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Abstract: Bladder cancer is one of the most commonly diagnosed cancers worldwide and

causes the highest lifetime treatment costs per patient. Bladder cancer is most likely to

metastasize through lymphatic ducts, and once the lymph nodes are involved, the prognosis

is poorly and finitely improved by current modalities. The underlying metastatic mechanism

for bladder cancer is thus becoming a research focus to date. To identify relevant published

data, an online search of the PubMed/Medline archives was performed to locate original

articles and review articles regarding lymphangiogenesis and lymphatic metastasis in urinary

bladder cancer (UBC), and was limited to articles in English published between 1998 and

2018. A further search of the clinical trials.gov search engine was conducted to identify both

trials with results available and those with results not yet available. Herein, we summarized

the unique mechanisms and biomarkers involved in the malignant progression of bladder

cancer as well as their emerging roles in therapeutics, and that current data suggests that

lymphangiogenesis and lymph node invasion are important prognostic factors for UBC. The

growing knowledge about their roles in bladder cancers provides the basis for novel

therapeutic strategies. In addition, more basic and clinical research needs to be conducted

in order to identify further accurate predictive molecules and relevant mechanisms.

Keywords: bladder cancer, lymphangiogenesis, lymphatic metastasis, biomarkers, tumor

progression, treatment

Introduction
UBC is the second most frequent malignant tumor of the urinary system, with the

estimated 76,900 new cases, approximately 15,900 death in America during the

year of 2016.1,2 Smoking is just an established risk factor for UBC.3 For histo-

pathology, transitional cell carcinomas take account for nearly 90 percent of bladder

cancers, the rest of UBC contains adenocarcinomas, squamous cell carcinomas, and

undifferentiated bladder carcinomas.4 UBC frequently show the peculiarity of

progression, referring to two closely related processes of invasion and metastasis,

and which could serve as the remarkable common cause involved with cancer-

related deaths.5 Concerning the natural process, bladder cancer is generally divided

into two distinct groups, such as non-muscle invasive bladder cancer (NMIBC),

also referred to as superficial, and muscle-invasive bladder cancer (MIBC). Among

the superficial tumors, which often recurs and invades the muscle after the transur-

ethral initial resection, up to 50–70% recurrence6 and 10–20% progressing to

MIBC,7 respectively. MIBC may display as the high risk of metastatic malignant

tumors and subsequently cause death, with the 5-year survival rate remarkably

declining from 90% in NMIBC8 to 60% in comparison with MIBC.9 Even worse,
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approximately a quarter of patients suffering MIBC

undergo radical cystectomy(refers to the removal of the

bladder together with the prostate and seminal vesicles in

this context), whereafter, unfortunately, show lymph node

metastases later and die during the first five years after

primary confirmed diagnosis.10,11

Tumor metastasis, including blood and lymphatic

metastasis, is topmost of the dismal aspects of tumor

progression. Besides, it is largely supposed that bladder

cancer is most likely to disseminate from in-suit to distant

organs through lymph ducts. Indeed, the detection of

metastases within the sentinel lymph nodes is an essential

prognostic factor for patient survival and select whether

adjuvant therapies or not.12 Once the lymph nodes are in

invasion(Ln+) in the UBC, the poor prognosis will be

defined in the future follow-ups,13 contributing to about

90 percent of cancer-specific death.14 Ln+ involves the

new formation of lymphatic ducts in intratumoral and

peritumoral regions at first, and next delivering of cancer

cells to lymphatic vasculatures and spreading them to

lymph nodes (LNs), finally inducing the settlement and

proliferation of in LNs.15,16

It is anticipated that lymphangiogenesis plays vital

roles in physiological (e.g., menstrual and hair cycle, ovar-

ian follicle maturation, corpus luteum formation, and uter-

ine implantation) and pathological (i.g., inflammation,

wound healing and cancer.) processes. To date, the roles

of lymphangiogenesis become a research hotspot in the

aspect of unveiling mechanism of metastasis and exploring

novel therapeutic strategies for individuals with urothelial

carcinoma. It has been verified that lymphangiogenesis is

an indispensable element for lymph nodes metastasis.

Despite the increasing improvement in surgical techniques

and adjuvant chemotherapy and immunotherapy, there are

still poor treatment response and prognosis.17 In recent,

the treatment options for advanced UBC mainly depends

on conventional clinicopathological characteristics, such

as tumor grade and stage information, though providing

important prognostic information in UBC, they are of

limited use in the prediction of cancer recurrence, progres-

sion, treatment response, and survival,18 partially due to

the shortcomings of staging and grading subjectivity that

can lead to highly observational error.19 Fortunately, Ln+

is an earlier event when occurs the progression of MIBC

with significantly predictive values, and the lymphatic

vessels in or in proximity to tumors could serve as the

primary conduits for the spread of cancer cells.20

Moreover, thus, to unravel the lymphangiogenesis and

lymph node invasion in UBC cries out for the treatment

and surveillance in the future.

To date, the majority of research on lymphatics at the

primary tumor has focused on the capacity of lymphatic

vessels to facilitate the entry and transport of tumor cells;

the influence of lymphatic location (intratumoral versus

peritumoral); and the enlargement or collapse of the lym-

phatics during metastasis,21,22 and the potential predictable

roles for tumor grade and stage. This review highlights the

current knowledge about the anatomical structure of the

lymphatic system and underlying cellular mechanisms of

lymphangiogenesis, discusses the fatal molecules and

defining signals that control these processes, as the pro-

mising pools of anti-lymphangiogenic targets. The impli-

cations of these findings for the advancement of novel

diagnostics and therapeutics, and future cancer research,

are also discussed.

