), but is not expressed in hyp10 (N = 21)

(Figure 6G). We also tested if GATA expression is influenced by

Hox expression; however, EGL-18::GFP expression in a php-

3(ok919) background is the same as in wild type (data not shown).

Negative regulation downstream of dmd-3 and mab-

3. Because DMD-3 functions partially redundantly with MAB-

3, we examined various transgenic reporters in the mab-

3(e1240);dmd-3(ok1327) double mutant background. Our nhr-25

transcriptional reporter is completely shut off during late L4 in

wild-type males, but maintained in mab-3(e1240);dmd-3(ok1327)

double-mutant males (compare Figure 6H and 6I, respectively).

Expression persists in hyp8–11 into adulthood (N = 32). Since nhr-

25 is required for dmd-3 expression, this observation suggests that

dmd-3 and/or mab-3 regulate nhr-25 via a negative feedback loop.

Negative interactions are also observed between dmd-3/mab-3

and the TGF-b pathway and between dmd-3/mab-3 and the vav

oncogene homolog, vav-1. In mab-3(e1240);dmd-3(ok1327) males,

nuclear SMA-3::CFP remains bright in hyp8–11 into adulthood

(N = 18) (Figure 6K), whereas such adult expression is never

observed in wild-type males (Figure 6J, N = 31). Thus, dmd-3 and/

or mab-3 negatively regulate TGF-b signaling in hyp8–11. A strain

expressing a transcriptional reporter for vav-1 shows bright

expression in hyp8–11 prior to and during morphogenesis

(Figure 6L). Expression fades in the tail tip during adulthood

and is only seen in a small subset of other cells. However, in mab-

3(e1240);dmd-3(ok1327) males, expression of this reporter persists

brightly in the adult tail tip and in a larger subset of cells

(Figure 6M). Thus, dmd-3 and/or mab-3 negatively regulate vav-1, a

new interaction not predicted by the N-Browse network model.

Cellular machinery regulated by dmd-3. We also wanted

to determine how genes involved in executing morphogenesis

might be affected by DMD-3 and MAB-3. In the mab-

3(e1240);dmd-3(ok1327) mutant background, localization of

RME-8 is disrupted. RME-8::GFP is still localized to puncta,

but it is distributed more evenly in the cytoplasm (in 39/51 males)

instead of concentrated near the apical surfaces of the cells

(Figure 7A). Thus, dmd-3 and/or mab-3 are upstream of RME-8

localization during tail tip morphogenesis. At early L4, ARL-

1::GFP is expressed intensely in the hyp10 cell in most mab-

3(e1240);dmd-3(ok1327) mutant males (21/34 males), whereas this

reporter was expressed intensely in only few wild-type males (4/32;

Figure 7B). On the other hand, mutant adults lack the PHCL/R

expression (absent in 40/41 males) that is present in all wild-type

males (N = 35) (Figure 7B). Thus, arl-1 expression is controlled by

dmd-3 and/or mab-3, positively in the neurons but negatively in

hyp10. Finally, we examined the expression and localization of

NMY-2 in mab-3(e1240);dmd-3(ok1327)males. DMD-3 and MAB-3

do not appear to affect the expression level of NMY-2::mCherry

(Figure 7C). However, we did not observe the accumulation of

NMY-2 at the posterior tip where rounding would occur in wild

type. This lack of localization is consistent with the fact that the tail

tip cells never change their shape in the mab-3(e1240);dmd-

3(ok1327) mutant strain (Figure 7C). We still observe NMY-2

localization at the positions where the rays would normally form,

even though rays do not form in this strain (not shown). This latter

NMY-2 localization correlates with a small amount of pulling

away ("anterior retraction") from the overlying cuticle in the mab-

3(e1240);dmd-3(ok1327) mutant males (not shown). Thus, while

transcription of nmy-2 is presumably normal, DMD-3 and MAB-3

partially affect the localization of NMY-2 in the tail tip; this effect

is likely to be indirect.
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Figure 5. A partial genetic network of tail tip morphogenesis as predicted by N-Browse [17] (thin lines) and other published work
(thick dashed lines) [7,44,57–59,61]. Clusters of pathways or functional groups are surrounded by boxes to represent their proximity within the
network and/or functional interactions in modules. Nodes (genes): green, Lep positives identified in the screen; purple, Ore positives identified in the
screen; green/purple, Lep+Ore positives from the screen; yellow, previously identified tail tip genes; green boundary (unfilled), not identified in the
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We tested 10 additional gene pairs for epistatic interactions,

however, in these experiments, the expression of the reporters in

the mutant background did not differ from expression in wild-type

males (Table S5). Experimentally validated interactions between

genes involved in male tail tip morphogenesis are shown in

Figure 8. As will be discussed below, the architecture of this part of

the network is consistent with a bow-tie structure, with dmd-3, mab-

3 and nhr-25 at the core and a number of genes in the input and

output fans.

Discussion

Genome-wide RNAi screen
Here, we used systemic RNAi to identify components that are

involved in male-specific morphogenesis of the tail tip of C. elegans.

