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Pericytes (PC) are mural cells that surround endothelial cells in small blood vessels. 
PC have traditionally been credited with structural functions, being essential for vessel 
maturation and stabilization. However, an accumulating body of evidence suggests that 
PC also display immune properties. They can respond to a series of pro-inflammatory 
stimuli and are able to sense different types of danger due to their expression of 
functional pattern-recognition receptors, contributing to the onset of innate immune 
responses. In this context, PC not only secrete a variety of chemokines but also 
overexpress adhesion molecules such as ICAM-1 and VCAM-1 involved in the control 
of immune cell trafficking across vessel walls. In addition to their role in innate immunity, 
PC are involved in adaptive immunity. It has been reported that interaction with PC 
anergizes T cells, which is attributed, at least in part, to the expression of PD-L1. 
As components of the tumor microenvironment, PC can also modulate the antitumor 
immune response. However, their role is complex, and further studies will be required 
to better understand the crosstalk of PC with immune cells in order to consider them 
as potential therapeutic targets. In any case, PC will be looked at with new eyes by 
immunologists from now on.

Keywords: pericytes, innate immunity, inflammation, adaptive immunity, tumor microenvironment

iNTRODUCTiON

Pericytes (PC) were first described 145 years ago by Carl Joseph Eberth and “rediscovered” 2 years 
later by Charles-Marie Benjamin Rouget. They were given their current name by Karl Wilhelm 
Zimmermann in 1923 (1), due to their location wrapping around capillaries and postcapillary ven-
ules. However, they remain elusive cells with intriguing properties that have only recently attracted 
the attention of numerous researchers. This is due, in part, to the relatively low numbers of PC in 
most tissues (with the CNS being an exception) and exacerbated by the absence of truly unique 
markers, increasing the difficulty of isolating pure primary PC. In fact, cultured human PC have not 
been readily available until a few years ago, which explains the sparse data available on PC compared 
to the far more characterized endothelial cells (EC) (2).

To make the picture more complex, PC are heterogeneous in terms of phenotype, distribution, 
and embryonic origin. Markers used to identify PC include PDGF receptor-β (PDGFR-β), nerve-
glial antigen-2/chondroitin sulfate proteoglycan 4 (NG2), the regulator of G-protein signaling-5 
(RGS5), α-smooth muscle actin (αSMA), desmin, aminopeptidase N (CD13), endoglin (CD105), 
the adhesion molecule CD146, and many others (3). However, not all PC express every single 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2016.00480&domain=pdf&date_stamp=2016-11-04
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2016.00480
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:lsalcober@salud.madrid.org
http://dx.doi.org/10.3389/fimmu.2016.00480
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00480/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00480/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00480/abstract
http://loop.frontiersin.org/people/376941/overview


2

Navarro et al. Pericytes as Immune Modulators

Frontiers in Immunology | www.frontiersin.org November 2016 | Volume 7 | Article 480

marker; their expression is dynamic and varies between organs, 
developmental stages, activation/maturation state, and across 
individual microvascular networks. Neither are most of these 
markers found exclusively on PC (4). Moreover, it has been 
suggested that PC and vascular smooth muscle cells (VSMC) 
that surround larger vessels represent phenotypic variants of a 
continuous population of mural cells (5).

Initially, light and electron microscopy were the only 
techniques able to visualize them, and PC distinct from other 
perivascular cells could not be identified precisely. However, 
definition of PC by criteria that requires ultrastructural analysis 
for identification is not practical (6). Currently, at least two 
markers (positive reactivity to both PDGFR-β and NG2 being 
widely accepted) as well as morphology and cell location (in 
close contact with EC, embedded in the same basement mem-
brane) are required to unequivocally distinguish PC from other 
mesenchymal cells (7). The use of transgenic mouse models 
fluorescently labeling PC [e.g., NG2-dsRed (8), the inducible 
NG2-CreERT2-eGFP (9), αSMA-GFP or αSMA-mCherry (10), 
and the double-transgenic nestin-GFP/NG2-DsRed mouse 
(11)] may be essential for studying the fate of PC under dif-
ferent conditions.

Pericytes have a well-known role in angiogenesis and vas-
cular homeostasis, participating in guidance of the endothelial 
tip cells and vessel maturation and stabilization (12, 13). The 
initial stage of angiogenesis begins with PC–EC detachment and 
basement membrane degradation, followed by EC migration 
and proliferation and subsequent EC tube assembly and vessel 
stabilization by newly recruited PC (14). Recent studies support 
the notion that PC-mediated signaling may also be crucial for 
the growth phase of angiogenesis: PC may act as pioneers in 
the angiogenic sprout, creating pathways for guiding migrating 
EC (15).

Several signaling pathways have been characterized in 
the PC–EC crosstalk, including PDGF-B/PDGFR-β, TGF-β/
ALK1/5, angiopoietin-1/Tie-2, and Jag1/Notch3 (16). Their role 
in the regulation of flow rate is more controversial (17), although 
discrepancies may be due to the lack of a clear definition of PC 
subpopulations (18). But PC not only provide structural support 
to EC, as it was classically assumed. Recently, several works have 
endowed PC with unexpected mesenchymal stem cell (MSC)-like 
properties. PC can express MSC markers and behave like MSC 
both in vitro and in vivo. Conversely, MSC have been attributed a 
perivascular origin (19) and can exhibit a PC-like behavior (20). 
They have also a role in cancer biology, where they participate 
in tumor angiogenesis and metastasis (21). However, PC have 
received far less credit as being immune regulators.

Rapidly expanding insights into their physiological and patho-
logical functions have attracted the attention of many research 
groups. Beyond the field of angiogenesis research, PC have been 
mainly in the focus of neuroscientists, because of their central 
role in blood–brain barrier maintenance and the implication of 
their loss in diabetic retinopathy (13, 22). The PC “avatars” in the 
liver (hepatic stellate cells) and kidney (mesangial cells) have also 
received attention due to their role in fibrosis. Here, we aim to 
make these elusive cells mostly appealing for the community of 
immunologists.

ARe PeRiCYTeS NON-PROFeSSiONAL 
MACROPHAGe-LiKe CeLLS?

Pioneering studies suggested that PC do not represent 
mere bystanders in the inflammatory response, but display 
 macrophage-like, non-professional antigen-presenting cell 
(APC)  characteristics, suggesting possible participation in 
immune responses (23–25). In 1999, a comprehensive review 
summarized the knowledge about the potential role of brain 
PC (mainly of rodent origin) as macrophage-like cells (26). 
PC macrophage markers reported by different groups included 
CD4, major histocompatibility complex (MHC) class II 
molecules, CD45 (leukocyte-common antigen), Fc receptors, 
scavenger receptors, CD11b (alpha chain of the integrin 
Mac-1/CR3), the pan-macrophage marker CD68 (ED1), and 
the M2-polarized-specific marker CD163 (ED2) (23, 27–29). 
Among the macrophage-like properties of PC, pinocytosis 
and phagocytosis were documented. In this way, they could 
contribute to the removal of toxic cellular by products from 
the microcirculation. Very early in  vivo studies (30, 31) had 
demonstrated accumulation of tracer particles in PC after 
systemic administration, which is suggestive of their phagocytic 
ability. Much later, phagocytic activity was confirmed in cultured 
primary rat PC using opsonized beads (23).

Macrophages are classical APC, which, in addition to MHC 
class II molecules, express co-stimulatory molecules such as CD80 
and CD86. Non-professional APC that only express MHC class 
I molecules may function as APC after induction of MHC class 
II molecules expression by interferon-gamma (IFN-γ). Indeed, 
brain PC treated with IFN-γ expressed MHC class II molecules 
and acquired the capacity to present antigen to primed syngeneic 
T lymphocytes from rats immunized with myelin basic protein 
or ovalbumin (32). T cell proliferation was antigen specific and 
MHC class II dependent because an irrelevant antigen failed to 
induce incorporation of labeled thymidine and non-activated PC 
did not support it. The PC proliferative response was comparable 
to that produced by syngeneic APC and was dose and ratio 
dependent. Previously, cells referred to as smooth muscle/PC 
have been shown to selectively induce the Ag-specific activation 
of different Th1 clones, reflected by cell proliferation and produc-
tion of IL-2 (33).

However, some of these pioneering findings have been ques-
tioned as clear-cut identification of PC was not provided, and the 
results might rather be attributed to perivascular macrophages 
(34). Controversy had already appeared in early studies using 
transmission electron microscopy that distinguished perivascu-
lar cells, which ingested carbon particles, from PC, which did not. 
The results of this study suggested that at least some perivascular 
cells remain distinct from PC (35).

More recent studies have reported that isolated porcine brain 
PC do not express MHC class II molecules under basal conditions, 
but IFN-γ can induce its mRNA (36) and protein expression (37). 
In a mouse model of PDGFR-β gain-of-function, activation of 
brain PC prompted the expression of immunoregulatory genes, 
including MHC class II molecules, Fcγ receptors and proteosome 
subunits as PSME1 (38). IFN-γ also upregulated CD68 mRNA, 
and both IFN-γ and TNF-α increased the phagocytosis of latex 
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TAbLe 1 | Cytokines, chemokines, and adhesion molecules expressed by 
pericytes in response to pro-inflammatory stimuli.