Lymphatic System And Its Role In
Urothelial Carcinoma
Despite the lymphatic system initially described in the 17

centuries, it is generally regarded as the “forgotten” the

second angiology.23 In general, lymphatic conduits can fall

into three separate types: initial blind-ended lymphatics,

pre-collecting and collecting vessels.23,24 Next, we discuss

several well-characterized mediators involved the lympha-

tics development, and their interaction between lymphatics

and tumor progression, especially for bladder cancer.

There are several well-known regulators that can modulate

mammalian lymphatic system development, such as Prospero

homeobox transcription factor-1 (PROX-1),25 SRY-related

HMG-box(SOX)-18,26 and the vascular endothelial growth

factor-C (VEGF-C)/VEGF receptor-3 (VEGFR-3) axis,27

reader could extensively and comprehensively overview the

mediator of the formation of the lymphatic system in several

published reviews.28–30 Enabling signal for lymphatic

endothelial cells (LECs) differentiation is deemed to be regu-

lated by mitogen-activated protein kinase/extracellular signal-

regulated kinase (MAPK/ERK) signaling, and subsequently

initiate SOX-18 to facilitate the upregulation of PROX-1,31,32

which immediately leads to the PROX-1 expression to trigger

the differentiation of LECs in turns, as characterized by the

well-characterized lymphangiogenic genes expression includ-

ing VEGFR-3, podoplanin, integrin a9, and chemokine (C-C

motif) ligand 21(CCL21),33,34 and also directs endothelial

cells toward a lymphatic fate in vivo.35 Further, the mainte-

nance of LEC identity is reversible and dependent on PROX-1
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expression,36 which regulates VEGFR3 expression.37 During

the processes, the transcription factor musculoaponeurotic

fibrosarcoma oncogene homolog B(MAFB) shows a potency

in the maintenance of the LEC phenotype by overexpressing

SOX-18 and PROX-1, while conversely, DLL4/Notch

signaling downregulates the COUP transcription factor-2

(COUPTF-2)(also known as nuclear receptor subfamily 2

group F member 2; NR2F-2) and PROX-1 expression, main-

taining venous endothelium cells characteristics. VEGF-C is

an established lymphatic-associated growth factor.38 VEGF-C

crosstalks with its initial receptor, VEGFR-3, which activates

the MAPK/ERK and phosphatidylinositol 3-kinase (PI3K)/

protein kinase B (PKB/AKT) signaling pathways, triggering

LECs survival, migration, and proliferation.39 Contrarily,

MAPK signaling is thought to be negatively mediated by the

transcription factors fork head box protein C1 and C2

(FOXC1/FOXC2).40

It is starting as small initial blind-ended lymphatics that

favor the absorption of interstitial fluid and cell in tissues.41,42

The initial lymphatic capillaries, surrounded by intermittent

basement membrane with no vascular smooth muscle cells or

pericytes, are non-contracting vessels characterized by a single

layer of LECs and abluminal membrane of LECs connected to

surrounding interstitial elastic fibers by the short anchoring

filaments,42–44 and then flow into pre-collecting vessels and

collecting vessels, further downstream, the collecting lympha-

tic vessels drain to the thoracic duct or the right lymphatic

trunk, hereafter enter into the circulation systems23,24,45,46

(Figure 1). In general, the lymphatic vasculature, functioning

unidirectionally, is a drainage network that starts in the inter-

stitial tissue and ends mainly in draining into the venous

circulation, which serves as three of cardinal functions, such

as maintaining interstitial fluid homeostasis,47 immune sur-

veillance and absorption of fat in the gastrointestinal tract.23

The lymphatic system involves the local progression and

invasion in urothelial carcinoma, Recent reports pay attention

to the role of lymphangiogenesis and lymphatic vessel density

(LVD) and indicate that both them could serve as a potential

prognostic marker and as a mechanism of metastatic dissemi-

nation in those patients with UCB.48,49 Intratumoral

Figure 1 A simplified schematic of lymphatic metastasis in bladder cancer. Tumor cells in the tumor microenvironment produce factors (growth factors or cytokines) that

induce sprouting growth of local initial lymphatic vessels. These factors, together with metastatic cells and immune cells, are transported via pre-collecting and collecting

lymphatics to tumor-draining LNs. Tumor cells and other factors may then access systemic circulation through the thoracic duct, leading to spread to distant organs.

Lymphangiogenesis in distant organs occurs as part of premetastatic niche formation and continues after the arrival of metastatic cells, potentially promoting further metastasis.

Notes: Reprinted with permission from Elsevier from: Farnsworth R, Achen MG, Stacker SS. The evolving role of lymphatics in cancer metastasis. Curr Opin Immunol.
2018;53:64–73.46 Copyright © 2018 Elsevier Ltd. All rights reserved.
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lymphatics (ITLs) were quite small, irregular or flattened, and

