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SUMMARY
In many statistical applications, composite variables 
are constructed to reduce the number of variables and 
improve the performances of statistical analyses of these 
variables, especially when some of the variables are highly 
correlated. Principal component analysis (PCA) and factor 
analysis (FA) are generally used for such purposes. If the 
variables are used as explanatory or independent variables 
in linear regression analysis, partial least squares (PLS) 
regression is a better alternative. Unlike PCA and FA, PLS 
creates composite variables by also taking into account 
the response, or dependent variable, so that they have 
higher correlations with the response than composites 
from their PCA and FA counterparts. In this report, we 
provide an introduction to this useful approach and 
illustrate it with data from a real study.

INTRODUCTION
Composite variables are widely used to 
summarise information from a set of 
outcomes in statistical analysis. In some 
studies, composite variables are used to 
create domain scales or subscales, such as 
the SF- 36 (the MOS item short- form health 
survey) instrument, while in some other 
studies, composite variables are used to deal 
with limitations of data. For example, in 
regression analysis, we may need to create 
composite variables if the number of explan-
atory or independent variables is larger than 
the sample size. This statistical issue arises 
when modelling high- throughput data such 
as in fitting regression models to deter-
mine associations of brain functions with 
behavioural and health outcomes of interest 
due to large numbers of braining imaging 
variables and limited study sample sizes in 
most studies. Principal component analysis 
(PCA) and factor analysis (FA) are gener-
ally used for creating composite variables. In 
this report, we describe another less- known 
approach called partial least squares (PLS) 
regression, to create composite variables 

and discuss scenarios where this approach is 
more effective than PCA and FA. We illustrate 
this approach with a real- life application to 
research data.

PARTIAL LEAST SQUARES REGRESSION
As noted earlier, PCA and FA are two popular 
approaches for creating composite variables. 
Under PCA, a set of ordered composite vari-
ables are created to represent the original 
set of outcomes. Each composite variable is 
a linear combination, or a weighted sum, of 
the original outcomes. The coefficients, or 
weights, of the linear combination in each 
compositive variable, are called loadings, and 
their signs and magnitudes indicate the direc-
tions and contributions of the corresponding 
variables. Unlike the original outcomes, the 
composite variables are orthogonal to each 
other. Moreover, the first composite vari-
able has the largest variance, followed by 
the second and so on. FA also creates a set 
of composite variables. However, unlike PCA, 
FA composite variables are not ordered in the 
sense of PCA composites and are not orthog-
onal to each other. Instead, loadings of the FA 
composites can be used to group the original 
variables to create subscale, or domain scales, 
for different constructs such as the domains 
of Physical Functioning and Emotional Well- 
being in the SF- 36.1

PCA and FA create composite variables 
for general purposes. When composite vari-
ables are used as explanatory or independent 
variables in regression analysis involving a 
response or dependent variable, a more effec-
tive approach is PLS. Like PCA, PLS composite 
variables are also ordered. However, unlike 
PCA, PLS composite variables are ordered 
by their correlations with the response in the 
regression model; the first composite variable 
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has the maximum correlation with the response, followed 
by the second and so on. If interest lies in finding a subset 
of the original explanatory variables in the linear model 
that explains the most variability in the response, PLS 
composite variables are more effective than PCA.

To describe in detail how to compute PLS composite 
variables, consider a linear regression with a contin-
uous response of interest, Y  , and a set of  p  explanatory 
variables,  X1,X2, . . . ,Xp  . We are interested in modelling 
the relationship of Y   with  X1,X2, . . . ,Xp  . Given a sample 
of n  subjects, the classic linear regression relating Y   to 
 X1,X2, . . . ,Xp  is given by:

 

Yi = β0 + β1Xi1 + β2Xi2 + · · · + βpXip + εi, εi ∼ N
(
0,σ2

)
,

1 ≤ i ≤ n,   
(1)

where  i  indexes the subjects,  β0,β1,β2, . . . ,βp  denote the 
regression parameters,  εi  is the error term, and  N

(
µ,σ2

)
  

denotes a normal distribution with mean  µ  and variance 
 σ2  . The first part of the linear regression,

 β0 + β1Xi1 + β2Xi2 + · · · + βpXip, 1 ≤ i ≤ n,  (2)

is called the conditional (population) mean of  Yi  given 
the explanatory variables  Xi1,Xi2, . . . ,Xip  . On estimating 
the regression parameters  β0,β1,β2, · · · ,βp , this condi-
tional mean describes the association of  Yi  with each of 
the explanatory variables.