Stimuli Cell source Reference

Cytokine/chemokine
CCL2/MCP-1 LPS HBP (45)

TNF-α, IL-1β, LPS HBP (47)
LPS, TNF-α HPP (49)
TNF-α RBP (51)
TNF-α, IL-1β HRP (46)
IL-1β HBP (48)
IL-1β HBP (39)
LPS, IFN-γ HBP (53)

CCL3/MIP-1α LPS MBP (55)
TNF-α RBP (51)
TNF-α, IL-1β HRP (46)

CCL4 LPS MBP (55)
CCL5/RANTES TNF-α RBP (51)

HCMV HBP (54)
TNF-α, IL-1β HRP (46)

CCL11/eotaxin LPS MBP (55)
TNF-α HRP (60)

CXCL1/GROα/KC LPS HBP (45)
LPS, TNF-α HPP (49)
TNF-α MMP (61)
TNF-α RBP (51)

CXCL10/IP-10 TNF-α, IL-1β, LPS HBP (47)
TNF-α RBP (51)
IFN-γ HBP (37)

CXCL11 HCMV HBP (54)
CX3CL1 IL-1α HBP (39)
G-CSF LPS MBP (55)

TNF-α, IL-1β HRP (46)
TNF-α HBP (52)

GM-CSF LPS MBP (55)
TNF-α, IL-1β HRP (46)

IFN-γ LPS MBP (55)
IL-1α TNF-α RBP (51)
IL-1β LPS RLP (60)

High glucose BRP (62)
IL-2 TNF-α RBP (51)
IL5 TNF-α RBP (51)
IL-6 LPS HBP (45)

TNF-α RBP (51)
HCMV HBP (54)
IL-17 HPP (43)

IL-6 (Cont.) TNF-α, IL-1β HRP (46)
IL-1β HBP (48)
LPS MBP (50)
TNF-α HBP (52)
TGF-β1 HBP (39)

IL8/CXCL8 LPS, HMGB1 HBP (45)
LPS, TNF-α HPP (49)
HCMV HBP (54)
TNF-α, IL-1β HRP (46)
LPS, TNF-α, IL-1β PBP (56)
IL-1β HPP (57)
C12-iE-DAP HBP (58)
IL-1β HBP (48)
TNF-α HBP (52)
IL-1β HBP (39)
TNF-α HPP (59)
IL-17 HPP (43)

IL-10 LPS MBP (55)
IL-12 LPS MBP (55)
IL-13 LPS MBP (55)
IL-17 TNF-α RBP (51)

(Continued)
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beads in SMA+, desmin+, CD90+, and NG2+ pig brain PC (36). On 
the other hand, PC phagocytic ability was attenuated by  TGF-β1, 
possibly through downregulation of the scavenger receptors 
CD36, CD47, and CD68 (39).

However, in a recent work, pretreatment with different stimuli, 
including IFN-γ, failed to induce an APC-like phenotype in 
human PC from various origins (placenta, brain, and CD146+, 
CD105+ pluripotent stem cell-derived). PC constitutively 
expressed MHC class I but not MHC class II or the co-stimulatory 
molecules CD80 or CD86. As previously described, incubation of 
cultured PC with IFN-γ induced the expression of MHC class II 
by all types of PC. On the contrary, IFN-γ did not stimulate the 
expression of CD80 or CD86 and did not significantly affect the 
proliferation of CFSE-labeled CD4+ T cells in comparison with 
untreated PC (40).

In summary, more studies are needed to establish the role of 
PC as macrophage-like cells, once unequivocal identification is 
warranted.

PeRiCYTe ReSPONSe TO  
PRO-iNFLAMMATORY CUeS

It is well known that activated EC can secrete a plethora of 
cytokines and chemokines that are important in potentiating 
inflammatory responses (41). Numerous in  vitro studies have 
shown that EC secrete CXC (CXCL1, CXCL2, CXCL8, CXCL9, 
CXCL10, CXCL11), CC (CCL2, CCL3, CCL5, CCL7), and CX3C 
chemokines in response to various inflammatory stimuli. These 
studies correlate with in  vivo studies demonstrating a role for 
these endothelial-derived chemokines in mediating leukocyte 
recruitment during various inflammatory conditions (42).

Similarly, PC of multiple origins have been reported to 
secrete a plethora of chemokines and cytokines in response 
to pro-inflammatory stimuli released by professional innate 
immune cells, mainly TNF-α, IL-1β, and IFN-γ (Table  1). 
Interestingly, human PC have recently been shown to be 
much more responsive than human EC to IL-17 stimulation 
in producing pro-inflammatory molecules (43). Commonly 
upregulated pro-inflammatory factors include: CXCL8, IL-6, 
CCL2, CCL3, CCL5, CXCL1, and CXCL10. These cytokines 
and chemokines may be important in potentiating inflamma-
tory responses by inducing cytokine secretion by other cells and 
recruiting immune cells to the site of inflammation. CXCL8 and 
CXCL1 bind to both receptors CXCR1 and CXCR2, expressed 
mainly by neutrophils. Of note, IL-17-stimulated PC not only 
overexpressed CXCL8 but also induced neutrophil synthesis of 
TNF-α, IL-1α, IL-1β, and CXCL8 (43). CCR2, the CCL2 recep-
tor, is expressed mainly by monocytes. CXCR3 is the CXCL10 
receptor, involved in Th1, CD8, and NK cell trafficking. CCL3 
and CCL5 bind to CCR1 and CCR5 and modulate monocyte, 
macrophage, Th1, CD8, and NK cell migration (44). Therefore, 
all these cell types may be lured by activated PC to a site of 
inflammation (Figure 1).

Chemokines produced by PC also have a key role in inflamma-
tion-associated angiogenesis. CXCL1 and CXCL8 belong to the 
CXC chemokine subgroup with glutamic acid–leucine–arginine 
(the ELR motif) immediately proximal to the CXC sequence, 
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FiGURe 1 | The schematic drawing describes the close spatial 
relationship and the complex interactions between pericytes and 
different cells of the innate and adaptive immune system.

Stimuli Cell source Reference

MIF LPS, TNF-α HPP (49)
TNF-α LPS, TNF-α MBP (55)

High glucose BRP (62)

Adhesion molecule
ICAM-1 TNF-α, IFN-γ RBP (32)

LPS HBP (45)
TNF-α MMP (61)
TNF-α, LPS HPP (49)
TNF-α, IFN-γ HBP (63)
IL-1β HPP (57)
High glucose BRP (62)
IL-1β HBP (48)
TNF-α HPP (59)
TNF-α, IFN-γ HPP (64)
LPS, IFN-γ HBP (53)

VCAM-1 TNF-α RBP (32)
LPS HBP (45)
TNF-α HBP (63)
TNF-α HPP (59)

BRP, bovine retinal pericytes; HBP, human brain pericytes; HCMV, human 
cytomegalovirus; HPP, human placental pericytes; HRP, human retinal pericytes;  
MBP, mouse brain pericytes; MMP, mouse muscle pericytes; PBP, pig brain pericytes; 
RBP, rat brain pericytes; RLP, rat lung pericytes.

TAbLe 1 | Continued
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which promote the migration and proliferation of CXCR1- and 
CXCR2-expressing EC (65). In addition to the ELR+ CXC 
chemokine family, CCL2 is the best known CC chemokine media-
tor of neovascularization. This pattern of chemokine production 
may shed new light on PC–EC interactions, suggesting a dual 
role for PC according to their activation status. In physiologi-
cal conditions, PC are necessary to maintain a quiescent stable 
endothelium; however, activated PC could act as drivers of 
angiogenesis during inflammatory processes.

Increased vascular permeability is a hallmark of inflammation, 
and PC may play a role in this response. It has been shown that 
TNF-α, IL-1β, and IFN-γ promote the expression of inducible 
nitric oxide synthase (iNOS) by porcine (36) and rat (51) brain 
PC. The generation of NO by PC can act in both an autocrine and 
paracrine manner as a relaxing factor, which leads to vasodila-
tion. In addition, an iNOS-independent pathway by which lung 
PC contractility is regulated by lipopolysaccharide (LPS) has 
been suggested (66). VEGF modifies the contractile response of 
lung PC, and this mechanism may play a role in the increased 
permeability demonstrated in inflammatory conditions (67). PC 
also upregulate cyclooxygenase-2 (COX-2), responsible for pro-
duction of inflammatory prostaglandins, and generate reactive 
oxygen and nitrogen species after the stimulation with TNF-α, 
IL-1β, or IFN-γ (36). In another study, microarray analysis 
of PDGFRβ+, SMA+ human brain PC treated with IFN-γ and 
IL-1β revealed widespread changes in gene expression including 
upregulation of interleukins, chemokines, adhesion molecules, 
PTGS2/COX2, and SOD2 (47). Increased superoxide dismutase 
expression by PC could confer tolerance to oxidative stress in the 
inflammatory context.

Aside from participating in the onset of inflammatory 
responses, autolimiting mechanisms have also been identified 
in PC. The transcription factor C/EBPδ is induced in a concen-
tration- and time-dependent fashion in PDGFRβ+, SMA+, and 
NG2+ human brain PC by IL-1β, limiting PC production of CCL2 
and thereby preventing further inflammatory responses (48).

All these works support the potential of PC to take part in 
immunological responses under inflammatory conditions (36). 
However, their role is complex: Pdgfrβ+/− mice showed an age-
dependent progressive loss of PC coverage in the brain associated 
with neutrophil infiltration and expression of several inflamma-
tory factors (TNF-α, IL-1β, IL-6, CCL2) and ICAM-1 (68).