occasionally filled within tumor cells in the lumen, while

peritumoral lymphatics(PTLs) were relatively disorganized

and enlarged, and strictly located at the tumor periphery.50

Morphological investigations have suggested that ITLs are

newly proliferating, while PTLs are likely to become pre-

existing lymphatic vessels. One study involved human breast

cancer, indicated that LNmetastasis could sufficiently proceed

through the pre-existing lymphatic vessels, implying that lym-

phangiogenesis may not necessarily be involved at the tumor

periphery regardless of ITL vessel density,51 another investi-

gation also indicated that ITLs is unnecessary for metastasis to

LNs in urothelial carcinoma and prostate cancer.52

Additionally, functional studies using assays for micro-lym-

phangiography and interstitial fluid pressure have indicated

that ITLs may be nonfunctional. Meanwhile, multiple investi-

gations in experimental models and human specimens have

indicated that PTLs are more critical than ITLs for cancer

metastasis cells.53 However, a majority of studies also have

reported an association between ITLs and PTLs and aggres-

sive features of invasive UCB and upper tract urothelial

carcinoma.54,55 To conclude, it is unclear whether ITLs lack

functions to date, ITLs can be detected in urothelial carcino-

mas conversely, despite the controversial role of ITLs lym-

phangiogenesis by neoplastic cells in regulating LNs

metastasis yet, intratumoral lymphatics are high likelihood to

sever as a risk factor for LNs metastasis and prognosis for

patients with bladder cancer, thus targeting the intratumoral

lymphatics is also imperative to diminish the spread of pri-

mary tumors as well as PTLs. More investigations need to

explore and determine the precise underlying mechanism of

how PTLs and ITLs to facilitate lymphatic metastasis in order

to provide novel therapeutic strategies for individuals with

urothelial carcinoma.

The Gene Expressing Profiling
It is generally understood the gene variation plays a vitally

significant role in the emergence and development of carci-

noma, associated with prognosis and cancer-specific survival

as well. There are hundreds of thousands of gene mutation

message to be distinguished on the basis of the fast develop-

ment of sequencing technologies, however, the actual value

of the gene expression signatures correlated with lymphan-

giogenesis and lymphatic metastasis in bladder cancer has

not yet been elucidated, and we also do not make sure

whether some of these gene alterations involved whether

driver or passenger mutations. Nowadays, gene expression

profiling for cancer has gained increasing attention owing to

its ability to figure out a detailed and complete map to dis-

cover the molecular cancer subtypes at the transcriptome

level, or based on the genetic and epigenetic alteration.

Several RNA-based expression data analysis assays

indicate that gene differential expression in MIBC is asso-

ciated with lymph node involvement, and to develop a list

of gene expression models (GEM) predicts the pathologi-

cal lymph node status in order to selecting patients for

advanced neoadjuvant chemotherapy,56–58 a research,

however, indicated that predictive efficacy could not be

validated merely based on a qRT-PCR platform.59

Therefore, a novel gene screening method is advisable,

which proposed 18-gene signatures highly predictive of

lymphatic metastasis.60 In recent, a study demonstrates a

nomogram for preoperatively predicting LN metastasis in

bladder cancer, which shows favorable discriminatory

ability and may offer help for clinical decision-making.61

A group fixes their concentration on the relationship

between copy number variation and lymph node metasta-

sis, consequently detect copy number gain at chr3p25 and

chr11p11, approximately a set of 22 genes, which related

to Ln+ and survival in bladder cancer.62

The Specific Biomarkers And Growth
Factors For Lymphatic Systems
The exact molecular mechanism of lymphangiogenesis and

lymph node metastasis was poorly influenced by the shortage

of promising biomarkers that reasonably differ lymphatic

vessels from blood vasculatures in the intratumoral and inter-

tumoral areas. Luckily, recent studies focus their attention on

lymphangiogenesis as well as the interests in LECmarkers in

UBC, various lymphatic-associated proteins have been

detected such as PROX-1, VEGFR-3, SOX-18, NR2F2,

neuropilin 2 (NRP-2), FOXC2, and others, some of which

have important functions in the development of the lympha-

tic vasculature.63,64 Nevertheless, only two of biomarkers

have been widely implicated in neoplasm to identify newly-

born lymphatics: lymphatic vessel endothelial hyaluronic

acid receptor 1 (LYVE1) and podoplanin.65 Multiple inves-

tigations give attention to the ITLs and PTLs, and their role in

malignancy development and progression. Interestingly,

Lymphovascular invasion (LVI)66–69 and high LVDs70–72

could be strongly prognostic factor for tumor aggressiveness

and an indicator of occult metastases in several malignancies,

including UCB as well,13,73,74 while some retrospective ana-

lysis however controversially indicated LVDs is not asso-

ciated with survival in various cancer in statistics (e.g.,
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melanoma, breast cancer), thus, more research is needed in

this part.