RNAi via feeding in C. elegans provides a simple yet powerful

means for identifying the regulatory and structural components

and pathways of developmental processes [28,62]. The method-

ology we employed (Materials and Methods and Figure 1B)

allowed us to quickly score for subtle defects in morphogenesis at

high magnification. Many of the genes we identified have roles in

embryonic processes and are lethal when knocked down (e.g. nob-

1, cdc-42). This justifies our approach to treat worms with RNAi

postembryonically and it underscores the power of RNAi as a tool

for identifying postembryonic roles of genes that have essential

embryonic functions. To minimize the number of false negatives,

we performed the screen on the RNAi hypersensitive strain, rrf-3

[63]. For a number of reasons, however, we believe that there are

still other tail tip genes to be identified. First, our screen did not

cover the entire genome (approx. 83%). Second, because of

complete larval lethality, about 2% of the genes in our screen were

not scored, including the known tail tip regulator lin-41 [6] (Table

S4). Third, of the previously known tail tip genes, only lin-44,

which encodes for the Wnt ligand, was found in the screen. Other

known tail tip genes, tlp-1 and dmd-3, which have representative

clones in the library, were missed. Finally, two genes (elt-6 and vav-

1) not found in the screen, but predicted by the N-Browse network

analysis, turned out to have RNAi-induced tail tip phenotypes

when treated in a different genetic background (i.e. elt-6 RNAi in

the egl-18(ok290) background) or by soaking instead of feeding (vav-

1). The number of false positives is likely to be very small since

only genes which were positive in the primary and secondary

screen were considered. The 212 candidate genes identified in this

process were significantly enriched with morphogenesis-related

GO attributes relative to the genome at large, consistent with what

would be predicted if our screen were successful. Some candidates

were studied further to elucidate their roles in regulating or

effecting tail tip morphogenesis.

Network architecture and features
Developmental decisions, such as the initiation of morphogen-

esis, require the input of multiple signaling pathways and result in

a coordinated response by many different components of the cell.

The response must be robust against perturbations from the

internal and external environment. Robustness and precision of

biological processes are thought to be facilitated by a bow-tie (or

hourglass) architecture of the gene regulatory network [18,19].

Characteristics of bow-tie networks include the following. (1) Many

inputs and outputs are connected to a conserved core. (2) Versatile

weak linkages form the interface between input and core and

between core and output. (3) Systems control is facilitated by

positive and negative feedback at every level. (4) Modularity and

partial redundancy or degeneracy are two other properties of the

bow-tie network architecture that contribute to the robustness of

biological systems [19,64].

We used the data about gene interactions described here in

combination with published information to delineate a first draft of

the gene regulatory network underlying tail tip morphogenesis in

C. elegans males. Although the reconstruction of this network has

only just begun, we already find many features that are consistent

with bow-tie architecture.

Modularity
A network of interactions is called modular if it can be

subdivided into relatively autonomous components (modules) that

are built of highly connected parts but are more loosely connected

to other modules [65]. Modularity is a major contributor to the

robustness and evolvability of a system, since perturbations and

mutations can occur within a module with minimal effects on the

whole system [19]. It has been proposed that modularity facilitates

evolutionary change by allowing new connections to be made

between modules without disrupting the core function of the

modules [66]. Modularity has been observed in many networks

[67,68]. The modules of metabolic networks have bow-tie

structure, just like the networks themselves [21]; that is, bow-tie

architecture can be nested.

In the gene regulatory network of male tail tip morphogenesis,

we find evidence for many conserved regulatory and effector

modules. Regulatory modules include Hox patterning, the sex-

determination and heterochronic pathways and TGF-b signaling.

We also identified tail tip roles for additional Wnt pathway

components, i.e. the SYS-1 beta-catenin, the MIG-1 Frizzled-like

receptor, and the LIT-1 Nemo-like MapK. Effector modules

consist of conserved components controlling vesicular trafficking

and endocytosis, establishment of cellular polarity, cytoskeletal

rearrangement, and cellular fusion.

Degeneracy
Degeneracy describes the coexistence of structurally or

mechanistically different components that can perform similar

roles or are interchangeable under certain conditions [64].

Degeneracy confers robustness because, in a system composed of

partially redundant elements, one element can compensate for the

failure of another. One mechanism that generates degeneracy is

gene duplication. In the male tail tip morphogenesis system, we

find several examples for degeneracy due to gene paralogy. We

think that MAB-3 and DMD-3 function partially redundantly

because the phenotype of the mab-3(e1240);dmd-3(ok1327) double

mutant is more severe than that of dmd-3(ok1327) or mab-3(e1240)

alone [7]. Similarly, two other pairs of paralogs function semi-

redundantly: the Hox genes php-3 and nob-1 and the GATA

transcription factors egl-18 and elt-6, which form an operon. In

both cases, removal of both genes results in a much more severe

disruption of morphogenesis than removal of only one gene.