When the explanatory variables  Xi1,Xi2, . . . ,Xip  are highly 
correlated, estimates of  β0,β1,β2, · · · ,βp  may not be reliable 
due to multicollinearity using the standard least squares 
(LS) or maximum likelihood (ML) method. In studies of 
high- throughput data, the number of explanatory vari-
ables exceeds sample sizes, in which case LS method will 
not apply. In both cases, we need to reduce the number of 
the variables,  Xi1,Xi2, . . . ,Xip , or the dimension  p . There are 
different approaches to address this issue. One may use the 
least absolute shrinkage and selection operator (LASSO) 
to determine a subset of  Xi1,Xi2, . . . ,Xip  that provides reli-
able associations with  Yi . Alternatively, one may create 
composite variables  Zi1,Zi2, . . . ,Zip  from  Xi1,Xi2, . . . ,Xip  
and use a subset of the composite variables to predict  Yi . 
The latter composite variable approach is preferred if some 
or all  Xi1,Xi2, . . . ,Xip  need to work together to explain the 
variability in  Yi . For example, if one wants to predict areas of 
rectangles, lengths or widths alone will not provide reliable 
predictions since a rectangle with a very large length can 
still have a small area if it has a small width. LASSO is most 
effective to deal with high- throughput data as dimension is 
the primary problem in this case. In the presence of multi-
collinearity, it is likely more meaningful to aggregate infor-
mation in correlated variables using a subset of composite 
variables, rather than to select a subset of the original vari-
ables. In this case, correlated variables may all contribute to 
explaining the variability in the response  Yi  and composite 
variables will account for all such contributions.

The composite variables  Zi1,Zi2, . . . ,Zip  for PLS are 
obtained by solving an optimisation problem.2 Unlike 
PCA composite variables, PLS finds directions of the 

composite variables  Zi1,Zi2, . . . ,Zip  that have both high 
variance and high correlation with the response  Yi . Specif-
ically, let  Zil  denote the  l th composite variable:

 Zil = Xi1αl1 + Xi2αl2 + · · · + Xipαlp, 1 ≤ i ≤ n, 1 ≤ l ≤ p,  (3)

where  α1,α2, . . . ,αp  denote weights, or loadings, of the 
composite  Zl . We can also express (3) equivalently in a 
vector form

 
∼
Zl =

∼
X1αl1 +

∼
X2αl2 + · · · +

∼
Xpαlp, 1 ≤ i ≤ n, 1 ≤ l ≤ p,  (4)

or in a matrix form:

 
∼
Zl = X

∼
αl, 1 ≤ l ≤ p,  

where  
∼
Zl =

(
Z1l,Z2l, · · · ,Znl

)T
 ,  

∼
Xl =

(
X1l,X2l, · · · ,Xnl

)T
  

and  
∼
α =

(
α1,α2, · · · ,αp

)T
  denote  p× 1  column vectors, 

and 
 
X =

(∼
X1,

∼
X2, · · · ,

∼
Xn

)

 
 denotes an  n× p  matrix. The 

loadings are determined by the following optimisation 
procedure:

 
maxαlCorr

2
(∼
Y,X

∼
αl

)
Var

(
X
∼
αl

)
  

 subject to : ||α̃l|| =
√

α2
l1 + α2

l2 + · · · + α2
lp = 1, α̃T

lSα̃m = 0, m = 1, · · · , l − 1.  

where  
∼
Y =

(
Y1, Y2, · · · , Yn

)T
  is a  n× 1  column vector, 

 S  is the sample covariance matrix of  Xi1,Xi2, . . . ,Xip , 

 
Corr2

(∼
Y,X

∼
αl

)

 
 denotes the squared (Pearson) correlation 

matrix between 
∼
Y   and  X

∼
αl , and  Var

(
X
∼
αl

)
  denotes the 

sample variance of  X
∼
αl  . The condition  

∼
α
T
l S

∼
αm = 0  ensures 

that the lth composite  
∼
Zl = X

∼
αl  is uncorrelated with all 

previous composite variables  
∼
Zm = X

∼
αm  ( 1 ≤ m < l ≤ p ).