PC AS SeNTiNeLS OF THe iNNATe 
iMMUNiTY

Several classes of receptors, collectively termed pattern-  
recognition receptors (PRR) are responsible for sensing 
 microorganisms and endogenous molecules released during 
cell injury. These germ line-encoded PRR recognize conserved 
pathogen-associated molecular patterns (PAMPs) and danger-
associated molecular patterns (DAMP). Five families of PRR 
have been identified in mammals, of which toll-like receptors 
(TLRs) and NOD-like receptors (NLRs) are the most studied and 
characterized (69). Beyond the passive role of PC in the amplifica-
tion of inflammatory responses above described, expression of 
functional PRR suggests that brain PC may directly contribute to 
the onset of innate immune responses.

Human EC are known to express several TLRs, whereas 
inflamed endothelium has significant upregulation of TLR2 
(receptor for di/triacyl lipopeptides) and TLR4 (LPS recep-
tor) (70, 71). However, expression of these receptors in PC 
has been scarcely addressed. In a series of pioneering works 
by Edelman et al., the authors demonstrated TLR4 upregula-
tion (72), increased vessel permeability (73), and production 
of IL-1β (60) in rat lung PC treated with LPS, suggesting an 
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active role of PC in inflammation. Subsequently, the release of 
NO and several cytokines and chemokines by SMA+, CD13+ 
mouse brain vascular PC in response to LPS was reported (55). 
More recently, we have documented the expression of TLR4 by 
human brain PC and their responsiveness to both LPS and the 
endogenous ligand HMGB1 (45). In this study, the transcrip-
tional profile of LPS-treated PC was characterized using DNA 
microarrays. Shortly after, Jansson et al. confirmed the ability 
of human brain PC to respond to different pro-inflammatory 
stimuli, including LPS (47).

Pattern-recognition receptors signaling in innate immune 
cells results in the production of a variety of pro-inflammatory 
molecules. In LPS-treated human brain PC, six genes were found 
to be upregulated more than 15-fold: CXCL10, CCL20, CXCL8, 
CXCL1, IL-6, and CCL2 (45) (Table 1). Interestingly, these data 
corroborated a different capacity in synthesis of pro-inflammatory 
factors between vascular cells and leukocytes in response to 
PAMPs or analogs. It had been described that vascular VSMC 
and EC cells produce 10- to 100-fold more IL-6, CXCL8, and 
CXCL10, whereas leukocytes are nearly exclusive producers of 
IFN-γ and TNF-α, at least in humans (74). Intriguingly, LPS 
induces in human coronary artery EC mRNA expression of 
IL-1α, IL-1β, and TNF-α, but no release of the proteins (75). 
Similarly, a significant upregulation of IL-1α and IL-1β mRNA 
in human brain PC was observed, but expression at protein 
level could not be detected (45). The profiles of cytokines and 
chemokines released by human and mouse brain PC in response 
to LPS also differ considerably, supporting major species differ-
ences in vascular cell immunological functions, as highlighted by 
Pober and Tellides (76). Indeed, it is controversial how closely 
the gene-expression patterns in mouse models recapitulate those 
in human inflammatory conditions (77, 78).

A recent report described that LPS-induced secretion of certain 
inflammatory cytokines/chemokines such as CCL2 and CXCL1 
by HUVEC was inhibited by the axon guidance molecule Slit2 and 
its receptor Robo4 pathway (79). Previously, it had been shown 
that Robo4-dependent Slit2 signaling reduces the endothelial 
hyperpermeability induced by LPS in vivo (80). Interestingly, we 
described the expression of Robo4 in human brain PC and their 
response to Slit2 (81), which inhibited spontaneous and PDGF-
B-induced migration of PC. It remains to be addressed whether 
the Slit2-Robo4 axis also modulates the inflammatory response 
in human brain PC.

NOD1 and NOD2, the prototypical members of the NLR 
family of PRR, mediate the cytoplasmic recognition of pepti-
doglycan (PGN) fragments (82). NOD1 is expressed in a variety 
of cell types of both hematopoietic and non-hematopoietic 
origin, including EC, where it has been shown to be critical 
in sensing pathogens (83) and mediating vascular inflamma-
tion (84). The expression of these PRR in PC had not been 
addressed, but a recent report by our group showed that NOD1 
is functionally expressed by PC, whereas NOD2 expression 
is barely detectable. The NOD1 agonist C12-iE-DAP induced 
IL-6 and CXCL8 gene expression by PC as well as their release 
into culture supernatant. Moreover, the synergistic effect of 
NOD1 and TLR4 agonists on the induction of CXCL8 was 
demonstrated (58).

Recently, it has been reported that human brain primary PC 
cultures contain at least two functionally distinct CD73+ cell 
types: one being the more proliferative, CD90+ (Thy-1) cells, 
and CD90− cells, which show a greater inflammatory response 
to LPS and IFN-γ stimulation (53). In fact, the primary human 
brain PC we used to characterize the response to LPS, HMGB1, 
and C12-iE-DAP expressed canonical high levels of PDGFR-β, 
NG2, CD13, CD73, and CD105 but unexpectedly lacked CD90, 
as assessed by flow cytometry (81). It will be interesting to learn 
more about the biological significance of CD90 and the discrete 
roles of these PC subpopulations in physiological and pathologi-
cal conditions.

PeRiCYTe CONTROL OF iMMUNe 
CeLL TRAFFiCKiNG

Leukocyte trafficking to target tissues is orchestrated by adhesion 
molecules and chemokines that stabilize dynamic interactions 
between immune cells and EC. While PC have long been dis-
regarded as players in this process, accumulating evidence have 
shed light on the significance of these cells as regulators of leuko-
cyte recruitment to inflammation sites. This new understanding 
has been enabled by advances in microscopy techniques and the 
generation of genetically fluorescent animal models. Intravital 
imaging studies have revealed the events following leukocyte 
transendothelial migration in  vivo: to fully exit venular walls, 
infiltrating cells must breach the basement membrane and cross 
the PC sheath to enter the perivascular space, which creates a 
special milieu that controls the behavior and fate of infiltrated 
immune cells (85, 86).

Recent works have demonstrated that PC facilitate neutrophil 
transmigration in a model of TNF-α- or IL-1β-stimulated mouse 
cremaster muscle in vivo (61, 87). Namely, PC were observed to 
provide a substrate for neutrophils creeping along their processes 
(“abluminal crawling”) to gaps between adjacent PC which 
are enlarged in inflamed tissues and used as exit points. This 
response was mediated through the interaction of PC-expressed 
ICAM-1 with neutrophil Mac-1 and LFA-1 (61). Previous stud-
ies by the same group had shown that these gaps were aligned 
with regions of low densities of the extracellular matrix proteins 
collagen IV and laminin 10 in the basement membrane (low-
expression regions, LERs) (88–90). PC relaxation rather than 
contraction contributes to the opening of the gaps between PC 
and to the widening and thinning of LERs, facilitating neutrophil 
extravasation (87).

Moreover, capillary and arteriolar NG2+ PC can “instruct” 
extravasating neutrophils and monocytes with migratory 
cues after exiting through postcapillary venules covered 
by NG2− PC (49). In response to inflammatory mediators, 
NG2+ PC upregulated expression of ICAM-1 and released 
the chemoattractant MIF, which directed interstitial leukocyte 
trafficking. In this setting, PC-driven migration of monocytes 
was mediated mainly by MIF and CCL2, whereas neutrophil 
migration involved MIF and CXCL8. These interactions with 
the abluminal face of NG2+ PC were crucial for the efficient 
navigation of cells of the innate immune system and enhanced 
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TAbLe 2 | Modulation of T cell activation and antitumoral immune response by pericytes.

Pericyte type/origin In vitro effect Tumor model In vivo effect Reference

HBP T cell adhesion, VCAM-mediated N/A N/A (63)

HPP T cell anergy N/A N/A (64)

HRP, MRP T cell inhibition, PDL1/
IL-10-mediated

N/A N/A (93)

HPSC-derived PC, HBP, HPP T cell hyporesponsivenes, induction 
of Tregs, PD-L1/TGFβ-mediated

N/A N/A (40)

C3H10T1/2-in vitro differentiated, 
tumor-conditioned PC; B16  
tumor-derived PC

CD4+ T cell anergy, RGS5- and 
IL-6-dependent

B16 mouse melanoma N/A (94)

HBP T cell anergy, PGE2-, NO-, HGF, 
TGFβ-mediated

Human malignant glioma N/A (95)

PDGF-B ret/ret mouse model 
(pericyte-deficient)

N/A B16 melanoma, LLC mouse  
lung cancer

Recruitment of T-cell suppressive 
MDSC, IL-6 mediated. Increased 
tumor growth and metastasis

(96)

Rgs5−/− mouse model N/A RIP1-Tag5  
(insulinoma) × Rgs5−/− mouse 
model

Vascular normalization and 
enhanced infiltration of CD8+ T cells. 
Increased survival

(97)

FVB/N mice N/A NT-2 mouse breast cancer Increased infiltration of CD8+ cells 
after vaccination against pericyte 
antigens. Delayed tumor growth

(98)

C57BL/6, HDD (HLA-A2 
transgenic) mice

N/A MC38 mouse colon carcinoma, 
B16 melanoma

Increased infiltration of CD8+ cells 
after vaccination against pericyte 
antigens. Tumor eradication

(99)

SCID, C57BL/6, C57BL/6 
IL-33−/− mice. Isolated LMP

PDGF-BB-induced IL-33 expression 
in LMP. Increased migration of  
IL-33-primed macrophages

pdgfb-shRNA A431 human 
epidermoid carcinoma,  
pdgfb-overexpressing murine 
T241 fibrosarcoma and LLC cells

Recruitment of TAM, IL-33 
mediated. Metastasis promotion

(100)

HBP, human brain pericytes; HPP, human placental pericytes; HPSC, human pluripotent stem cells; HRP, human retinal pericytes; LLC, Lewis lung carcinoma; LMP, lung mouse 
pericytes; MDSC, myeloid-derived suppressor cells; MRP, mouse retinal pericytes; TAM, tumor-associated macrophages.
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the ability of the latter cells to screen the interstitial space for 
damaged tissue and to execute their effector functions at foci 
of sterile inflammation.