Both modularity and degeneracy contribute in a major way to

the robustness of a system [19]. Indeed, the majority of RNAi

screen but suggested by the network and experimentally validated; red boundary (unfilled), not positive in the screen and not further tested. Edges
(lines) represent the following types of data concerning interactions: dashed black: published and experimentally validated interactions; blue:
interologs (conserved interactions between pairs of proteins that have interacting homologs in other organisms); gray: predicted genetic interactions;
purple: experimentally verified genetic interactions; green: protein-protein interactions; orange: expression correlations.
doi:10.1371/journal.pgen.1002010.g005
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Figure 6. Expression epistasis experiments to test interactions between key regulatory genes. In the top of each panel are fluorescent
micrographs of male tails (lateral views) at three of several stages (eL3 = early L3, lL3 = late L3, eL4 = early L4, mL4 = mid-L4, lL4 = late L4, or adult)
expressing various transgenes in different genetic backgrounds. At the bottom of each panel is a schematic depicting the expression pattern at one
exemplar stage. (A) Expression of a dmd-3.yfp transcriptional reporter in wild-type males. (B–G) Effects on the expression of dmd-3.yfp by RNAi-
depletion or mutations of other genes (note that tail tip morphogenesis is impaired in these RNAi-treated or mutant males and rounding of the tail
tip in lL4 does not occur). (B) Loss of php-3 function in ok919 mutant animals causes reduced dmd-3.yfp expression in hyp8, hyp11 and hyp13. (C)
Depletion of nob-1 by RNAi causes reduced dmd-3.yfp expression in hyp8–11. (D) php-3(ok919) nob-1(RNAi) animals show no dmd-3.yfp expression
in hyp8-11. (E) Although dmd-3.yfp is initially expressed in egl-18(ok290) elt-6(RNAi) animals, it shuts off prematurely in hyp8–11. (F) Expression of
dmd-3.yfp is never initiated in the tail tip cells of nhr-25(ku217) reduced-function mutants. (G) blmp-1(tm548) mutants show precocious expression of
dmd-3.yfp in eL3 in hyp8, hyp9 and hyp11, no expression in hyp10, and premature inactivation of dmd-3.yfp at early L4. (H) nhr-25.NLS::gfp is
expressed brightly prior to and at the beginning of morphogenesis and is quickly inactivated near its end. (I) In mab-3(e1240);dmd-3(ok1327) animals,
expression of the nhr-25 reporter remains bright in adult males. (J) SMA-3::CFP is expressed and nuclearly localized in hyp8–11 during morphogenesis
and is not visible in adult males (the image shows autofluorescence of the spicules and the fan). (K) In mab-3(e1240);dmd-3(ok1327) adults, expression
of the sma-3::cfp reporter remains very bright into adulthood. (L) vav-1.NLS::gfp is expressed brightly in hyp8–11 and in other cells of the tail prior to
and during morphogenesis and at extremely low levels in adults. (M) Expression of the vav.NLS::gfp reporter remains very bright in hyp8–11 and the
other cells of the male tail in adult mab-3(e1240);dmd-3(ok1327) animals.
doi:10.1371/journal.pgen.1002010.g006
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knockdown phenotypes suggest that male tail tip morphogenesis is

very robust against genetic perturbations. In most cases, the effects

of RNAi (as well as some of the mutations tested) were subtle and

the penetrance was low, suggesting that there is extensive buffering

of the system against partial depletion of individual transcripts (or

reduced functionality of genes).

Bow-tie network architecture
The conserved core. A role for dmd-3 as a central regulator

of male tail tip morphogenesis has been proposed previously [7].

This gene is required for male tail tip morphogenesis and, when

misexpressed in the hermaphrodite tail tip, is sufficient to cause

ectopic morphogenesis [7]. Another DM-domain gene, mab-3, has

a partially redundant role with dmd-3 in tail tip morphogenesis. We

propose that the conserved core contains both of these genes as

well as the gene for the nuclear hormone receptor NHR-25.

NHR-25 is a highly conserved protein which in other contexts

cooperates with pathways involved in tail tip morphogenesis.

NHR-25 interacts with the Wnt pathway during asymmetric

division of the T cell [57], and with the Hox protein NOB-1

during embryogenesis [59]. There is also evidence that nhr-25 is

connected to the heterochronic pathway, as it is a target of the

miRNA let-7 [58]. nhr-25 is the only gene we have found to be

required for the initiation and not just the maintenance of dmd-3

Figure 7. Cellular processes controlled by DMD-3 and MAB-3. Expression patterns of translational fusions are shown for wild-type males (left
side of each panel) and mab-3(e1240);dmd-3(ok1327) mutant males (right side of each panel). (A) DMD-3 and MAB-3 regulate RME-8 localization but
not expression. In wild-type animals, RME-8::GFP localizes as discrete puncta to the cell cortex where the tail tip cells are detaching from the cuticle
(arrow), but is dispersed and cytoplasmic (arrowhead) in mab-3(e1240);dmd-3(ok1327) mutants. (B) In early L4, ARL-1::GFP shows very low levels of
expression in wild-type males (arrowhead) but bright expression in hyp10 (arrow) in mab-3(e1240);dmd-3(ok1327) males. In adults, ARL-1::GFP is
expressed in tail neurons in wild-type males (arrow points to phasmids), but not in mab-3(e1240);dmd-3(ok1327) males (arrowheads). (C) In wild-type
males, NMY-2::mCherry localization is focused to a cap at the posterior end of the tail tip during rounding and to the region along the ventral edge
where the tail tip cells are detaching from the cuticle (arrows). In mab-3(e1240);dmd-3(ok1327) animals, localization to the ventral surface still occurs
(arrows), but localization to the posterior end of the tail is not observed (arrowheads).
doi:10.1371/journal.pgen.1002010.g007
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expression. dmd-3 expression is completely eliminated in nhr-