VEGF-C, VEGF-D, and their specific receptor,

VEGFR-3 mark a profound milestone in the lymphatic

commitment and metastasis, which are identified as guar-

anteeing prognostic indicators for malignant bladder can-

cer dissemination.75 Additionally, several findings suggest

that VEGF-C and VEGF-D are not just stimulate lymphan-

giogenesis but also may influence angiogenesis.76 Indeed,

some investigators reported that the roles of VEGF-C and

VEGF-D associated with MVD to induce angiogenesis in

cancer tissues.77 However, other investigators have sup-

ported the hypothesis that VEGFC and VEGF-D do not

have an angiogenic function.78 Although numerous inves-

tigators speculated that the properties of VEGF-C and

VEGF-D in lymphangiogenesis or angiogenesis might

depend on the degree of their proteolytic processing,76

clear explanations for such different functions of VEGF-

C and VEGF-D were not provided by data from the pre-

sent study. Current experimental and clinical studies

mainly focus their attention on the roles of tumor-derived

VEGF-C, VEGF-D, and their receptors for lymphangio-

genesis and lymphatic metastasis, whereas tumor-asso-

ciated stromal cells, especially stromal macrophages also

could release VEGF-C and VEGF-D.79 Therefore, further

investigations need to clarify and understand VEGF-C/

VEGF-D–VEGFR-3 axis as their potential in predictive

biomarkers and novel therapeutic targets in patients with

lymphatic metastasis. Neuropilin-2 was another factor

with specific expression in lymphatic ducts,80 which

could regulate the VEGF signaling pathway due to the

peculiarity of coreceptor.81 The LYVE1, which positively

applied to distinctively identify LVD, and thus promote the

investigation of tumor-associated lymphangiogenesis in

bladder cancer.82

Moreover, the transcription factor PROX-1 explicitly

expressed in lymphatic vessel tissues but not blood vas-

cular endothelium cell.83,84 Furthermore, it has been

reported that PROX-1 could upregulate the LEC-specific

markers, whilst represses that of blood vascular endothe-

lial cells (BECs) markers.33,85 These in vitro and in vivo

findings indicate that PROX-1 medicates the differentia-

tion of LECs from embryonic BECs via functioning as a

binary transcriptional switch, turning the BEC program off

and the LEC program on. Since PROX-1 is recognized as

a vital molecule to activate lymphatic development, mole-

cular mechanisms how PROX-1 is induced during lym-

phatic development have been extensively investigated.

For example, SOX-18, a member of the SOX family of

transcription factors, directly binds to PROX-1 promoter

and subsequently initiates its expression during the differ-

entiation program of venous BECs to LECs.26,86

Furthermore, PROX-1 requires the assistance of Ets family

members for efficiently overexpressing the LEC-specific

markers. To more specifically, several findings suggest that

Ets-2 could stimulate expression of VEGFR-3, with the

activation of its ligands-VEGF-C consistently, which sug-

gests that cooperatively enhances PROX-1-induced

lymphangiogenesis.87

Interestingly, the expression levels of VEGF-D, cycloox-

ygenase (COX)-2, and matrix metalloproteinase(MMP)-2

played vigorous influences in several processes, including

malignant proliferation and lymphangiogenesis.88 Also, podo-

planin accurately express in lymphatic vessels, the upregula-

tion of this kind of transmembrane glycoprotein could promote

various human cancer to disseminate to distant organ based on

epithelial-mesenchymal transition(EMT).89 A commercially

available antibody, named D2-40, correctly anchors human

podoplanin90 and has already been routinely monitored in

UBC to investigate the lymphatics development.91,92

Lymphangiogenesis And Metastasis
In Bladder Cancer
The VEGF-C/VEGF-D–VEGFR-3 Axis
Lymphatics proliferation is frequently observed in bladder

cancer tissue, providing an extensive communicating area

and facilitating bladder cancerous cell metastasis.93 There is

multistep processes involvement in the invasion and metas-

tasis of cancer cells, including tumor cells permeate into

adjacent lymphatic channels, transport tumorous cells

through the lymphatic systems and plant into the distant

tissues.94 Lymphangiogenesis and lymphatic remodeling

can induce cancer lymphatic metastasis by stimulating neo-

plastic cell invading into lymphatic vessels. However, the

exact mechanism of lymphangiogenesis is unclear.16,95,96

The VEGF-C/VEGF-D-VEGFR-3 axis is seen as a major

driver of tumor lymphangiogenesis,63 whereas the roles of

other pathways in this process are less well defined. VEGF-

C/VEGF-D-VEGFR-3 pathway stimulating proliferation

and migration of LECs is such as to play vital roles in

lymphangiogenesis and metastasis for bladder cancer.97,98

Despite tyrosine kinase receptors, all three VEGFRs (e.g.,

VEGFR-1, −2 and −3) are not distributed on ECs equally.

Indeed, VEGFR-1 mainly express on BECs with the feeble

expression on LECs, VEGFR-3 expression is largely
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restricted to lymphatic endothelial cells contrarily, whilst

VEGFR-2 could be identified both on BECs and LECs. In

human bodies, five different genes encode VEGF family

members such as VEGF-A, VEGF-B, VEGF-C, VEGF-D,

and placenta growth factor (PlGF), respectively. According

to their functions, it could be coarsely classified into two

main groups, such as hematogenous factors (e.g., VEGF-A,

VEGF-B, and PlGF) or lymphangiogenic factors (e.g.,

VEGF-C and VEGF-D).99,100 To more precisely, lymphan-

giogenesis can be supported by VEGFR-3 and its homo-

logous ligands including VEGF-C and VEGF-D. Moreover,

the VEGFR-3 co-receptor NRP-2 regulates the signaling

pathways that are undertaken in response to VEGF-C and

VEGF-D.101,102 These modes of initiating signals are some-

what analogous to the molecular modulation of angiogen-

esis by VEGF-A signaling via VEGFR-2 and NRP-165,103

(Figure 2). Proteolytic processing of VEGF-C has proved to

increase its receptor affinity and biological activity.104

Recent studies have implicated that two-star molecules

that are required for the development of lymphatic vessels,

such as disintegrin and metalloproteinase with thrombos-

pondin motifs 3 (ADAMTS3) protease and collagen and

calcium binding EGF domains 1 (CCBE1). Some research

demonstrated that an ADAMTS3-CCBE1 complex could

independently form, and such complexity is required to

convert VEGF-C, but not VEGF-D, into an active ligand

of with no reply on VEGFR3.105 To be more specific,

ADAMTS3 catalyzes the proteolytic processing of VEGF-

C, removing the N-terminal propeptide and releasing the

fully active, mature VEGF-C. In vivo, ADAMTS3 could

efficiently activate VEGF-C signaling in cooperation with

CCBE1. CCBE1 enhances the VEGF-C activation by two

different mechanisms: it increases the processivity of the

ADAMTS3 enzyme,106 and it colocalizes ADAMTS3 and

VEGF-C on extracellular matrix and cell surfaces to form

the trimeric activation complex.105 In addition, plasmin also

shows its significant roles in activating the VEGF-C and

VEGF-D to induce the new formation of lymphatic

Figure 2 Schematic illustration of VEGFR structures and their specific ligands. VEGFRs are depicted as ligand-bound activated dimers. The VEGF-ligand family includes