Significantly, the in  vitro coculture of human umbilical 
vein EC and CD90+, NG2+ human placental PC indicated that 
transendothelial migration itself, which increases neutrophil 
Mac-1 surface expression, can prime neutrophils for enhanced 
interactions with PC (57). Another in  vitro model showed 
that porcine brain PC are able to chemoattract neutrophils 
by CXCL8 after stimulation with LPS, TNF-α, or IL-1β (56). 
Remarkably, LPS-treated human brain PC showed a strong 
increase in the expression of both ICAM-1 and VCAM-1 which 
promoted a significant increase in adhesion of peripheral blood 
lymphocytes to human brain PC (45). Notably, VCAM-1/
VLA-4 interaction was proposed more than 20 years ago as a 
mechanism mediating T cell–human brain PC crosstalk (63). 
In a much more recent study, PC have been shown to control 
mature T cell transmigration across the endothelium from the 
thymus into circulation (91).

Collectively, these findings showed that interactions of PC 
with different types of leukocytes modulate their trafficking 
through vessel walls. The impact of such interactions on the 
phenotype and activation state of immune cells requires further 
investigations.

MODULATiON OF ADAPTive iMMUNe 
ReSPONSeS bY PC

If PC can regulate T cell trafficking, it is obvious that they are also 
positioned to modulate T cell activation (76) (Table 2). Human 
EC have been considered amateur APC, since they lack expres-
sion of key co-stimulatory molecules such as CD80 and CD86, 
as it has been reported for PC. But PC also display higher levels 
of PD-L1 and PD-L2, ligands for the inhibitory immune check-
point molecule PD1 expressed by activated T cells. In agreement 
with these observations, IFN-γ-treated MHC class II+ human 
placental PC, unlike EC, cannot stimulate resting allogeneic CD4 
T cell proliferation or cytokine production. Instead, coculture 
with PC renders T cells anergic (64). These placental PC express 
characteristic markers NG2, CD90, CD146, and SMA. Like PC, 
the ontogenetically related MSC have been reported to inhibit 
T cell proliferation (92).

Retinal PC also have immunosuppressive properties, and 
coculture with activated T cells decreased proliferation and 
IFN-γ and TNF-α production in a dose-dependent manner (93). 
Both cell–cell contact and soluble factors are involved in retinal 
PC-mediated T cell inhibition, since it was decreased by the 
addition of blocking anti-PD-L1 and anti-IL-10 antibodies, and 
in transwell experiments. Interestingly, retinal PC protected EC 
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from T cell-induced death, suggesting that their loss under hyper-
glycemic conditions favors retinal inflammation and contributes 
to the pathogenesis of diabetic retinopathy.

Characterization of different subsets of lymph node stromal 
cells (LNSC) identified a novel gp38- and CD31-double-negative 
population. These cells expressed high levels of autoimmune 
regulator (AIRE) and showed a strong response to inflammation 
by upregulating peripheral tissue-restricted antigen expression. 
Of interest, double-negative LNSC upregulated PD-L1 in PolyI:C-
treated mice, suggesting a potential contribution to shaping the 
T cell repertoire and peripheral tolerance (101). In a subsequent 
study, transcriptional profiling of LNSC analyzing each subset’s 
expression signature identified double-negative LNSC as PC able 
to respond to inflammatory or infectious triggers (102).

In another study, human brain or placental PC and PC derived 
from human pluripotent stem cells (hPSC) mediated a significant 
increase in the frequency of allogeneic CD25 high FoxP3+ 
regulatory T cells (Tregs) when cocultured with non-activated 
peripheral blood T cells. PD-L1/2 expression and secretion of 
TGF-β by hPSC PC directly regulated generation of Tregs favor-
ing allostimulation of Tregs over T cell activation, suggesting 
that hPSC PC could be applied to allogeneic cell therapy in the 
clinic, not only without provoking immediate immune responses 
but also actively modulating suppressive immunity (40).

In summary, PC are not only players in innate immunity and 
inflammation but they can also participate, at least under certain 
circumstances, in adaptive immunity.

iMMUNe ReGULATiON bY PC iN THe 
TUMOR MiCROeNviRONMeNT

The role of stromal cells in the tumor microenvironment (TME) 
has attracted great interest, and PC are bona fide components of 
the TME, although its coverage of tumor microvasculature is 
controversial (103–105). Undoubtedly, the immunomodulatory 
properties of PC may have an impact in the context of antitumor 
immune responses. Along with PD-L1 and PD-L2 expression, PC 
from normal human brain and human malignant glioma (both 
PDGFRβ+, desmin+, SMA+, and NG2+) have been shown to secrete 
various factors with immunosuppressive properties, such as NO, 
PGE2, and TGF-β (95). Not surprisingly, previous in vitro results 
have a correlation with the antitumor immune response in vivo. 
PC derived from subcutaneously implanted B16 or CT26 tumors 
expressed, unlike their normal counterparts, MHC class II and 
CD80 molecules (94). In this work, PD-L1 expression was upregu-
lated in normal PC after culture in tumor-conditioned media. 
Tumor-derived PC, but not normal PC, negatively influence CD4+ 
T cell activation and proliferation in vitro, and promote anergy in 
OVA-specific cells in culture. This immunoregulatory capacity was 
dependent on TME-induced RGS5 expression and IL-6, and could 
help tumors to evade immune responses (94). Similarly, PC isolated 
from human malignant glioma were equally capable of suppressing 
allogeneic or mitogen-activated T cell responses in vitro through the 
production of PGE2, TGF-β, and NO. Moreover, CD90+ PDGFR-β+ 
perivascular cells accumulated in human gliomas with increasing 
degree of malignancy and negatively correlated with the presence of 
blood vessel-associated leukocytes and CD8+ T cells (95).

In line with these findings, PC targeting has shown antitumor 
effects in vivo. A study with the RIP1-Tag5 mouse model of pan-
creatic carcinoma showed that deletion of the Rgs5 gene induced 
changes in the vasculature and enhanced infiltration of CD8+ 
T cells in tumors after adoptive transfer. As a consequence, the 
immune-mediated tumor rejection was exacerbated, resulting in 
improved survival of tumor-bearing mice (97). Notably, RGS5 is 
also overexpressed in tumor PC in this model, similar to what has 
been documented for several human tumors, including kidney, 
liver, and head and neck cancers (97, 106).

Tumor PC have also been targeted using vaccination 
approaches. In a breast carcinoma model, immunization with a 
Listeria monocytogenes-based vaccine against NG2 was shown to 
promote tumor infiltration of CD8+ T cells and tumor regression 
(98). Indeed, vaccination with peptides derived from PDGFR-β 
and RGS5 were also effective in preventing HLA-A2− colon 
carcinoma (MC38) establishment or resulted in the regression 
of tumors in HLA-A2 transgenic mice (99). Effective vaccination 
resulted in profound infiltration of tumor lesions by CD8+ cells 
and supported the idea that targeting tumor PC can alleviate local 
immunosuppression.

However, the role of PC in TME is complex, as they may 
contribute to different cancer hallmarks beyond immune eva-
sion (107), and consequently their role as potential targets in 
cancer immunotherapy approaches should be carefully evaluated. 
In the PDGF-B (ret/ret) mouse model, PC deficiency produced 
defective tumor vasculature, resulting in a more hypoxic microen-
vironment. Hypoxia promoted IL-6 upregulation in the malignant 
cells and increased transmigration of myeloid-derived suppressor 
cells (MDSC) in experimentally induced tumors. MDSC accu-
mulation in tumors led to increases in tumor growth, whereas 
restoring the PC coverage in tumors abrogated the increased 
MDSC trafficking to PC-deficient tumors (96). Though, another 
study reported that IL-33 produced by PDGF-B-stimulated PC 
promoted metastasis through recruitment of tumor-associated 
macrophages in several human and mouse graft tumor models 
(100). Further extensive studies will be required to understand 
the crosstalk of PC with immune cells different from T cells.