25(ku217) mutants and complete removal of nhr-25 (e.g. nhr-25

RNAi performed on the nhr-25(ku217) hypomorphic strain) results

in the same phenotypes as the mab-3(e1240);dmd-3(ok1327) double

mutant. dmd-3/mab-3 and nhr-25 regulate each other through a

feedback loop. Thus, these three genes probably form a module in

the core of the network.
Inputs to the core. Input from multiple modules regulates

the sex-specific, spatial, and temporal expression of the core gene

dmd-3. Sex-specificity is provided by the most downstream

component of the sex-determination pathway, TRA-1, which

inhibits expression of dmd-3 in hermaphrodites [7]. Previous

studies [5,7] have proposed that Wnt signaling provides spatial

information. We found evidence that Hox and GATA factors also

contribute to spatial patterning. Hox genes are known to govern

patterning along the anteroposterior axis. As is expected, the genes

involved in tail tip morphogenesis, nob-1 and php-3 are the most

posterior Hox genes in C. elegans [69]. The GATA transcription

factors egl-18 and elt-6 are excluded from the tail tip cells but are

expressed in all the neighboring cells. They are nevertheless

required for tail tip morphogenesis. We therefore postulate that

GATA factors provide positional information through signaling

from neighboring cells.

The heterochronic pathway provides temporal input, which

ensures that morphogenesis occurs during the correct time window

during the L4 stage. Overexpression of lin-41 and deletion of let-7

lead to delayed morphogenesis; removal of lin-41 leads to

precocious tail tip retraction [6]. We propose here that blmp-1 is

also a component of the heterochronic pathway, because removing

blmp-1 results in precocious expression of dmd-3 and in precocious

tail tip retraction. We are currently determining where blmp-1 acts

in the heterochronic pathway.

Outputs from the core. In the tail tip system, the output

downstream of the conserved core involves effectors of

morphogenesis. One such output is cellular fusion driven by the

fusogen protein EFF-1 [3,7,15,16]. In addition, our screen has

shown that genes involved with vesicular trafficking, endocytosis,

establishment of cellular polarity, cytoskeletal rearrangement, cell-

cell communication and transport are on the output side of the

bow tie. Electron microscopy revealed an accumulation of vesicles

during male tail tip morphogenesis, suggesting an important role

for trafficking [3]. Consistent with this observation, two genes

involved in vesicular trafficking and endocytosis that were

identified in the screen display dynamic expression or

localization patterns during tail tip morphogenesis: arl-1, which

encodes an ADP-ribosylation factor [70,71], and rme-8, which

encodes a J-domain protein vital for receptor-mediated

endocytosis [52]. Trafficking and endocytosis have been shown

to play a key role in morphogenesis in other systems. For example,

endocytosis of cadherins is required for the morphogenetic

movement during Xenopus gastrulation [72] and the anterior

migration of prechordal plate cells in zebrafish [73,74]. The

severity of the tail tip phenotype indicates that endocytosis,

controlled by RME-8, is an essential process for tail tip

morphogenesis. Removing rme-8 postembryonically, by either

RNAi or with a temperature-sensitive allele, results in a complete

failure of tail tip morphogenesis. Also, RME-8 localizes to regions

of the plasma membrane which undergo dynamic change: the

ventral border of the tail tip cells as they detach from the L4

cuticle, and the posterior edge of the rounding cells. This pattern is

consistent with a proposed role for RME-8 during early endosome

membrane trafficking and receptor recycling [61,75,76]. It has

been observed that, in the absence of RME-8, components of

signaling pathways (e.g. Wnt) that should be recycled to the

membrane are instead shuttled to the lysosome and degraded [61].

It is therefore possible that RME-8 influences signaling events

required for tail tip retraction which cannot occur in the absence

of receptor recycling.

Morphogenesis in all systems likely involves the rearrangement

of an acto-myosin network to drive cell movement and shape

change. Our data suggest that, in the tail tip, these processes are

controlled by CDC-42, a highly conserved Rho-GTPase [77], and

NMY-2, a non-muscle myosin. Our expression analysis is

consistent with NMY-2 playing a key role in reshaping the

pointed tail tip cells into a rounded syncytium. NMY-2 localization

to a cap at the end of the tail tip is reminiscent of what has been

observed during C. elegans gastrulation where NMY-2 localizes to

the apical surface of the ingressing E daughter and MS descendant

cells [78]. Additionally, at the start of tail tip retraction, we

observed clear foci of NMY-2 at the apical surfaces with fibrous

NMY-2 densities projecting from the apical foci inside the tail tip

cells. This organization is strikingly similar to the arrangements of

non-muscle myosin observed for apical constriction during

Drosophila gastrulation in which the apical surface area is

constricted by a ratchet-like contraction of an actin network

[79]. Similarly, CDC-42 localizes to foci at the apical boundaries

of the tail tip cells, where it could have a role in activating the

formation of actin filaments required for such "apical constric-

tion."

Gap junctions are required for epithelial morphogenesis during

embryogenesis in Drosophila [80] and play a role during the cellular

changes of metastasis, such as cellular migration [81]. INX-12 and

INX-13 connect the cytoplasm of neighboring cells through the

formation of gap junctions [82] and are required for tail tip

Figure 8. The genetic architecture of tail tip morphogenesis,
showing experimentally validated connections between com-
ponents. This network has a bow-tie architecture with dmd-3, mab-3
and nhr-25 in the core. The central role for dmd-3 and mab-3 was
originally proposed by Mason et al. [7]. We found that nhr-25 is required
for the activation of dmd-3 and forms a negative feedback loop with
dmd-3 and mab-3. Multiple signaling pathways/genes feed into the core
by regulating dmd-3 positively (lines with arrow at one end) or
negatively (lines with bar at one end). Genes controlling morphogenesis
(rme-8, nmy-2, arl-1, eff-1) and other signaling pathways (TGF-b and vav-
1-mediated) are regulated by dmd-3 and mab-3. Dashed lines indicate
possibly direct or indirect interactions, solid lines indicate an
experimentally validated direct interactions [7].
doi:10.1371/journal.pgen.1002010.g008
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morphogenesis. Oddly, our reporters show their peak of

expression when the tail tip cells have already fused. It is possible

that these innexins are forming new gap junctions between the tail

tip and other cells and that these junctions are required for

efficient or continued retraction/migration.