VEGFA, VEGFB, VEGFC, VEGFD, and the placenta growth factor (PlGF), which binds VEGFRs in a specific manner. VEGFB binds selectively to VEGFR-1. In contrast, VEGFA

can activate VEGFR-2 and VEGFR-1, while VEGFC and VEGFD could anchor both VEGFR2 and VEGFR3 pathways. The VEGFRs co-receptors are indicated as NRP-1 and

NRP-2 (neuropilin-1 and neuropilin-2, respectively) and HS (heparan sulfate; the main biological functions are listed below the respective receptors. In general, the VEGF-C/

VEGF-D/VEGFR-3 pathway plays a fatal role in the lymphangiogenesis and lymphatic metastasis in bladder cancer, though VEGF-C/VEGF-D/VEGFR-2 pathway may participate

to some extent.
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vessels.107 After plasmin and ADAMTS3, recent research

identified several novel proteases including kallikrein-

related peptidase 3 (KLK3) and cathepsin D with potential

in activating of VEGF-C as well as VEGF-D to trigger the

lymphangiogenesis and subsequently provide new perspec-

tives to facilitate the development of inhibitors of cancer

metastasis.108

The expression level of VEGF-C and VEGF-D is linked

to LN+ and higher LVD, showing its potential function both

in LN+ and lymphangiogenesis.109 VEGF-C and VEGF-D

motivate tumor cells to enter the circulatory system through

enhancing tumor interstitial fluid pressure as a result of

accelerating vascular leakage and lymph flow, as well

increasing quantity, diameter and the proliferation rates of

the LVD.110,111 When the axis is enabled, the lymphangio-

genesis can be detected within and peripheral tumors,112

while the opposite outcome could be identified in some

research while blocking the signaling pathway.113

The Ang2/Tie-2 Pathway
The angiopoietin system mainly includes Ang1, Ang2, and

Ang4 and their receptors Tie-1 and Tie-2, and such a system

has prominent impacts on endothelial cells both from the

hemic and lymphatic system. Ang2, associated with tumor

progression in bladder cancer,114 is most noteworthy amongst

the ligands in bladder cancer concerning the lymphatic system

following that in experimental tumor models.115 Moreover,

Ang2 can contribute to the anatomical integrity of lymphatic

systems during the embryogenesis.116

The HGF/c-MET Pathway
Hepatocyte growth factor (HGF) shows its functions in

regulating resistance to anti-angiogenic therapies via chan-

ging tumor microenvironment,117 and its receptor c-Met

can be isolated from the cultured lymphatic endothelial

cells in vitro, and upregulated when the occurrence of

inflammation and cancer in vivo,118 an indirect mechanism

has also been described, mainly via activation of the

VEGF-C/VEGF-D-VEGFR-3 axis.119

The Shh Signaling Pathway
In recent, the advent of the concept of cancer stem cell

(CSC) has served as a novel concept for the development

and progression of various tumor types, which immedi-

ately and indirectly participate in lymphangiogenesis.120

The sonic hedgehog (Shh) pathway involves the new for-

mation of lymphatic vessels in many tumors. Some studies

demonstrate that Shh signaling activates the tumor

metastasis and lymphangiogenesis through waking up the

AKT, EMT, and the MMP-9 pathway.121 When it now

comes to UBC, Shh signaling also promotes oncogenesis

and tumorigenicity,122 but its role in tumor progression is

undefined.123 Some show that MIBC arises exclusively

from Shh-expressing stem cells in the basal urothelium,

and affirm that Shh expression is invariably lost as long as

the progression to MIBC,124–126 contrarily, others argue

the constitutive activation of Shh signaling.127 Cross-talks

between Shh and TGF-beta may participate in the devel-

opment and progression of bladder cancer as the conse-

quence of manifesting EMT and bladder cancer

stemness.127–129 Furthermore, there are several studies

unravel the correlation between the CSC and Shh signaling

for the tumorigenesis in bldder.130,131 A retrospective

study shows that Shh pathway components are associated

with lymphatic metastasis and poor clinical outcomes in

bladder cancer.132 We thus hypothesize that is worth to

study Shh signaling pathway to figure out underlying

therapeutic values for UBC in the future.

The CCL21/CCR7 Signal Pathway
Within most normal tissues, CCL21 mainly originates from

the lymphatic system and binds to C-C chemokine receptor

7(CCR7) selectively expressing in activated DCs in normal

conditions, thereby recruiting DCs toward the lymphatic

systems to perform immune responses.133 A study suggests

the lymphatic flow plays a crucial role in upregulating the

expression level of CCL21 of the endothelium in vitro.134

However, various tumor cells have been verified that can

positively label CCR7 by activating the MEK/ERK1/2 sig-

naling pathway instead of the PI3K/AKT pathway.135

CCR7 expression is in significant accordance with several

clinicopathological parameters, including lymph node sta-

tus, tumor stage, tumor grade, and overall survival in BC

patients.136 Both VEGF axis and TGF-β1 pathway could

promote CCR7+ tumor cells migrate towards LECs via

upregulated CCL21.137–139 In all, CCL21 is served as a

probable carcinogenic factor due to its role in reversing

the host immune response from immunogenic toward tol-

erogenic for CCR7+ cancer cells.140

Others
There are several kinds of RNA molecules with no protein-

coding capacity, including long non-coding RNAs (lncRNAs)