CONCLUSiON AND PeRSPeCTiveS

Pericytes have demonstrably been shown to possess an immuno-
logical role beyond their structural role in the microvasculature. 
PC can respond to a series of pro-inflammatory stimuli and are 
also able to discriminate between several types of danger and 
mount a complex secretory response: upon PAMP engagement, 
PRR trigger intracellular signaling cascades ultimately culminat-
ing in the expression of a variety of pro-inflammatory molecules. 
At the same time, PC overexpress adhesion molecules that guide 
and instruct innate immune cells after transendothelial migra-
tion. Moreover, PC are implicated in shaping adaptive immunity, 
with several studies that point to an immunosuppressive role. 
This role may have an impact on the antitumor immune response, 
since PC are constituents of the TME. A better understand-
ing of the mechanisms by which PC communicate with their 
neighboring cells and modulate immune responses in tumors 
can be expected to yield exciting new insights as well as help 
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in the development of new therapeutic targets with important 
implications for cancer immunotherapy.

AUTHOR CONTRibUTiONS

All authors listed have made substantial, direct, and intellectual 
contribution to the work and approved it for publication.

FUNDiNG

This study was funded by grants from Instituto de Salud Carlos 
III (PI13/00090), partially supported by European Regional 
Development FEDER funds, and Comunidad de Madrid (S2010-
BMD-2312) to LS and Ministerio de Economía y Competitividad 
(BIO2011–22738) to LÁ-V.

ReFeReNCeS

1. Zimmermann KW. Der feinere Bau der Blutcapillaren. Z Anat Entwickl 
Gesch (1923) 68:29–109. doi:10.1007/BF02593544 

2. Dore-Duffy P, Cleary K. Morphology and properties of pericytes. Methods 
Mol Biol (2011) 686:49–68. doi:10.1007/978-1-60761-938-3_2 

3. Diaz-Flores L, Gutiérrez R, Madrid JF, Varela H, Valladares F, Acosta  E, 
et al. Pericytes. Morphofunction, interactions and pathology in a quiescent 
and activated mesenchymal cell niche. Histol Histopathol (2009) 24:909–69. 
doi:10.14670/HH-24.909

4. Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, 
and pathological perspectives, problems, and promises. Dev Cell (2011) 
21:193–215. doi:10.1016/j.devcel.2011.07.001 

5. Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. 
Cell Tissue Res (2003) 314:15–23. doi:10.1007/s00441-003-0745-x 

6. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. 
Circ Res (2005) 97:512–23. doi:10.1161/01.RES.0000182903.16652.d7 

7. Trost A, Lange S, Schroedl F, Bruckner D, Motloch KA, Bogner B, et al. Brain 
and retinal pericytes: origin, function and role. Front Cell Neurosci (2016) 
10:20. doi:10.3389/fncel.2016.00020 

8. Schallek J, Geng Y, Nguyen H, Williams DR. Morphology and topography 
of retinal pericytes in the living mouse retina using in vivo adaptive optics 
imaging and ex vivo characterization. Invest Ophthalmol Vis Sci (2013) 
54:8237–50. doi:10.1167/iovs.13-12581 

9. Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J. Regional blood 
flow in the normal and ischemic brain is controlled by arteriolar smooth 
muscle cell contractility and not by capillary pericytes. Neuron (2015) 
87:95–110. doi:10.1016/j.neuron.2015.06.001 

10. Whitesell TR, Kennedy RM, Carter AD, Rollins EL, Georgijevic S, Santoro 
MM, et  al. An α-smooth muscle actin (acta2/αSMA) zebrafish transgenic 
line marking vascular mural cells and visceral smooth muscle cells. PLoS One 
(2014) 9:e90590. doi:10.1371/journal.pone.0090590 

11. Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, et al. 
Skeletal muscle pericyte subtypes differ in their differentiation potential. 
Stem Cell Res (2013) 10:67–84. doi:10.1016/j.scr.2012.09.003 

12. Jain RK. Molecular regulation of vessel maturation. Nat Med (2003) 9:685–93. 
doi:10.1038/nm0603-685 

13. Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular 
unit: key functions and signaling pathways. Nat Neurosci (2016) 19:771–83. 
doi:10.1038/nn.4288 

14. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angio-
genesis. Cell (2011) 146:873–87. doi:10.1016/j.cell.2011.08.039 

15. Ozerdem U, Stallcup WB. Early contribution of pericytes to angiogenic 
sprouting and tube formation. Angiogenesis (2003) 6:241–9. doi:10.1023/B:A-
GEN.0000021401.58039.a9 

16. Gaengel K, Genove G, Armulik A, Betsholtz C. Endothelial-mural cell signal-
ing in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 
(2009) 29:630–8. doi:10.1161/ATVBAHA.107.161521 

17. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, et al. 
Capillary pericytes regulate cerebral blood flow in health and disease. Nature 
(2014) 508:55–60. doi:10.1038/nature13165 

18. Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T. What is a pericyte? 
J Cereb Blood Flow Metab (2016) 36:451–5. doi:10.1177/0271678X15610340 

19. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al. A perivas-
cular origin for mesenchymal stem cells in multiple human organs. Cell Stem 
Cell (2008) 3:301–13. doi:10.1016/j.stem.2008.07.003 

20. Bexell D, Gunnarsson S, Tormin A, Darabi A, Gisselsson D, Roybon L, et al. 
Bone marrow multipotent mesenchymal stroma cells act as pericyte-like 

migratory vehicles in experimental gliomas. Mol Ther (2009) 17:183–90. 
doi:10.1038/mt.2008.229 

21. Barlow KD, Sanders AM, Soker S, Ergun S, Metheny-Barlow LJ. Pericytes on 
the tumor vasculature: jekyll or hyde? Cancer Microenviron (2013) 6:1–17. 
doi:10.1007/s12307-012-0102-2 

22. Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in 
health and disease. Nat Neurosci (2011) 14:1398–405. doi:10.1038/nn.2946 

23. Balabanov R, Washington R, Wagnerova J, Dore-Duffy P. CNS microvascular 
pericytes express macrophage-like function, cell surface integrin αM, and 
macrophage marker ED-2. Microvasc Res (1996) 52:127–42. doi:10.1006/
mvre.1996.0049 

24. Pardridge WM, Yang J, Buciak J, Tourtellotte WW. Human brain micro-
vascular DR-antigen. J Neurosci Res (1989) 23:337–41. doi:10.1002/jnr. 
490230314 

25. Shepro D, Morel NM. Pericyte physiology. FASEB J (1993) 7:1031–8. 
26. Thomas WE. Brain macrophages: on the role of pericytes and perivascular 

cells. Brain Res Rev (1999) 31:42–57. doi:10.1016/S0165-0173(99)00024-7 
27. Graeber MB, Streit WJ, Kreutzberg GW. Identity of ED2-positive peri-

vascular cells in rat brain. J Neurosci Res (1989) 22:103–6. doi:10.1002/ 
jnr.490220114 

28. Nyland H, Nilsen R. Localization of Fc gamma receptors in the human 
central  nervous system. Acta Pathol Microbiol Immunol Scand C (1982) 
90:217–21. 

29. Sasaki A, Nakazato Y, Ogawa A, Sugihara S. The immunophenotype of peri-
vascular cells in the human brain. Pathol Int (1996) 46:15–23. doi:10.1111/ 
j.1440-1827.1996.tb03528.x 

30. Kristensson K, Olsson Y. Accumulation of protein tracers in pericytes of the 
central nervous system following systemic injection in immature mice. Acta 
Neurol Scand (1973) 49:189–94. doi:10.1111/j.1600-0404.1973.tb01290.x 

31. Majno G, Palade GE. Studies on inflammation. J Biophys Biochem Cytol 
(1961) 11:571–605. doi:10.1083/jcb.11.3.571 

32. Balabanov R, Beaumont T, Dore-Duffy P. Role of central nervous 
system  microvascular pericytes in activation of antigen-primed splenic 
T-lymphocytes. J Neurosci Res (1999) 55:578–87. doi:10.1002/(SICI)1097- 
4547(19990301)55:5<578::AID-JNR5>3.0.CO;2-E 

33. Fabry Z, Sandor M, Gajewski TF, Herlein JA, Waldschmidt MM, Lynch RG, 
et  al. Differential activation of Th1 and Th2 CD4+ cells by murine brain 
microvessel endothelial cells and smooth muscle/pericytes. J Immunol (1993) 
151:38–47. 

34. Krueger M, Bechmann I. CNS pericytes: concepts, misconceptions, and a 
way out. Glia (2010) 58:1–10. doi:10.1002/glia.20898 

35. Kida S, Steart PV, Zhang ET, Weller RO. Perivascular cells act as scavengers in 
the cerebral perivascular spaces and remain distinct from pericytes, microg-
lia and macrophages. Acta Neuropathol (1993) 85:646–52. doi:10.1007/
BF00334675 

36. Pieper C, Marek JJ, Unterberg M, Schwerdtle T, Galla HJ. Brain capillary 
pericytes contribute to the immune defense in response to cytokines 
or LPS in  vitro. Brain Res (2014) 1550:1–8. doi:10.1016/j.brainres.2014. 
01.004 

37. Smith AM, Graham ES, Feng SX, Oldfield RL, Bergin PM, Mee EW, et al. 
Adult human glia, pericytes and meningeal fibroblasts respond similarly to 
IFNγ but not to TGF-β1 or M-CSF. PLoS One (2013) 8:e80463. doi:10.1371/
journal.pone.0080463 

38. Olson LE, Soriano P. PDGFR-β signaling regulates mural cell plasticity 
and inhibits fat development. Dev Cell (2011) 20:815–26. doi:10.1016/j.
devcel.2011.04.019 