Versatile weak linkages. Kirschner and Gerhart [83] define

versatile weak linkage in biological systems as a kind of regulatory

connection that can be easily broken or redirected for other

functions during evolution or development. In bow-tie networks,

the interfaces between input, core, and output are formed by weak

linkages. Examples of components that can establish versatile weak

linkages include second messengers, G-proteins, and the

transcription machinery [84]. On the input side of the tail tip

regulatory network, we have identified many transcription factors

and signaling pathways. The control of dmd-3 transcription

involves many of these inputs. It is thus possible that each input

forms a weak interaction with dmd-3. One example of a weak

linkage that might connect the core to the output is CDC-42, a

Rho-GTPase which integrates multiple signaling pathways to

mediate cellular responses [19,85]. Additionally, processes

involved in post-transcriptional gene regulation have attributes

of weak linkage. We identified genes that encode for RNA splicing

factors, kinases, phosphatases, proteases, ubiquitinating and

neddylating proteins, and other enzymes with the capacity for

post-translational modification of the cytoskeleton or other parts of

the cellular machinery. One example of the latter is UBC-12, a

ubiquitin-conjugating enzyme that produced a strong phenotype

and was expressed throughout but not prior to tail tip

morphogenesis. The fusogen-encoding gene eff-1 that is required

for cell fusion may also be regulated post-transcriptionally. It has

been shown that DMD-3 and MAB-3 do not influence eff-1

transcription, but they positively regulate EFF-1 protein levels [7].

Similarly, we show that DMD-3 somehow regulates the

localization of RME-8 and NMY-2, but not their expression.

System controls. One feature of bow-tie networks is system

control, consisting of positive and/or negative feedback which can

occur between components at all levels of the network [19].

Precise system control has been emphasized as an important

aspect of developmental systems since precision, robustness and

versatility are stringent requirements in development and errors

are particularly serious [86]. Positive autoregulation occurs when a

transcription factor either directly or indirectly activates its own

expression which results in the maintenance of transcription in the

absence of the factors that initiated expression. Positive feedback

can be used in temporal control to sustain expression over a

developmental period, or in spatial control to restrict expression to

a specific region [86,87]. Patterning and duration of expression are

also influenced by negative autoregulation where, for example, a

transcription factor directly or indirectly represses its own

expression [86,87].

Both DMD-3 and MAB-3 are required for maintaining the

expression of dmd-3, thus forming a positive feedback loop [7]. We

show here that these genes are also involved in a negative feedback

loop, since they inhibit NHR-25 in a pathway which regulates

their own expression. We propose that these feedback loops are

important for regulating the duration of morphogenesis. Specif-

ically, the regulatory loop between NHR-25 and MAB-3/DMD-3

appears to play a key role in the temporal regulation of

morphogenesis. After dmd-3 expression is initiated, its product

inhibits NHR-25 production, probably in combination with

translational inhibition of nhr-25 by let-7 miRNA [58]. This

mechanism should prevent the kind of over-retraction (Ore)

phenotype seen in lin-41(ma104lf) mutants in which dmd-3 is on for

too long because its expression begins precociously in L3 and

continues through L4. The specific mechanisms of this feedback

loop are a topic of further study in our lab.

Another system control mechanism involves the TGF-b
pathway and VAV-1. As positive regulators of morphogenesis,

we would expect these pathways to either positively regulate or be

positively regulated by DMD-3. However, DMD-3 and MAB-3

negatively regulate these pathways. These interactions might

function to restrict morphogenesis in time and space. How this

regulation is facilitated is still unknown.

In summary, we have presented evidence that the genetic

network underlying C. elegans male tail tip morphogenesis is

consistent with a bow-tie architecture in which dmd-3, mab-3 and

nhr-25 are the central regulators in a conserved core (Figure 8). Of

the 23 different interactions we tested by expression epistasis, 11

showed an epistatic effect on expression or localization; all of these

involved dmd-3 and/or mab-3. Twelve interactions showed no

effects; of these, only four involved dmd-3 and/or mab-3 (Table S5).

We therefore believe that the position of dmd-3 and mab-3 in the

core of the network is real and not merely an effect of a bias in our

experimental design.

Conclusion
The architecture of the genetic network regulating male tail tip

morphogenesis in C. elegans is congruent with the bow-tie model,

since we find evidence for all the characteristics of bow-tie networks.