and microRNAs (miRNAs). The diversity of lncRNAs shows

vital roles in the development and progression of

human cancers,141 such as HOTAIR, SChLAP1. Moreover,

Dovepress Wu et al

OncoTargets and Therapy 2019:12 submit your manuscript | www.dovepress.com

DovePress
8167

http://www.dovepress.com
http://www.dovepress.com


BLACAT1 are correlated with lymphatic metastasis.142–144

Additional factors, including LINC01186 and lncRNA-ATB,

participate in metastasis by inducing EMT.145,146 A recent

study indicates that lncRNAs markedly upregulated in LN-

metastatic bladder cancer.147 Many types of cancer are asso-

ciated with aberrantly expressing of miRNAs,148 such as miR-

128 downregulation promotes lymphangiogenesis and metas-

tasis of UBC by the upregulation of VEGF-C.149 In addition to

these that we have discussed above, multiple other growth

factors and their receptors such as platelet-derived growth

factor(PDGF)/PDGFR, fibroblast growth factor(FGF)-2/

FGFR, epidermal growth factor(EGF)/EGFR and insulin-like

growth factor(IGF)/IGFR involve with lymphangiogenesis

under various circumstances, indirectly or directly.64,65,150–153

Therapeutics Aimed At
Lymphangiogenesis And Lymphatic
Metastasis
Nowadays, the first-line treatment for malignant MIBC is

radical cystectomy with extensive pelvic lymphadenectomy,

whereas a quarter of those patients undergoing radical cystect-

omy for MIBC show Ln+.154 Nowadays, Ln+ is one of the

most important predictors for the outcomes in individuals with

bladder cancer. Cisplatin-based regimens have already

regarded as the standard first-line chemotherapy since the late

1980s, including the use of including MVAC (methotrexate,

vinblastine, adriamycin, and cisplatin) and GC (gemcitabine

and cisplatin), and the survival of patients with metastatic

urothelial carcinoma has yet remained rather poor.6 Many

studies demonstrate that the inhibition of the lymphangiogenic

signaling pathway might restrict metastasis to lymph nodes

and potentially to distant organs in various tumors, including

urothelial carcinoma as well. Indeed, targeting tumor-asso-

ciated lymphangiogenesis could be a feasible molecular target

for patients with bladder cancer. The most studied biological

pathway is VEGF-C/VEGF-D-VEGFR-3 axis, and such

signaling is the important biological signaling pathway for

lymphangiogenesis and lymphatic metastasis in tumors. As

a consequence, inhibition of VEGF-C/VEGF-D/VEGFR-3

recognizes a potential way to restrain tumor pro-

gression.155–157 Currently, the antibody of VEGF-C and its

receptor antibody- VEGFR-3, such as VGX-100158 and

IMC-3C5,159 respectively, have entered clinical testing for

the treatment of cancer. In addition, blocking the VEGFR-2

also shows potential in diminishing the lymphatic

metastasis.160 Assorted other small-molecule antibodies and

protein kinase inhibitors, under clinical trials and preclinical

stages,39,161–164 that target VEGF-C/VEGF-D-VEGFR-3 are

shown in details in Table 1. Another signaling axis, such as the

HGF-c-MET165–168 and Ang2-Tie-2169–171 pathway, may

serve also as targets to inhibit lymphangiogenesis by specific

antibodies (Table 1). Several antibodies and antibody

formats such as Sorafenib,172 Pazopanib,173 Sunitinib,174,175

Axitinib,176 Regorafenib,177 Vatalanib178 have been exten-

sively applied for cancer treatment in the clinic, could decline

peritumoral LVD and lower the incidence of lymph node

metastasis via inhabitation of various signaling pathways.

Other potentially useful reagents, including neutralizing

mAbs to NRP2179 and COX enzymes,180,181 are also in under-

going investigation, with showing potential therapeutic targets.

However, it remains not clear as to when such drugs should be

ideally offered to tumor patients to restrain carcinoma spread-

ing. It is warranted to develop novel technology for patient

selection pre-treatment, or prognosis surveillance after gave

such anti-lymphangiogenic therapy. Immuno-positron emis-

sion tomography (I-PET) with lymphatic-specific antibodies,

a new imaging approaches, may eke out from such assignable

issues in the clinic.182

Cancer immunotherapy encompasses all the methods

sought to facilitate the identification and eradication of

cancerous cells by the aid of the immune system. Indeed,

immunotherapies (e.g., BCG, CTLA-4, and PD-1/PD-L1)

have revolutionized the treatment paradigm in urothelial

carcinoma of the bladder, especially for the patients even-

tually develop resistance to this standard first-line

treatments.183,184 Booming evidence highlight that, aside

from transport and trafficking functions, tumor-associated

lymphatics further represent a conceivable role in shaping

antitumor immunity. In particular, tumor-associated lym-

phatic vessels are initially required for the recruitment of

immunocyte and the initiation of the adaptive immune

response. Indeed, numerous investigations suggest that

neoplasm drainage, dendritic cells trafficking, and subse-

quent activation of anti-tumor specific T cell responses is

remarkably disturbed in transgenic mice with impaired or

lacking local lymphatic vessels.185,186 Antigens transport

by dendritic cells via lymphatic vessels toward draining

LNs is indispensable for the activation of anti-tumor adap-

tive immune responses, and thus indicate that develop

LNs- or LVs-targeting approaches, including indirect tar-

geting of draining LNs by the usage of drug delivery

systems with optimal lymphatic retention and uptake prop-

erties, and the direct injection of immunomodulatory

agents into cutaneous LNs or lymphatics, are potential

therapeutics to impair malignancies progression and
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Table 1 Overview Of Potential Drugs Which Target Lymphangiogenic Pathways