39. Rustenhoven J, Aalderink M, Scotter EL, Oldfield RL, Bergin PS, Mee 
EW, et al. TGF-β1 regulates human brain pericyte inflammatory processes 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://dx.doi.org/10.1007/BF02593544
http://dx.doi.org/10.1007/978-1-60761-938-3_2
http://dx.doi.org/10.14670/HH-24.909
http://dx.doi.org/10.1016/j.devcel.2011.07.001
http://dx.doi.org/10.1007/s00441-003-0745-x
http://dx.doi.org/10.1161/01.RES.0000182903.16652.d7
http://dx.doi.org/10.3389/fncel.2016.00020
http://dx.doi.org/10.1167/iovs.13-12581
http://dx.doi.org/10.1016/j.neuron.2015.06.001
http://dx.doi.org/10.1371/journal.pone.0090590
http://dx.doi.org/10.1016/j.scr.2012.09.003
http://dx.doi.org/10.1038/nm0603-685
http://dx.doi.org/10.1038/nn.4288
http://dx.doi.org/10.1016/j.cell.2011.08.039
http://dx.doi.org/10.1023/B:AGEN.0000021401.58039.a9
http://dx.doi.org/10.1023/B:AGEN.0000021401.58039.a9
http://dx.doi.org/10.1161/ATVBAHA.107.161521
http://dx.doi.org/10.1038/nature13165
http://dx.doi.org/10.1177/0271678X15610340
http://dx.doi.org/10.1016/j.stem.2008.07.003
http://dx.doi.org/10.1038/mt.2008.229
http://dx.doi.org/10.1007/s12307-012-0102-2
http://dx.doi.org/10.1038/nn.2946
http://dx.doi.org/10.1006/mvre.1996.0049
http://dx.doi.org/10.1006/mvre.1996.0049
http://dx.doi.org/10.1002/jnr.490230314
http://dx.doi.org/10.1002/jnr.490230314
http://dx.doi.org/10.1016/S0165-0173(99)00024-7
http://dx.doi.org/10.1002/jnr.490220114
http://dx.doi.org/10.1002/jnr.490220114
http://dx.doi.org/10.1111/j.1440-1827.1996.tb03528.x
http://dx.doi.org/10.1111/j.1440-1827.1996.tb03528.x
http://dx.doi.org/10.1111/j.1600-0404.1973.tb01290.x
http://dx.doi.org/10.1083/jcb.11.3.571
http://dx.doi.org/10.1002/(SICI)1097-4547(19990301)55:5 < 578::AID-JNR5 > 3.0.CO;2-E
http://dx.doi.org/10.1002/(SICI)1097-4547(19990301)55:5 < 578::AID-JNR5 > 3.0.CO;2-E
http://dx.doi.org/10.1002/glia.20898
http://dx.doi.org/10.1007/BF00334675
http://dx.doi.org/10.1007/BF00334675
http://dx.doi.org/10.1016/j.brainres.2014.01.004
http://dx.doi.org/10.1016/j.brainres.2014.01.004
http://dx.doi.org/10.1371/journal.pone.0080463
http://dx.doi.org/10.1371/journal.pone.0080463
http://dx.doi.org/10.1016/j.devcel.2011.04.019
http://dx.doi.org/10.1016/j.devcel.2011.04.019


9

Navarro et al. Pericytes as Immune Modulators

Frontiers in Immunology | www.frontiersin.org November 2016 | Volume 7 | Article 480

involved in neurovasculature function. J Neuroinflammation (2016) 13:37. 
doi:10.1186/s12974-016-0503-0 

40. Domev H, Milkov I, Itskovitz-Eldor J, Dar A. Immunoevasive pericytes from 
human pluripotent stem cells preferentially modulate induction of allogeneic 
regulatory T cells. Stem Cells Transl Med (2014) 3:1169–81. doi:10.5966/
sctm.2014-0097 

41. Mai J, Virtue A, Shen J, Wang H, Yang XF. An evolving new paradigm: 
endothelial cells-conditional innate immune cells. J Hematol Oncol (2013) 
6:61. doi:10.1186/1756-8722-6-61 

42. Speyer CL, Ward PA. Role of endothelial chemokines and their receptors 
during inflammation. J Invest Surg (2011) 24:18–27. doi:10.3109/08941939. 
2010.521232 

43. Liu R, Lauridsen HM, Amezquita RA, Pierce RW, Jane-Wit D, Fang C, et al. 
IL-17 promotes neutrophil-mediated immunity by activating microvascular 
pericytes and not endothelium. J Immunol (2016) 197:2400–8. doi:10.4049/
jimmunol.1600138 

44. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: 
positioning cells for host defense and immunity. Annu Rev Immunol (2014) 
32:659–702. doi:10.1146/annurev-immunol-032713-120145 

45. Guijarro-Muñoz I, Compte M, Álvarez-Cienfuegos A, Álvarez-Vallina L, 
Sanz L. Lipopolysaccharide activates toll-like receptor 4 (TLR4)-mediated 
NF-kβ signaling pathway and proinflammatory response in human pericytes. 
J Biol Chem (2014) 289:2457–68. doi:10.1074/jbc.M113.521161 

46. Nehme A, Edelman J. Dexamethasone inhibits high glucose-, TNF-α-, and 
IL-1β-induced secretion of inflammatory and angiogenic mediators from 
retinal microvascular pericytes. Invest Ophthalmol Vis Sci (2008) 49:2030–8. 
doi:10.1167/iovs.07-0273 

47. Jansson D, Rustenhoven J, Feng S, Hurley D, Oldfield RL, Bergin PS, et al. 
A role for human brain pericytes in neuroinflammation. J Neuroinflammation 
(2014) 11:104. doi:10.1186/1742-2094-11-104 

48. Rustenhoven J, Scotter EL, Jansson D, Kho DT, Oldfield RL, Bergin PS, et al. 
An anti-inflammatory role for C/EBPδ in human brain pericytes. Sci Rep 
(2015) 5:12132. doi:10.1038/srep12132 

49. Stark K, Eckart A, Haidari S, Tirniceriu A, Lorenz M, von Brühl ML, et al. 
Capillary and arteriolar pericytes attract innate leukocytes exiting through 
venules and ‘instruct’ them with pattern-recognition and motility programs. 
Nat Immunol (2013) 14:41–51. doi:10.1038/ni.2477 

50. Fabry Z, Fitzsimmons KM, Herlein JA, Moninger TO, Dobbs MB, Hart MN. 
Production of the cytokines interleukin 1 and 6 by murine brain microvessel 
endothelium and smooth muscle pericytes. J Neuroimmunol (1993) 47:23–34. 
doi:10.1016/0165-5728(93)90281-3 

51. Matsumoto J, Takata F, Machida T, Takahashi H, Soejima Y, Funakoshi M, 
et al. Tumor necrosis factor-α-stimulated brain pericytes possess a unique 
cytokine and chemokine release profile and enhance microglial activation. 
Neurosci Lett (2014) 578:133–8. doi:10.1016/j.neulet.2014.06.052 

52. Herland A, van der Meer AD, FitzGerald EA, Park TE, Sleeboom JJF, Ingber 
DE. Distinct contributions of astrocytes and pericytes to neuroinflammation 
identified in a 3D human blood-brain barrier on a chip. PLoS One (2016) 
11:e0150360. doi:10.1371/journal.pone.0150360 

53. Park TI, Feisst V, Brooks AE, Rustenhoven J, Monzo HJ, Feng SX, et  al. 
Cultured pericytes from human brain show phenotypic and functional 
differences associated with differential CD90 expression. Sci Rep (2016) 
6:26587. doi:10.1038/srep26587 

54. Alcendor DJ, Charest AM, Zhu WQ, Vigil HE, Knobel SM. Infection and 
upregulation of proinflammatory cytokines in human brain vascular 
pericytes by human cytomegalovirus. J Neuroinflammation (2012) 9:95. 
doi:10.1186/1742-2094-9-95 

55. Kovac A, Erickson MA, Banks WA. Brain microvascular pericytes are 
immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 
expression in response to lipopolysaccharide. J Neuroinflammation (2011) 
8:139. doi:10.1186/1742-2094-8-139 

56. Pieper C, Pieloch P, Galla HJ. Pericytes support neutrophil transmigration 
via interleukin-8 across a porcine co-culture model of the blood-brain 
barrier. Brain Res (2013) 1524:1–11. doi:10.1016/j.brainres.2013.05.047 

57. Ayres-Sander CE, Lauridsen H, Maier CL, Sava P, Pober JS, Gonzalez AL. 
Transendothelial migration enables subsequent transmigration of neutro-
phils through underlying pericytes. PLoS One (2013) 8:e60025. doi:10.1371/
journal.pone.0060025 

58. Navarro R, Delgado-Wicke P, Nuñez-Prado N, Compte M, Blanco-
Toribio  A,  Nuñez G, et  al. Role of nucleotide-binding oligomerization 
domain 1 (NOD1) in pericyte-mediated vascular inflammation. J Cell Mol 
Med (2016) 20:980–6. doi:10.1111/jcmm.12804 

59. Lauridsen HM, Pober JS, Gonzalez AL. A composite model of the human 
postcapillary venule for investigation of microvascular leukocyte recruit-
ment. FASEB J (2014) 28:1166–80. doi:10.1096/fj.13-240986 

60. Edelman DA, Jiang Y, Tyburski JG, Wilson RF, Steffes CP. Cytokine pro-
duction in lipopolysaccharide-exposed rat lung pericytes. J Trauma (2007) 
62:89–93. doi:10.1097/TA.0b013e31802dd712 

61. Proebstl D, Voisin MB, Woodfin A, Whiteford J, D’Acquisto F, Jones GE, 
et al. Pericytes support neutrophil subendothelial cell crawling and breach-
ing of venular walls in  vivo. J Exp Med (2012) 209:1219–34. doi:10.1084/
jem.20111622 

62. Kowluru RA, Zhong Q, Kanwar M. Metabolic memory and diabetic retinop-
athy: role of inflammatory mediators in retinal pericytes. Exp Eye Res (2010) 
90:617–23. doi:10.1016/j.exer.2010.02.006 

63. Verbeek MM, Westphal JR, Ruiter DJ, de Waal RM. T lymphocyte adhesion 
to human brain pericytes is mediated via very late antigen-4/vascular cell 
adhesion molecule-1 interactions. J Immunol (1995) 154:5876–84. 