We find modularity, degeneracy, a conserved core, weak linkage

and positive and negative feedback loops connecting spatial, sexual

and temporal inputs to the cellular responses required for

morphogenesis. To our knowledge, this is the first time that a

genetic network regulating a morphogenetic process has been

specifically investigated for bow-tie architecture. However, it is likely

that other morphogenetic events—e.g., the development of the eye

in flies and possibly mammals and the formation of the pharynx in

C. elegans—are also controlled by bow-tie regulatory networks. In

both examples, components have been identified which are likely to

be part of the conserved core. Drosophila eye development is in part

controlled by the products of eight eye specification genes. Deletion

of either one of these genes leads to a drastic reduction or loss of the

adult eye, whereas ectopic expression of all but one results in retinal

development outside of normal eye tissue [88,89]. The fly eye

specification genes are conserved with orthologs in mammals.

Expression of one of them, dachshund, is regulated by at least 36

upstream factors, including the TGF-b signaling pathway, the

transcription factor Zerknüllt and several other patterning genes

(e.g. krüppel, snail and dorsal) [88], suggesting the existence of an

extensive input fan in this system. The FoxA transcription factor

PHA-4 is a central regulator of pharynx development in C. elegans.

pha-4 is the only zygotic gene that deletes the entire pharynx when

mutated [90]. FoxA transcription factors are conserved from

Cnidaria to mammals and are always associated with the digestive

tract [90]. PHA-4 has hundreds of targets, many of which are

directly regulated at the transcriptional level [91,92]. In this system,

feedback loops have been identified as well [90]. Thus, there is

evidence for a conserved core, an output fan and system control as

elements of a bow-tie network architecture for pharynx morpho-

genesis. Finding bow-tie networks in multiple developmental

systems supports the notion that this architecture is a universal

feature of evolved gene regulatory networks and is favored by

selection due to its robustness. The male tail tip thus provides a

simple model for investigating not only morphogenetic mechanisms,

but also the properties of a universally important genetic regulatory

architecture.

The evolvable male tail. One general advantage of bow-tie

architecture is the ease with which it can accommodate
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evolutionary changes (evolvability). Weak linkage allows the

addition, deletion or switching of components without disturbing

the entire system [93–95]. The prediction, therefore, is that a

comparison of the genetic architecture for a particular process in

different species will uncover differences primarily in the input or

output fan of the bow-tie network, but not in the core or the

conserved components of the interface. The male tail of

nematodes related to C. elegans is a great model in which to

study network architecture in an evo-devo context and test this

prediction. One attractive aspect of the male tail tip in an

evolutionary context is that it has changed shape repeatedly in

multiple lineages [96,97], thus providing a model not only to

uncover the genetic architectural changes underlying the evolution

of morphogenesis, but also to test if the same or different parts of

the genetic architecture are altered in repeated emergences of

similar morphologies. Future research will thus be focused on

building a more complete picture of male tail tip regulatory

architecture in C. elegans and developing genomic methods to allow

comparisons with related species.

Materials and Methods

Strains and transgenic lines
Genetic manipulations and culturing of C. elegans were

performed as previously described [98]. We use the following

nomenclature for transgenes (similar to that used by Ziel et al.

[99]). Transcriptional reporters are designated by the name of the

gene associated with the promoter, followed by a ‘‘.’’ and the

reporter gene to which it is fused (e.g., dmd-3.yfp). Translational

reporters are designated by the gene, followed by ‘‘::’’ and the

reporter to which it is fused (e.g., sma-3::mCherry). Unless otherwise

stated, the endogenous promoter is used to drive expression of

translational reporters. If a different promoter is used, we use both

designations (e.g., lin-44.php-3::gfp represents the php-3 gene fused

to the gfp gene, with expression driven by the promoter of the lin-

44 gene). Unless otherwise stated, the unc-54 39UTR is used for all

constructs. The protein product of a construct is designated with

capital letters (e.g., PHP-3::GFP). No construct employed cDNA;

all introns were included.

Strains with transgenes generated for this paper are listed in

Table S3. Other strains used for this study are listed below.

CB4088 = him-5(e1490)V. This is the otherwise wild-type, male-

producing strain used as the background genotype in this study

(from Caenorhabditis Genetics Center, CGC).

BW2020 = ctIs57[nob-1::gfp + rol-6] (a gift from Zhongying

Zhao, University of Washington, Washington). Hermaphrodites of

this strain were crossed with CB4088 males to obtain a him-

59(e1490)V; ctIs57 strain.

DF125 = php-3(ok919)III; him-5(e1490)V. Made by crossing

CB4088 males with RB998 hermaphrodites. RB998 = php-

3(ok919)III (from CGC).

DF159 = rme-8(b1023)I; him-5(e1490)V. Made by crossing

CB4088 males with DH1206 hermaphrodites. DH1206 = rme-

8(b1023)I (from CGC).

DF160 = blmp-1(tm548)I; him-5(e1490)V; fsIs3[dmd-3.yfp + unc-

122.gfp].

DF161 = blmp-1(tm548)I; him-5(e1490)V. Made by crossing

CB4088 males with hermaphrodites carrying the blmp-1(tm548)

allele (from Shohei Mitani, National BioResource Project, Tokyo

Women’s Medical University School of Medicine, Tokyo, Japan).

DF163 = sma-3(e491)III; him-5(e1490)V. Made by crossing

CB4088 males with CB491 hermaphrodites. CB491 = sma-

3(e491)III (from CGC).

DF164 = egl-18(ok290)IV; him-5(e1490)V. Made by crossing

CB4088 males with JR2370 hermaphrodites. JR2370 = egl-

18(ok290)IV (from CGC).