Target Drug Name Description Status NCT Or Ref

Number

VEGF-C VGX-100 VEGF-C blocking antibody Phase 1 ongoing NCT01514123

VEGF-D VD1 Monoclonal antibodies Preclinical 161, 162

cVE199 Monoclonal antibodies Preclinical 163

VEGF-C and VEGF-D VGX-300 Soluble VEGFR3 construct Preclinical 39

VEGF-C, VEGF-D, and

VEGF-A

sVEGFR2 Soluble VEGFR2 construct Preclinical 164

VEGFR-3 IMC-3C5/hF4-3C5 VEGFR-3 blocking monoclonal

antibody

Phase 1 completed NCT01288989

Sorafenib Small-molecule PKI Approved for clinical applicant 172

Pazopanib Small-molecule PKI Approved for clinical applicant 173

Sunitinib Small-molecule PKI Approved for clinical applicant 174, 175

Axitinib Small-molecule PKI Approved for clinical applicant 176

VEGFR-3 and TIE2 Regorafenib Small-molecule PKI Approved for clinical applicant 177

CEP-11981 Small-molecule PKI Phase 1 completed NCT00875264

c-MET AMG337 Small molecule c-MET inhibitor Phase 1 completed Phase 2 terminated NCT01253707

NCT02016534

AMG 208 Small molecule c-MET inhibitor Phase 1 completed Phase 2 terminated NCT00813384

NCT02420587

Crizotinib Small molecule c-MET,

ROS1and ALK

Phase 2 ongoing NCT02034981

PF-04217903 c-MET/HGFR tyrosine kinase

inhibitors

Phase1 completed NCT00706355

Capmatinib (INC280) Small molecule c-MET inhibitor Phase 1 completed NCT02626234

Tepotinib

(MSC2156119J)

Small molecule c-MET inhibitor Phase 1 completed NCT01832506

Foretinib (GSK1363089

and XL 880)

Small molecule c-MET/HGFR

inhibitors

Phase 2 completed NCT00726323

Tivantinib (ARQ 197) Small molecule c-MET inhibitor Phase 2 ongoing NCT01892527

ARGX 111 antibody blocking c-MET Phase 1 completed NCT02055066

EMD 1204831 c-Met kinase Inhibitor Phase 1 terminated NCT01110083

ABT-70 (ABBV-399) anti-c-Met monoclonal

antibody

Phase 2 ongoing NCT03574753

Volitinib (HMPL-504) small molecule inhibitor of c-

Met kinase

Phase 1 completed NCT01773018

Onartuzumab

(MetMAb)

Monovalent, c-MET blocking

antibody

Phase 3 completed NCT01887886

SAIT301 monoclonal antibody of c-MET Phase 1 completed NCT02296879

(Continued)
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metastasis, which that are not discussed in there, readers

can review in detail in several published review articles for

these topics.187–189 However, lymphatic endothelial cells,

the initial components of lymphatic vessels, undergo

active modifications that facilitate metastatic dissemina-

tion and can have direct interactions with immune cells

(e.g., DCs and T cells) to negatively induce immunoregu-

lation. To more specific, direct LEC-T cell interactions and

antigen presentation to dendritic cells can induce the dys-

functional CD8+ T cell activation or the CD4+ T cell

apoptosis,187 or lymphatic endothelial cells produce sev-

eral biological factors(e.g., IDO, MHCs, and NO) that

indirectly aid in the maintenance of regulatory T cell

populations and impairment of DCs maturation and T

cell activation.190–192 Thus, anchoring the LECs to

manipulate immune responses open opportunities for ther-

apeutic targeting in the cancer treatment paradigm.

Additional research will need to determine how to selec-

tively target LEC immunosuppressive functions in can-

cers, which could, combined with immunotherapeutic

methods, facilitate the evolvement of a “cold” into “hot”

immunogenic TME and potentiate anti-tumor T cell

responses. The current clinical trial researches targeting

at lymphatic metastasis involving cancers, and the above

studies demonstrate that biological processes of lymphan-

giogenesis and anti-lymphangiogenesis involve multiple

pathways. When one signaling pathway is inhibited, others

may make compensation for its absence. Therefore, future

anti-lymphatic treatment therapy may be complex invol-

ving inhibitors of diverse pathways.

Table 1 (Continued).

Target Drug Name Description Status NCT Or Ref

Number

EFG YYB101 HGF neutralizing antibody Phase 1 ongoing NCT02499224

Ficlatuzumab (AV-299) HGF neutralizing antibody Phase 1 ongoing NCT03316599

Rilotumumab

(AMG 102)

HGF neutralizing antibody Phase 3 terminated NCT02137343

Ang1/Ang2 AMG 386 (Trebananib) sequestering Ang1 and Ang2 Phase 3 terminated NCT01281254

CVX-060 Anti-angiogenic Covx-body

Binding Ang2

Phase 1 completed NCT00879684

CVX-241 Ang2/VEGF neutralizing

bisprecific CovX-body

Phase 1 completed NCT01004822

REGN910-3 Ang2 neutralizing antibody Phase 1 completed NCT02713204

AMG780 Ang1/Ang2 neutralizing

antibody

Phase 1 terminated NCT01137552

TIE2 ARRY-614 p38/Tie2 inhibitor Phase 1 completed NCT01496495

Regorafenib

(BAY 73–4506)