64. Maier CL, Pober JS. Human placental pericytes poorly stimulate and actively 
regulate allogeneic CD4 T cell responses. Arterioscler Thromb Vasc Biol 
(2011) 31:183–9. doi:10.1161/ATVBAHA.110.217117 

65. Keeley EC, Mehrad B, Strieter RM. Chemokines as mediators of tumor 
angiogenesis and neovascularization. Exp Cell Res (2011) 317:685–90. 
doi:10.1016/j.yexcr.2010.10.020 

66. Speyer CL, Steffes CP, Tyburski JG, Ram JL. Lipopolysaccharide induces 
relaxation in lung pericytes by an iNOS-independent mechanism. Am 
J Physiol Lung Cell Mol Physiol (2000) 278:L880–7. 

67. Donoghue L, Tyburski JG, Steffes CP, Wilson RF. Vascular endothelial growth 
factor modulates contractile response in microvascular lung pericytes. Am 
J Surg (2006) 191:349–52. doi:10.1016/j.amjsurg.2005.10.034 

68. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, et al. Pericytes 
control key neurovascular functions and neuronal phenotype in the adult 
brain and during brain aging. Neuron (2010) 68:409–27. doi:10.1016/j.
neuron.2010.09.043 

69. Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate immune pattern rec-
ognition: a cell biological perspective. Annu Rev Immunol (2015) 33:257–90. 
doi:10.1146/annurev-immunol-032414-112240 

70. Danese S, Dejana E, Fiocchi C. Immune regulation by microvascular 
endothelial cells: directing innate and adaptive immunity, coagulation, 
and inflammation. J Immunol (2007) 178:6017–22. doi:10.4049/jimmunol. 
178.10.6017 

71. Pober JS, Sessa WC. Inflammation and the blood microvascular system. 
Cold Spring Harb Perspect Biol (2014) 7:a016345. doi:10.1101/cshperspect.
a016345 

72. Edelman DA, Jiang Y, Tyburski J, Wilson RF, Steffes C. Toll-like receptor-4 
message is up-regulated in lipopolysaccharide-exposed rat lung pericytes. 
J Surg Res (2006) 134:22–7. doi:10.1016/j.jss.2006.03.007 

73. Edelman DA, Jiang Y, Tyburski JG, Wilson RF, Steffes CP. Lipopolysaccharide 
up-regulates heat shock protein expression in rat lung pericytes. J Surg Res 
(2007) 140:171–6. doi:10.1016/j.jss.2006.12.560 

74. Tellides G, Pober JS. Inflammatory and immune responses in the arterial 
media. Circ Res (2015) 116:312–22. doi:10.1161/CIRCRESAHA.116. 
301312 

75. Zeuke S, Ulmer AJ, Kusumoto S, Katus HA, Heine H. TLR4-mediated 
inflammatory activation of human coronary artery endothelial cells by 
LPS. Cardiovasc Res (2002) 56:126–34. doi:10.1016/S0008-6363(02)00512-6 

76. Pober JS, Tellides G. Participation of blood vessel cells in human adaptive 
immune responses. Trends Immunol (2012) 33:49–57. doi:10.1016/j.
it.2011.09.006 

77. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et  al. 
Genomic responses in mouse models poorly mimic human inflammatory 
diseases. Proc Natl Acad Sci U S A (2013) 110:3507–12. doi:10.1073/
pnas.1222878110 

78. Takao K, Miyakawa T. Genomic responses in mouse models greatly mimic 
human inflammatory diseases. Proc Natl Acad Sci U S A (2015) 112:1167–72. 
doi:10.1073/pnas.1401965111 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://dx.doi.org/10.1186/s12974-016-0503-0
http://dx.doi.org/10.5966/sctm.2014-0097
http://dx.doi.org/10.5966/sctm.2014-0097
http://dx.doi.org/10.1186/1756-8722-6-61
http://dx.doi.org/10.3109/08941939.2010.521232
http://dx.doi.org/10.3109/08941939.2010.521232
http://dx.doi.org/10.4049/jimmunol.1600138
http://dx.doi.org/10.4049/jimmunol.1600138
http://dx.doi.org/10.1146/annurev-immunol-032713-120145
http://dx.doi.org/10.1074/jbc.M113.521161
http://dx.doi.org/10.1167/iovs.07-0273
http://dx.doi.org/10.1186/1742-2094-11-104
http://dx.doi.org/10.1038/srep12132
http://dx.doi.org/10.1038/ni.2477
http://dx.doi.org/10.1016/0165-5728(93)90281-3
http://dx.doi.org/10.1016/j.neulet.2014.06.052
http://dx.doi.org/10.1371/journal.pone.0150360
http://dx.doi.org/10.1038/srep26587
http://dx.doi.org/10.1186/1742-2094-9-95
http://dx.doi.org/10.1186/1742-2094-8-139
http://dx.doi.org/10.1016/j.brainres.2013.05.047
http://dx.doi.org/10.1371/journal.pone.0060025
http://dx.doi.org/10.1371/journal.pone.0060025
http://dx.doi.org/10.1111/jcmm.12804
http://dx.doi.org/10.1096/fj.13-240986
http://dx.doi.org/10.1097/TA.0b013e31802dd712
http://dx.doi.org/10.1084/jem.20111622
http://dx.doi.org/10.1084/jem.20111622
http://dx.doi.org/10.1016/j.exer.2010.02.006
http://dx.doi.org/10.1161/ATVBAHA.110.217117
http://dx.doi.org/10.1016/j.yexcr.2010.10.020
http://dx.doi.org/10.1016/j.amjsurg.2005.10.034
http://dx.doi.org/10.1016/j.neuron.2010.09.043
http://dx.doi.org/10.1016/j.neuron.2010.09.043
http://dx.doi.org/10.1146/annurev-immunol-032414-112240
http://dx.doi.org/10.4049/jimmunol.178.10.6017
http://dx.doi.org/10.4049/jimmunol.178.10.6017
http://dx.doi.org/10.1101/cshperspect.a016345
http://dx.doi.org/10.1101/cshperspect.a016345
http://dx.doi.org/10.1016/j.jss.2006.03.007
http://dx.doi.org/10.1016/j.jss.2006.12.560
http://dx.doi.org/10.1161/CIRCRESAHA.116.301312
http://dx.doi.org/10.1161/CIRCRESAHA.116.301312
http://dx.doi.org/10.1016/S0008-6363(02)00512-6
http://dx.doi.org/10.1016/j.it.2011.09.006
http://dx.doi.org/10.1016/j.it.2011.09.006
http://dx.doi.org/10.1073/pnas.1222878110
http://dx.doi.org/10.1073/pnas.1222878110
http://dx.doi.org/10.1073/pnas.1401965111


10

Navarro et al. Pericytes as Immune Modulators

Frontiers in Immunology | www.frontiersin.org November 2016 | Volume 7 | Article 480

79. Zhao H, Anand AR, Ganju RK. Slit2-Robo4 pathway modulates LPS-
induced endothelial inflammation and its expression is dysregulated 
during endotoxemia. J Immunol (2014) 192:385–93. doi:10.4049/jimmunol. 
1302021 

80. London NR, Zhu W, Bozza FA, Smith MCP, Greif DM, Sorensen LK, et al. 
Targeting Robo4-dependent slit signaling to survive the cytokine storm 
in sepsis and influenza. Sci Transl Med (2010) 2:23ra19. doi:10.1126/
scitranslmed.3000678 

81. Guijarro-Muñoz I, Cuesta AM, Álvarez-Cienfuegos A, Geng JG, Álvarez-
Vallina L, Sanz L. The axonal repellent Slit2 inhibits pericyte migration: 
potential implications in angiogenesis. Exp Cell Res (2012) 318:371–8. 
doi:10.1016/j.yexcr.2011.12.005 

82. Caruso R, Warner N, Inohara N, Nuñez G. NOD1 and NOD2: signaling, 
host defense, and inflammatory disease. Immunity (2014) 41:898–908. 
doi:10.1016/j.immuni.2014.12.010 

83. Gatheral T, Reed DM, Moreno L, Gough PJ, Votta BJ, Sehon CA, et  al. A 
key role for the endothelium in NOD1 mediated vascular inflammation: 
comparison to TLR4 responses. PLoS One (2012) 7:e42386. doi:10.1371/
journal.pone.0042386 