In practice, we can use the following procedure to find 
the PLS composite variables.3 We start by standardising 
each of the original explanatory variables  Xi1,Xi2, . . . ,Xip  to 

have mean 0 and variance 1. Set  
∼
Y

(
0
)
= Ȳ1n  and  

∼
X

(
0
)

l =
∼
Xl  

( 1 ≤ l ≤ p ), where  Ȳ =
1
n
∑n

i=1
(
Y1 + Y2 + · · ·+ Yn

)
  denotes 

the sample mean of  Yi  ( 1 ≤ i ≤ n ) and  
∼
1n =

(
1, 1, · · · , 1

)T
  

denotes a  n× 1  volume vector of 1. For  1 ≤ l ≤ p , we 
perform the following steps:

(a)  
∼
Zl =

∼
X

(
l−1

)

1 αl1 +
∼
X

(
l−1

)

2 αl2 + · · ·+
∼
X

(
l−1

)

p αlp , where 

 
αlj =

⟨
∼
X

(
l−1

)

j ,
∼
Y

⟩

 
, where  ⟨a, b⟩  denotes the inner product 

between two vectors  a  and  b ;

(b) 
 
θl =

⟨∼
Z l ,

∼
Y
⟩

⟨∼
Z l ,

∼
Z l

⟩

 
 ;

(c)  
∼
Y

(
l
)

=
∼
Y

(
l−1

)
+ θl

∼
Zl   ;

(d) Orthogonalise each  
∼
X

(
l−1

)

j   with respect to  
∼
Zl  :

 

∼
X

(
l
)

j =
∼
X

(
l−1

)

j −

⟨
∼
Zl,

∼
X

(
l−1

)

j

⟩

⟨
∼
Zl,

∼
Zl

⟩ ∼
Zl, 1 ≤ j ≤ p.
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To illustrate the difference between PSL and PCA, here 
is the procedure to compute composite variables under 
PCA:

We start with the  n× p  data matrix X  , which is 
formed by the column vectors  X1 ,  X2 ,…,  Xp , that is, 

 X =
[
X1,X2, . . . ,Xk, . . . ,Xp

]
 . Then we perform the following 

steps:

1. Average over all the columns of X  : 
 
X̄ = 1

p

p∑
k=1

Xk
 
;

2. Centre the matrix X   at this average X̄   by subtract-
ing X̄   from each column vector  Xk  of X  , denote as: 

 Z =
[
X1 − X̄,X2 − X̄, . . . ,Xp − X̄

]
 ;

3. Compute the sample variance–covariance matrix: 
 Σ = ZTZ ;

4. Compute the eigenvalues  
{
λk

}
k=1,2...,p  and cor-

responding eigenvectors  
{
Uk

}
k=1,2...,p  of Σ  with 

 λ1 > λ2 > . . . > λp  ;
5. The top m  ( ≤ p ) principal components, or composite 

variables,  
{
Uk

}
k=1,2...,m , are then used as independent 

variables in linear regression models with Y   as the de-
pendent variable, where m  is generally determined by 
the magnitude of the sum of the top m  eigenvalues rela-

tive to the sum of all  p  eigen values, 

 

m∑
k=1

λk

p∑
l=1

λl  

, which has the 

interpretation of being the percent of the variability of 

 X   explained by the top m  eigenvectors  
{
Uk

}
k=1,2...,m .

By comparing the two procedures, we can see that PCA 
creates composite variables without using any informa-
tion in the dependent variable Y   as PLS does in creating 
its composite variables. If the goal is to find composite 
variables of X   that are most predictive of Y  , PLS is more 
preferrable than PCA. On the other hand, if the goal is to 
find composite variables that maximally explain the varia-
bility of the data matrix X  , then PCA is more preferrable.