Tie2 inhibitor Phase 3 ongoing NCT02773524

DCC-2036 Tie2 inhibitor Phase 1 completed NCT00827138

CEP-11981 (ESK981) VEGFR/TIE2 tyrosine kinase

inhibitor

Phase 1 ongoing NCT03456804

AMG-386 Neutralizing peptibody Phase 2 completed NCT01290263

NRP2 Anti-NRP2B Monoclonal antibody Preclinical 179

COX2 NSAIDs Small molecules Approved for use as analgesics and as anti-

inflammatory agents

180, 181

Abbreviations: VEGF, vascular endothelial growth factor; PKI, protein kinase inhibitor; c-Met, tyrosine-protein kinase Met; HGFR, hepatocyte growth factor receptor;

EFG, epidermal growth factor; Ang: angiotensin; TIE2, tyrosine kinase with immunoglobulin-like and EGF-like domains; NRP2, neuropilin 2; COX2, cyclooxygenase; NSAID:

non-steroidal anti-inflammatory drug.
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Discussions
Over the past decades, tumor-associated lymphangiogenesis

has been thought to be a new target to eliminate metastatic

malignancy. To date, the development of specific anti-lym-

phangiogenic drugs has reached the stage of clinical trials.

Nevertheless, much remains to be done: Primarily, the mole-

cular mechanisms that govern the entry of tumorous cells

into remodeled or newly-born lymphatic vessels-be their

ITLs or PTLs-have not been comprehensively characterized;

Second, it is unclear whether remodeling of lymphatics and/

or the tumor-associated lymphangiogenesis are crucially

required for the carcinoma dissemination to LNs or distant

organs; Third, the degree to which LN metastases directly

contribute to distant organ metastasis needs to be defined, as

do the mechanisms through which this may occur; In addi-

tion, as mention above part, LVs play a dual role in tumor

immunity; therefore, LV might display positive and/or nega-

tive effects on tumor immunity depending on the stage of

tumor progression and on the immunological settings

(immune evasion/immune subversion or immunotherapy).

It is thus urgent to decipher precisely the roles for LVs in

tumor cell dissemination and anti-tumor T cell immunity;

Furthermore, novel imaging methods and whole-genome

functional screens with LECs are needed to monitor the

efficiency of anti-lymphangiogenesis drugs accurately, and

to provide precise treatment for those patients who can get

more benefits from these treatments; Additionally, anti-lym-

phangiogenic therapy may enhance interstitial fluid pressure

and hamper drug delivery to cancerous cells.193 Consistently

with tumor angiogenesis, variety of lymphangiogenic path-

ways and hundreds of regulatory molecules involve the new

formation of lymphatic vessels within TMEs, meaning that

single pathway targeting drugs might not be efficient in all

cases. Thereby, investigations into the optimal scheduling of

combination therapies are needed.

Conclusions
Increasing clinical studies show the evidence that lymphatic

vessel invasion and lymph node metastasis depict poor

prognosis indicators in UBC. As already discussed, the

GEP platform could analyze the relationships between

tens of thousands candidate genes and lymph node involve-

ment at a given time with the help of Next-Generation

Sequencing and Biotechnology; however, GEP technology

is limited due to unable to detect the interactions or signal-

ing crosstalk. More investigations are also required to iden-

tify the genes associated with poor prognosis profiles,

which could protect the patient against suffering poor prog-

nosis via aiding in rational clinical decision-making during

the earlier status. Over the past few decades, the great

efforts have been made in elucidating the cellular and

molecular mechanisms underlying lymphatic metastasis,

especially the discovery of lymphangiogenic growth factors

and specific biomarkers of LECs and development of GEM,

making profound breakthroughs to unravel the complexity

of the lymphatic metastatic process. Currently, the VEGF-

C/VEGF-D-VEGFR-3 pathway is correlated with the

tumor-derived lymphatic vessels and metastasis in UBC,

blocking such signaling pathway suppresses tumor lym-

phangiogenesis. Research into the lymphatic system is cur-

rently undergoing another revolution about the real-time

imaging of lymphatic metastasis, for instance, to develop

a new, noninvasive in vivo imaging techniques contribute to

detect metastases to evaluate the scope of surgery based on

the identification of tumor-induced stromal changes, which

mainly relies on the specific biomarkers. Owing to its com-

plexity, the existing molecular mechanisms remain yet con-

troversial. In the future, therefore, large-scale basic research

and a grand mass of clinical specimens are in importance

for developing further accurate molecules. Novel antitumor

drugs targeting the newly identified molecular markers or

pathway can then be put into place to prevent bladder

cancer metastasis at an earlier stage and provide better

outcomes for bladder cancer patients.

Abbreviations
UBC, urinary bladder cancer; NMIBC, non-muscle inva-

sive bladder cancer; MIBC, muscle-invasive bladder can-

cer; LNs, lymph nodes; LEC, lymphatic endothelial;

GEM, Gene expression models; MMP-2, matrix metallo-

proteinase-2; LVD, lymphatic vessels density; VEGF, vas-

cular endothelial growth factor; PROX-1, prospero-related

homeobox-1; COX-2, cyclooxygenase-2; EMT, epithelial-

mesenchymal transition; HGF, hepatocyte growth factor;

CSC, cancer stem cell; Shh, sonic hedgehog; DCs, den-

dritic cells; CCR7, C-C chemokine receptor 7; CCL21,

chemokine (C-C motif) ligand 21; lncRNAs, long noncod-

ing RNAs; miRNAs, microRNAs. SOX-18, SRY-related

HMG-box-18, MAFB, musculoaponeurotic fibrosarcoma

oncogene homolog B; MAPK, mitogen-activated protein

kinase; ERK, extracellular signal-regulated kinase;

COUPTF-2, COUP transcription factor-2; NR2F-2,

nuclear receptor subfamily 2 group F member 2; PI3K,

phosphatidylinositol 3-kinase; PKB, protein kinase B;

NRP-2, neuropilin 2.
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