DF167 = him-5(e1490)V; nhr-25(ku217)X. Made by crossing

CB4088 males with MH1955 hermaphrodites. MH1955 = nhr-

25(ku217)X (from CGC).

DF171 = him-5(e1490)V; bIs34[rme-8::gfp + rol-6]. Made by

crossing CB4088 males with DH1336 hermaphrodites.

DH1336 = bls34[rme-8::gfp + rol-6] (from CGC).

DF177 = him-5(e1490)V; nhr-25(ku217)X; fsIs3[dmd-3.yfp + unc-

122.gfp].

DF178 = mab-3(e1240)II; dmd-3(ok1327) him-5(e1490)V;

bIs34[rme-8::gfp + rol-6].

DF196 = him-5(e1490)V; xnIs8[pJN343: nmy-2::mCherry + unc-

119(+)]. This strain was made by crossing CB4088 males to

hermaphrodites carrying the transgene xnls8 which were a

generous gift from Jeremy Nance (NYU Skirball Institute, New

York, New York).

DF197 = mab-3(e1240)II; dmd-3(ok1327) him-5(e1490)V;

xnIs8[pJN343: nmy-2::mCherry + unc-119(+)].

DF199 = ptl-1(ok621)III; him-5(e1490)V. Made by crossing

CB4088 males to RB808 hermaphrodites. RB808 = ptl-

1(ok621)III (from CGC).

JJ1473 = unc-119(ed3)III; zuIs45[nmy-2::gfp + unc-119(+)] (from

CGC).

KC447 = rrf-3(pk1426)II; him-5(e1490)V. A generous gift from

King L. Chow (Hong Kong University of Science and Technol-

ogy, Hong Kong, China).

KC529 = eri-1(mg366)IV; him-5(e1490)V. (from K. L. Chow).

UR157 = fsIs2[dmd-3.yfp + unc-122.gfp]I?; him-5(e1490)V. A

generous gift from Douglas Portman (Rochester University, New

York).

UR279 = mab-3(e1240)II; dmd-3(ok1327) him-5(e1490)V (from

D. Portman).

WM79 = rol-6(n1270)II; neEx[lit-1::GFP + rol-6(su1006)] (from

CGC). Hermaphrodites of this strain were crossed with CB4088

males to obtain a rol-6(n1270)II; him-5(e1490)V; neEx[lit-1::GFP +
rol-6(su1006)] strain.

RNAi screen
The genome-wide RNAi-feeding screen was carried out in the

RNAi-hypersensitive background rrf-3; him-5 (strain KC447).

RNAi effects on embryogenesis were bypassed by feeding

siRNA-expressing bacteria to synchronized L1 larvae. Following

a recommendation by K. Chow (pers. comm.), L1 larvae were

plated onto a thin film of agar (1.5 ml per 60 mm plate) containing

2 mM IPTG and 100 mg/ml ampicillin. Worms were cultured to

adulthood (3 days) at 20uC at which time a square of agar with

worms was removed and mounted directly onto a glass slide and

covered with a coverslip (Figure 1A). All scoring was carried out at

400x with a Zeiss Axioskop equipped with Nomarski differential

interference contrast. Images were recorded with a C4742-95

‘‘Orca’’ Hamamatsu digital camera and Openlab software, ver.

3.0.9 (Improvision). The secondary screen was carried out in the

same way but in a different RNAi hypersensitive background, eri-1

(strain KC529). RNAi clones consistently conferring a Lep or Ore

tail tip phenotype were sequenced to confirm the targeted genes.

All scoring data and images are available via our male tail tip

database, MTTdb, at http://wormtails.bio.nyu.edu.

Generation of transgenic strains
Translational fusions and transcriptional reporters were construct-

ed by overlap-extension PCR as previously described [100]. The 59

upstream sequence and coding sequences for php-3 (-500 bp to the
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stop codon), egl-18 (-3691 to stop), rcn-1 (-4797 to stop), ptl-1 (-2105 to

stop), arl-1 (-550 to stop), abcx-1 (-437 to stop), cdc-42 (-1814 to stop),

sys-1 (-3411 to stop), inx-12 (-3975 to stop), blmp-1 (-4916 To stop), nhr-

165 (-1559 to stop), and ubc-12 (-363 to stop), were PCR-amplified

from genomic DNA and fused to gfp and the unc-54 39-UTR

amplified from pPD95.75 (Addgene). The 59-upstream sequence and

coding region of sma-3 (from -1169 bp), amplified from genomic

DNA, was fused to mCherry [101] and to cfp, which were PCR-

amplified from pGC326 (a gift from E. J. Hubbard) and pPD136.61

(Addgene), respectively. To make the DAF-4 reporters, the upstream

sequence and coding region (from -5091) was fused to yfp that was

amplified from pPD136.64 (Addgene). A transcriptional reporter of

daf-4 fused the upstream sequence (-4865 to -1) to the NLS and gfp

amplified from pPD122.13 (Addgene). The transcriptional reporter

for nhr-25 fused the upstream sequence (-9100 to -1) to the NLS and

gfp from pPD122.13 (Addgene) followed by the 39-UTR for nhr-25

(stop to +760 bp). Transcriptional reporters for inx-12 (-3975 to -1)

and inx-13 (-1557 to -1) were fused to yfp (pPD136.64 (Addgene)) and

cfp (pPD136.61(Addgene)).