REAL STUDY EXAMPLE
We illustrate PLS with data from a recent study on the 
association of loneliness and wisdom with gut microbial 
diversity and composition.4 Loneliness and wisdom have 
opposite effects on health and well- being. Loneliness is a 
serious public health problem associated with increased 
morbidity and mortality. Wisdom is associated with better 
health and well- being. Nguyen et al4 successfully applied 
PLS to demonstrate relationships between the association 
of loneliness and wisdom with alpha- diversity. We use this 
study to illustrate the advantages of PLS over standard 
linear regression. More details about the study popula-
tion, measures of loneliness, wisdom, gut microbial diver-
sity and other outcomes, and additional findings can be 
found in the paper.

The study included 184 community- dwelling adults 
(28–97 years). Participants completed validated scales of 
loneliness (UCLA Loneliness Scale),5 wisdom (including 
cognitive, affective and reflective dimensions; Three- 
Dimensional Wisdom Scale),6 compassion (Santa Clara 

Brief Compassion Scale),7 social support (Emotional 
Support Scale)8 and social engagement (Cognitively Stim-
ulating Questionnaire).9 These variables are interrelated; 
loneliness and wisdom have strong inverse correlations; 
social support, social engagement and loneliness are often 
inversely correlated, but they are distinct concepts. Faecal 
samples were obtained from participants using at- home 
self- collection kits and returned via mail. Alpha- diversity 
is the ecological diversity (ie, richness, evenness, compo-
sitional complexity) of a single sample and was quantified 
using Faith’s Phylogenetic Diversity (PD) based on the 
DNAs extracted from the faecal samples. It measures the 
total length of branches in a reference phylogenetic tree 
for all species in a given sample.10

We first fit a standard linear regression to model the 
association of alpha- diversity with individual loneliness, 
wisdom, compassion, social support and social engage-
ment outcomes as predictors, controlling for age and 
body mass index (BMI). Shown in table 1 were estimated 
regression coefficients (β) for the predictors and covari-
ates, along with associated t- statistics (t) and p values . As 
seen, none of the predictors were significant.

We then applied PLS to construct composite vari-
ables from all the predictors and included the extracted 
composite variables and the covariates to build the 
linear regression to predict alpha- diversity by examining 
the contribution of each composite component added 
in terms of the amount of explained variability in the 
outcome of alpha- diversity.11 We settled on the first two 
composite variables because adding component 3 led 
to a decreased adjusted R squared. Shown in table 2 are 
estimated regression coefficients (β) for the predictors 
and covariates, along with t- statistics (t) and p values. The 
model revealed that the effect of component 1 was signifi-
cantly positively associated with alpha- diversity (p=0.008), 
whereas component 2 was not (p=0.217).

Table 1 Results from linear regression for association 
of alpha- diversity (Faith’s Phylogenetic Diversity) with 
loneliness and wisdom outcomes, controlling for covariates

Predictors/covariates β t P value

Intercept 11.492 1.52 0.131

Loneliness 0.022 0.40 0.686

Social support 1.314 1.37 0.172

Wisdom components

  Affective 0.869 0.73 0.473

  Cognitive −1.164 −1.10 0.266

  Reflective 1.350 1.03 0.302

  Compassion 0.270 0.67 0.499

  Social engagement 0.312 0.43 0.671

  Age −0.013 −0.45 0.652

  BMI −0.111 −1.37 0.168

BMI, body mass index.
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When applying PLS, it is important to determine direc-
tions of effects for the original predictors of interest 
(loneliness, wisdom, compassion, social support and 
social engagement) when a composite variable is used as 
a predictor in the final model. Shown in table 3 were load-
ings of individual predictors on the first two composite 
variables. The sign of the loading of a predictor on the 
composite variable indicates the direction of association 
of the predictor with the composite variable. Except for 
loneliness, all the predictors had positive loadings on the 
first composite variable, indicating that wisdom, compas-
sion, social support and social engagement had positive 
associations with alpha- diversity. Loneliness had a nega-
tive association with alpha- diversity because of its negative 
sign. The first composite variable also accounted for 40% 
of the total variability of the psychosocial variables.