84. Nishio H, Kanno S, Onoyama S, Ikeda K, Tanaka T, Kusuhara K, et al. Nod1 
ligands induce site-specific vascular inflammation. Arterioscler Thromb 
Vasc Biol (2011) 31:1093–9. doi:10.1161/ATVBAHA.110.216325 

85. Nourshargh S, Hordijk PL, Sixt M. Breaching multiple barriers: leukocyte 
motility through venular walls and the interstitium. Nat Rev Mol Cell Biol 
(2010) 11:366–78. doi:10.1038/nrm2889 

86. Weninger W, Biro M, Jain R. Leukocyte migration in the interstitial space 
of non-lymphoid organs. Nat Rev Immunol (2014) 14:232–46. doi:10.1038/
nri3641 

87. Wang S, Cao C, Chen Z, Bankaitis V, Tzima E, Sheibani N, et al. Pericytes 
regulate vascular basement membrane remodeling and govern neutrophil 
extravasation during inflammation. PLoS One (2012) 7:e45499. doi:10.1371/
journal.pone.0045499 

88. Voisin MB, Woodfin A, Nourshargh S. Monocytes and neutrophils exhibit 
both distinct and common mechanisms in penetrating the vascular base-
ment membrane in  vivo. Arterioscler Thromb Vasc Biol (2009) 29:1193–9. 
doi:10.1161/ATVBAHA.109.187450 

89. Voisin MB, Pröbstl D, Nourshargh S. Venular basement membranes ubiq-
uitously express matrix protein low-expression regions. Am J Pathol (2010) 
176:482–95. doi:10.2353/ajpath.2010.090510 

90. Wang S, Voisin MB, Larbi KY, Dangerfield J, Scheiermann C, Tran M, et al. 
Venular basement membranes contain specific matrix protein low expression 
regions that act as exit points for emigrating neutrophils. J Exp Med (2006) 
203:1519–32. doi:10.1084/jem.20051210 

91. Zachariah MA, Cyster JG. Neural crest-derived pericytes promote egress 
of mature thymocytes at the corticomedullary junction. Science (2010) 
328:1129–35. doi:10.1126/science.1188222 

92. Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal 
stromal cells. Blood (2007) 110:3499–506. doi:10.1182/blood-2007-02- 
069716 

93. Tu Z, Li Y, Smith DS, Sheibani N, Huang S, Kern T, et al. Retinal pericytes 
inhibit activated T cell proliferation. Invest Ophthalmol Vis Sci (2011) 
52:9005–10. doi:10.1167/iovs.11-8008 

94. Bose A, Barik S, Banerjee S, Ghosh T, Mallick A, Majumdar SB, et al. Tumor-
derived vascular pericytes anergize Th cells. J Immunol (2013) 191:971–81. 
doi:10.4049/jimmunol.1300280 

95. Ochs K, Sahm F, Opitz CA, Lanz TV, Oezen I, Couraud PO, et al. Immature 
mesenchymal stem cell-like pericytes as mediators of immunosuppression in 

human malignant glioma. J Neuroimmunol (2013) 265:106–16. doi:10.1016/j.
jneuroim.2013.09.011 

96. Hong J, Tobin NP, Rundqvist H, Li T, Lavergne M, García-Ibáñez Y, et al. 
Role of tumor pericytes in the recruitment of myeloid-derived suppressor 
cells. J Natl Cancer Inst (2015) 107(10):djv209. doi:10.1093/jnci/djv209 

97. Hamzah J, Jugold M, Kiessling F, Rigby P, Manzur M, Marti HH, et al. Vascular 
normalization in Rgs5-deficient tumours promotes immune destruction. 
Nature (2008) 453:410–4. doi:10.1038/nature06868 

98. Maciag PC, Seavey M, Pan ZK, Ferrone S, Paterson Y. Cancer immunother-
apy targeting the HMW-MAA protein results in a broad antitumor response 
and reduction of pericytes in the tumor vasculature. Cancer Res (2008) 
68:8066–75. doi:10.1158/0008-5472.CAN-08-0287 

99. Zhao X, Bose A, Komita H, Taylor JL, Chi N, Lowe DB, et al. Vaccines tar-
geting tumor blood vessel antigens promote CD8+ T cell-dependent tumor 
eradication or dormancy in HLA-A2 transgenic mice. J Immunol (2012) 
188:1782–8. doi:10.4049/jimmunol.1101644 

100. Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, et  al. The 
PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells pro-
motes metastasis through tumour-associated macrophages. Nat Commun 
(2016) 7:11385. doi:10.1038/ncomms11385 

101. Fletcher AL, Lukacs-Kornek V, Reynoso ED, Pinner SE, Bellemare-Pelletier 
A, Curry MS, et al. Lymph node fibroblastic reticular cells directly present 
peripheral tissue antigen under steady-state and inflammatory conditions. 
J Exp Med (2010) 207:689–97. doi:10.1084/jem.20092642 

102. Malhotra D, Fletcher AL, Astarita J, Lukacs-Kornek V, Tayalia P, Gonzalez 
SF, et al. Transcriptional profiling of stroma from inflamed and resting lymph 
nodes defines immunological hallmarks. Nat Immunol (2012) 13:499–510. 
doi:10.1038/ni.2262 

103. Bose A, Ghosh T, Baral R. An overlooked tumor promoting immunoregu-
lation by non-hematopoietic stromal cells. Immunol Lett (2016) 176:114–21. 
doi:10.1016/j.imlet.2016.06.002 

104. Cortez E, Roswall P, Pietras K. Functional subsets of mesenchymal cell 
types in the tumor microenvironment. Semin Cancer Biol (2014) 25:3–9. 
doi:10.1016/j.semcancer.2013.12.010 

105. Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal 
cells in the tumour microenvironment. Nat Rev Immunol (2015) 15:669–82. 
doi:10.1038/nri3902 

106. Furuya M, Nishiyama M, Kimura S, Suyama T, Naya Y, Ito H, et al. Expression 
of regulator of G protein signalling protein 5 (RGS5) in the tumour vascula-
ture of human renal cell carcinoma. J Pathol (2004) 203:551–8. doi:10.1002/
path.1543 

107. Ribeiro AL, Okamoto OK. Combined effects of pericytes in the tumor micro-
environment. Stem Cells Int (2015) 2015:868475. doi:10.1155/2015/868475 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

The reviewer X-YW and handling Editor declared their shared affiliation, and the 
handling Editor states that the process nevertheless met the standards of a fair and 
objective review.

Copyright © 2016 Navarro, Compte, Álvarez-Vallina and Sanz. This is an open- 
access article distributed under the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or reproduction in other forums is permitted, 
provided the original author(s) or licensor are credited and that the original publica-
tion in this journal is cited, in accordance with accepted academic practice. No use, 
distribution or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://dx.doi.org/10.4049/jimmunol.1302021
http://dx.doi.org/10.4049/jimmunol.1302021
http://dx.doi.org/10.1126/scitranslmed.3000678
http://dx.doi.org/10.1126/scitranslmed.3000678
http://dx.doi.org/10.1016/j.yexcr.2011.12.005
http://dx.doi.org/10.1016/j.immuni.2014.12.010
http://dx.doi.org/10.1371/journal.pone.0042386
http://dx.doi.org/10.1371/journal.pone.0042386
http://dx.doi.org/10.1161/ATVBAHA.110.216325
http://dx.doi.org/10.1038/nrm2889
http://dx.doi.org/10.1038/nri3641
http://dx.doi.org/10.1038/nri3641
http://dx.doi.org/10.1371/journal.pone.0045499
http://dx.doi.org/10.1371/journal.pone.0045499
http://dx.doi.org/10.1161/ATVBAHA.109.187450
http://dx.doi.org/10.2353/ajpath.2010.090510
http://dx.doi.org/10.1084/jem.20051210
http://dx.doi.org/10.1126/science.1188222
http://dx.doi.org/10.1182/blood-2007-02-069716
http://dx.doi.org/10.1182/blood-2007-02-069716
http://dx.doi.org/10.1167/iovs.11-8008
http://dx.doi.org/10.4049/jimmunol.1300280
http://dx.doi.org/10.1016/j.jneuroim.2013.09.011
http://dx.doi.org/10.1016/j.jneuroim.2013.09.011
http://dx.doi.org/10.1093/jnci/djv209
http://dx.doi.org/10.1038/nature06868
http://dx.doi.org/10.1158/0008-5472.CAN-08-0287
http://dx.doi.org/10.4049/jimmunol.1101644
http://dx.doi.org/10.1038/ncomms11385
http://dx.doi.org/10.1084/jem.20092642
http://dx.doi.org/10.1038/ni.2262
http://dx.doi.org/10.1016/j.imlet.2016.06.002
http://dx.doi.org/10.1016/j.semcancer.2013.12.010
http://dx.doi.org/10.1038/nri3902
http://dx.doi.org/10.1002/path.1543
http://dx.doi.org/10.1002/path.1543
http://dx.doi.org/10.1155/2015/868475
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Immune Regulation by Pericytes: Modulating Innate and Adaptive Immunity
	Introduction
	Are Pericytes Non-Professional Macrophage-Like Cells?
	Pericyte Response to Pro-Inflammatory Cues
	PC as Sentinels of the Innate Immunity
	Pericyte Control of Immune Cell Trafficking
	Modulation of Adaptive Immune Responses by PC
	Immune Regulation by PC in the Tumor Microenvironment
	Conclusion and Perspectives
	Author Contributions
	Funding
	References