Transgenes were microinjected at concentrations ranging from

5–20 ng/ml along with 100 ng/ml pRF4 (rol-6(su1006)) as injection

marker. Multiple lines were analyzed for each construct using

epifluorescence (Axioskop with mercury lamp, 400 or 1000x).

Representative images of fluorescence expression patterns are

available via the MTTdb database at http://wormtails.bio.nyu.

edu. Strain names and primer sequences are provided in Table S3.

Network model-building
Genes identified in our screen were manually entered into N-

Browse2 (http://Aquila.bio.nyu.edu/NBrowse2/nbrowsetest.jnlp)

[17]. Only a subset of these genes showed annotated interactions,

and only those with an interaction one or two edges away from

another candidate gene were added to our network (Figure 5).

Information from other studies [6,7,44,51,57–60] which show

genetic or direct interactions with known or newly identified tail

tip genes were also included (Figure 5).

Supporting Information

Figure S1 RNAi phenotypes of some genes are very similar to

the phenotypes of null mutants. (A,C,E,G) Lep phenotypes

generated by RNAi-knockdown of php-3, egl-18, sma-3, and nhr-

25, respectively. (B,D,F,H) Null mutants of the same genes with

similar Lep phenotypes. Arrows point to the Lep tails.

(PDF)

Figure S2 Driving expression of PHP-3::GFP with a lin-44

promoter in hyp8–11 only is sufficient to rescue the Lep phenotype

of php-3(ok919) males. Fluorescent micrographs are shown on the

left and DIC images of the same animals on the right sides of each

panel. (A) Tail tip-specific expression of lin-44.php-3::gfp is observed

throughout tail tip morphogenesis and into adulthood, similar to lin-

44 reporter and in situ expression patterns described previously [25].

DIC images show normal tail tip retraction. The temporary

appearance of a small bubble during the rounding of the tail tip cells

is a normal variation commonly seen in wild-type animals. Adult

animals have normal, rounded tail tips (arrow) never seen in the php-

3(ok919) background. (B) Mosaics in which only a subset of the tail

tip cells expresses the php-3::gfp transgene (arrows in left panels) fail

to rescue the Lep phenotype (arrows in right panels).

(PDF)

Figure S3 RNAi phenotype and expression pattern of transla-

tional reporters for a selection of genes positive in the RNAi

screen. (A) RNAi of the nuclear hormone receptor gene nhr-165

resulted in Lep phenotypes (arrow). NHR-165::GFP is not

expressed in hyp8–11 (arrowhead), but is expressed in surrounding

hypodermal cells. (B) RNAi against the ubiquitin conjugating

enzyme gene ubc-12 results in Lep tails (arrow). UBC-12::GFP is

expressed intensely in early L4 males in hyp10 (arrow) but is not

seen in all animals (arrowhead pointing to the tail tip of a different

animal). (C) RNAi of the beta-catenin gene sys-1 resulted in Lep

phenotypes. SYS-1::GFP is localized in the cytoplasm of hyp8 and

hyp11 during early L4 (arrows) but not in hyp9 or hyp10

(arrowheads). (D) RNAi of the MapK gene lit-1 resulted in Lep

phenotypes (arrow). LIT-1::GFP is localized to the nuclei of hyp9

and hyp10 (arrows) but not hyp8 or hyp11 (arrowheads) during tail

tip morphogenesis.

(PDF)

Figure S4 Expression pattern of a translational reporter for non-

muscle myosin 2, NMY-2::GFP. During tail tip morphogenesis

(mL4 = mid-L4), foci of NMY-2::GFP are observed at the apical

surfaces of the migrating tail tip cells (arrowheads). An NMY-

2::GFP cap forms at the posterior surface of the migrating tail tip

cells (arrows), and later (lL4 = late L4) along the ventral surface of

the entire male tail.

(PDF)

Table S1 Genes identified in the RNAi screen for tail tip defects

in C. elegans. L = Lep RNAi phenotype, O = Ore-like RNAi

phenotype, O+L = both phenotypes. Penetrance (number of

worms scored showing the phenotype) for the Lep phenotype is

indicated by asterisks as follows: * = 1–2 males with the RNAi

phenotype ** = 3–5 males, *** = .5 males). Severity (* = short

rounded ("knobby") Lep tail tips only, ** = short rounded ("knob")

and long pointed tail tips, *** = only long pointed Lep tail tips).

Ore phenotypes were always severe (***). Penetrance data for all

genes scored are available via the MTTdb database at http://

wormtails.bio.nyu.edu.

(DOCX)

Table S2 Mutant phenotypes of genes identified in the genome-

wide RNAi screen.

(DOCX)

Table S3 Transgenic strains and primers used to construct the

transgenes.

(DOC)

Table S4 RNAi experiments that could not be scored due to

larval lethality.

(DOCX)

Table S5 Genetic interactions tested by expression epistasis.

(DOCX)

Video S1 Non-muscle myosin 2 localization in an early L4 male.

NMY-2::GFP forms a cap at the cell cortex at the posterior end of

the tail tip syncytium as it is rounding and changing shape. NMY-

2::GFP can also be seen at the tips of the developing rays.

(MOV)

Video S2 Non-muscle myosin 2 localization in a mid- L4 male.

NMY-2::GFP localizes to the cell cortex along the ventral surface

of the developing male tail, as well as at the tips of the developing

rays.

(MOV)
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