To illustrate the differences between PLS and PCA, we 
also applied PCA to construct composite variables and 
use them as explanatory variables in modelling the asso-
ciation of alpha- diversity with the psychosocial variables. 
To be consistent with the PLS, we used the first two eigen-
vectors as the composite variables and controlled for age 
and BMI. Shown in table 4 were estimated regression 
coefficients (β) for the predictors and covariates, along 
with t- statistics (t) and p values (component 1: p=0.015; 
component 2: p=0.190). The results were similar to their 
PLS counterparts. A notable difference is the slightly 
weaker association between the first composite variable 
and alpha- diversity. Both PCA and PLS yielded the same 

conclusion regarding the association of composite vari-
ables with alpha- diversity.

Shown in table 5 were loadings of individual predictors 
on the first two PCA composite variables. The signs of the 
loadings are consistent with their PLS counterparts. The 
wisdom- cognitive subscore had less loading under PLS 
than PCA, while compassion, social support and social 
engagement had higher loadings under PLS than PCA.

DISCUSSION
In this report, we described the partial least squares (PLS) 
regression, discussed its relationship with a closely related 
alternative, the principal component analysis (PCA), and 
illustrated the PLS with a real study example. Although 
both aim to reduce explanatory variables (predictors), 
PLS and PCA work quite differently in developing 
composite variables. While PCA constructs the composite 
variables to explain the maximum variability in all the 
original predictors, or the explanatory variables of 
interest, PLS creates its composite variables to explain the 
maximum variability in the response within the context of 
linear regression.

In practice, if the goal is to develop a set of composite 
variables for use as explanatory variables in regression 
models for multiple responses, PCA may be preferred 
since, unlike PLS, it will create a common set of composite 
variables for regression across all the responses. On the 
other hand, if the objective is to develop a set of composite 
variables to explain the maximum variability for a given 

Table 4 Coefficients from linear regression model of 
principal component analysis (PCA) composite variables 
predicting alpha- diversity (Faith’s Phylogenetic Diversity), 
controlling for age and BMI

β t P value

Intercept 21.940 8.48 <0.001

Component 1 0.639 2.47 0.015

Component 2 0.500 1.32 0.190

Age −0.021 −0.78 0.439

BMI −0.092 −1.18 0.240

BMI, body mass index.

Table 5 Loadings for the first PCA composite variables

Composite
variable 1

Composite
variable 2

Loneliness −0.423 0.071

Wisdom- cognitive 0.317 −0.601

Wisdom- reflective 0.483 −0.253

Wisdom- affective 0.442 −0.037

Compassion 0.342 0.528

Social support 0.280 0.058

Social engagement 0.303 0.536

Table 2 Coefficients from linear regression model of partial 
least squares (PLS) composite variables predicting alpha- 
diversity (Faith’s Phylogenetic Diversity), controlling for age 
and BMI

β t P value

Intercept 21.911 8.52 <0.001

Component 1 0.717 2.71 0.008

Component 2 0.545 1.24 0.217

Age −0.015 −0.57 0.569

BMI −0.103 −1.32 0.188

BMI, body mass index.

Table 3 Loadings for PLS composite variables

Composite
variable 1

Composite
variable 2

Loneliness −0.419 0.272

Wisdom- cognitive 0.233 −0.836

Wisdom- reflective 0.462 −0.370

Wisdom- affective 0.454 −0.140

Compassion 0.417 0.421

Social support 0.316 0.187

Social engagement 0.358 0.233
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response, then PLS should be used. When applying PLS 
to develop composite variables for regression analysis for 
multiple responses, multiple sets of composite variables 
will be created with one set for each response and conse-
quently, regression results from composite variables must 
be interpreted with respect to factor loadings within each 
set of composite variables.

In the illustrative example, the two approaches yield 
similar results. In general, results from the two approaches 
may differ and yield different conclusions. For example, 
PLS may yield significant associations of its composite 
variables while PCA does not. If interest lies in finding 
associations of a response with a set of explanatory vari-
ables, PLS should be used.
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